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Abstract

Our work aims to study weakly v-Lindelof (briefly wv-Lindel6f) space in generalized topological spaces. Some char-
acterizations of wv-Lindelof subspaces and subsets are showed. Furthermore, we shall show that the wv-Lindelof generalized
topological space is not a hereditary property. Finally, the effect of some mappings and decompositions of continuity are studied.
The main result that we obtained on is the effect of almost (v, t)-continuous function on wv-Lindel6f generalized topological
space. (©2017 All rights reserved.
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1. Introduction

A lot of attention has been made to study properties of covering in topological spaces, which include
open and different kind of generalized open sets. Further, several authors have been introduced the
generalization of Lindelof space separately for many reasons and according to the sets that they are
interested in such as [17, 22]. Moreover, in a few last years the generalization of Lindel6f spaces have been
extended and generalized to bitopological setting as in [23, 25].

In 1997, essential kind of sets was introduced by Csaszar [8], namely generalized open sets, that pro-
duced generalized topological spaces. Afterwords, a lot of authors have been achieved to generalize the
topological notions to generalized topological surroundings. In literature, there are several generaliza-
tions of the notion of regular sets, and these are studied separately for different reasons and purposes.
In 2008, Csészar [13] defined v-regular open (resp. v-regular closed) sets. In 2012, Sarsak [27] intro-
duced and studied v-compact (resp. v-Lindelof) sets in generalized topological spaces. After that in 2014,
Arar [5] gave the corresponding definitions of paracompact spaces in generalized topological spaces. In
2015, Kiligman and Abuage studied some spaces generated by v-regular sets [16]. Also, in [3] and [1]
Abuage and Kiligman introduced nearly v -Lindelof (briefly. nv-Lindelsf) and almost v-Lindelof (briefly
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av-Lindelof) space in generalized topological spaces respectively. Currently, our purpose is to define a
new generalization of v-Lindel6f space namely; wv-Lindelof.

In the third section, we shall introduce the concept of wv-Lindelof generalized topological spaces,
and obtain some results. Furthermore, the relation among wv-Lindel6f, v-Lindelof, nv-Lindelof and
av-Lindelof GTS have been given.

In the forth section, some characterizations of the concept of wv-Lindelof subspaces and subsets are
investigated. The primary result is that the wv-Lindelof generalized topological space is not a hereditary
property. In the fifth section, we shall introduce the effect of some mappings and decompositions. The
main result of our study is that almost (v, u)-continuous image of wv-Lindel6f generalized topological
space is wv-Lindelof.

2. Preliminaries

Suppose a nonempty set Xg, P(Xg) denotes the power set of Xg and v be a nonempty family of P(Xg).
The symbol v implies a generalized topology (briefly GT) on Xg [9] if the empty set ) € v and U, € v
where y € Q implies |, ¢ Uy € v. The pair (Xg, v) is called generalized topological space (briefly GTS)
and we always denote it by GTS (Xg,Vv) or Xg. Each element of GT v is said to be v-open set and the
complement of v-open set is called v-closed set. Let A be a subset of a GTS (Xg, V), then i (A) (resp.
cv(A)) denotes the union of all v-open sets contained in A (resp. denotes the intersection of all v-closed
sets containing in A), and Xg\A denotes the complement of A, cy(Xg\A) = Xg\(ivA). Moreover, A is
said to be v-regular open (resp. v-regular closed) if and only if A =1i,cy(A) (resp. A = cyiy(A)) [13].

If a set Xg € v, then a GTS (Xg, V) is called v-space [21], and will be denoted by a v-space (Xg,Vv) or
a v-space Xg. Xg is said to be quasi-topological space [12], if the finite intersection of v-open sets of v
belongs to v and denoted by QTS (Xg,v). If B C P(Xg) and () € B. Then B is called a v-base [10] for v if
{UB’: B’ C B} = v, and we say that v is generated by B. A GT v generated by v-regular open sets of a GTS
(X, V) is said to be v-semiregularization [16] of (Xg,V), denoted by GTS (Xg,Vvs). A GTS Xg is said to
be G-regular [19] if for each t € A and each v-closed set F with t ¢ F, there are disjoint v-open sets U and
V such that t € Uand FN A, C V, where A, is the union of all v-open sets in Xg. A GTS (Xg, V) is called
submaximal [14] if every v-dense set of Xg is v-open, and is said to be v-extremally disconnected [10] if
the v-closure of every v-open set is v-open. Moreover, a subset A of a GTS (Xg, V) is called v-clopen if it
is both v-open and v-closed subset.

Proposition 2.1 ([16]).

(@) A GTS (Xg,V) is G-semiregular if for each point t € A and each v-open set U containing t, there exists
v-open set V such that t € V C iycy(V)NA, C UL

(b) A GTS (Xg,V) is almost G-reqular if each point t € A, and each v-reqular open set U containing t, there
exists v-open set V such thatt € V.C ¢, VN A, C W

Definition 2.2. A GTS (Xg, V) is said to be

(a) v-Lindelof [27] if for each v-open cover {U, : vy € Q} of A, admits a countable sub-collection
{Uy, :n € N}such that Ay = U, e Uy,

(b) nv-Lindelof [3] (resp. av-Lindelof [1]) if for each v-open cover {U, : v € Q} of A, admits a countable
sub-collection {U.,, : n € IN} such that

Ay = livev(Uy,)) (resp. Ay = | (ev(Uy,))).
nelN neN

Definition 2.3 ([2]). A GTS (Xg, V) is called nv-paracompact if each v-regular open cover of A, admits a
locally finite v-open refinement.
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Lemma 2.4 ([13]).
(a) If Fis v-closed set then i (F) is v-regular open.

(b) If U is v-open set then c (U) is v-regular closed.

3. wv-Lindelof generalized topological spaces

Definition 3.1. A GTS (Xg, V) is said to be wv-Lindelof if each v-open cover {U, : vy € Q} of A, admits a
countable sub-collection {U,, : n € IN} such that

Ay =cv( | Uy,)
nelN
Proposition 3.2. A GTS (Xg, V) is wv-Lindelof if and only if every collection {F :y € Q} of v-closed sets of Xg
such that (", cq Fy) N Ay = 0 admits a countable sub-collection {F,,, :n € N} such that iy (N en Fyn) NAY =
0.

Proof. (=) Let {F, : v € Q} be a collection of v-closed sets of Xg such that (ﬂye o Fy)NAy = 0. Then
Ny = Xg\(ﬂyeﬂ Fy) = UYQQ(Xg\Fy), i.e., the collection {Xg\F, : vy € Q} is a v-open cover of A,. Since
Xg is wv-Lindelof, there is a countable sub-collection {Xg\F,, : n € IN} such that

Ay =cv( | Xc\Fy, ).
nelN
Thus,
X\ = Xa\(ev( | (Xe\Fy,))) = iv(X6\ [ (X6\Fy,)) =iv( [ Fya)-
nelN nelN nelN

S0, iv(MNnen Fyn) NAY = 0.

(<) Suppose {U, : v € Q}is a v-open cover of A, then A, = UYEQ U, and {Xg\Uy : vy € Q}is
a collection of v-closed sets of Xg. Thus (Xg\U,cq Uy) NAy =0, ie, N, eq(Xc\Uy)NAy = 0. By
hypothesis, there is a countable sub-collection {Xg\Uy,, : n € IN} such that i, (), cn(Xc\Uy, ) VA, = 0.
Then,

Ay =Xa\(iv( ) Xc\Uy,))) = cv(Xa\ [ Xe\Uy,)) =cv( | Uy,),

nelN nelN nelN
which implies that a GTS (Xg,Vv) is a wv-Lindelsf. O

Proposition 3.3. A GTS (Xg,Vv) is wv-Lindelof if and only if every collection {F, : vy € Q} of v-closed sets of
Ay for which every countable sub-collection {F,, : n € IN} satisfies iy (N en Fyn) NAv # 0, the intersection

(Nyea Fy)NAY #0.
Proof. (=) Let {F : v € Q} be a collection of v-closed sets of Xg for which every countable sub-collection
{Fy,, : n € N} satisfies iy (), en(Fyn)) N Ay # 0. Assume that (ﬂyeﬂ F,) N Ay =0, hence
Xa\Av=[1Fy = Av=Xa\ [] Fy = [J (Xa\Fy).
YeEQ YeQ YeQ

So, {Xg\Fy : v € Q} forms a v-open cover of A,. Since X¢g is wv-Lindelof, there is a countable sub-
collection {Xg\Fy, : n € N} such that Ay = ¢y (U en(XG\Fy, ). Thus,

Xe\Ay = Xg\ev (| (Xe\Fy)) = v(Xe\ | (X6\Fy,)) = iv([) Fy,)-

nelN neN neN

S0, iv(Mnen Fyn) N Ay = 0 which is contradiction.
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(<) Let that Xg is not wv-Lindelof GTS, then there exists v-open cover {U, : y € Q} of A, with
no countable sub-collection {U,, : n € N} such that Ay = ¢y (Upen Uy, )- Then Ay # ¢y (Unen Uy,)
for any countable sub-collection {U,, : n € IN}. It follows that Xg\cv(Unen Uyn) NAY # 0, ie,
v (X \Unen Uy ) NAy # 0 or iy ((Naen(Xe\Uy, )) N Ay # 0. Thus {Xg\U, : v € O} is a collection of
v-closed sets of Xg and satisfies iy ([, en(Xc\Uy,)) N Ay # 0 for which every countable sub-collection
{Xg\Uy, : n € N}. By hypothesis, ((,cq Xc\Uy) NAy # 0, and thus Xg\(Uyeq Uy) NAy # 0, ie,
Ay # Uv co Uy. This is contradiction with the fact that a collection {U, : v € Q}is a v-open cover of a
Ay. Then Xg is wv-Lindelof GTS. O

Proposition 3.4. Let (Xg, V) bea GTS. If
(@) Xg is wv-Lindeldf;

(b) every v-reqular open cover {U,, : vy € Q} of Ay admits a countable subcover {U., : n € IN} with v-dense
union in A\vy;

(c) each collection {F, : v € Q} of v-regular closed sets of Xg such that ((,cq Fy) N Ay = 0 has a countable
sub-collection {F,, : € N} such that iy ((\,cn Fyn) NAy = 0, then the relation: (a) = (b) < (c) is true.
Further, ifa GTS Xg is G-semiregular, then (b) = (a).

Proof. (a) = (b): It is obvious since every v-regular open set is v-open.

(b) & (c) : If {F, : v € Q} is a collection of v-regular closed sets of Xg such that (ﬂye o Fy)NAy =0,
thus Xg\Ay = ﬂyeQ F,, and hence A, = UvEQ (XG\Fy), i.e., the collection {Xg\Fy : v € Q}is a v-regular
open cover of A, by (b), there is a countable sub-collection {Xg\F,, : n € IN} with v-dense union in Xg,
ie, Ay = cv(Unen(Xc\Fy,))- So, Xg\ev (Unen (X6 \Fy,)) NAy = 0, that implies

i\/(XG\ U (Xg\Fyn)) m/\v = @
nelN
Thus iy (Npen Fya) NAY = 0.
Conversely, suppose that {U, : v € Q}is a v-regular open cover of Ay. Then Ay =, cq Uy, {Xc\Uy :
v € Q}is a collection of v-regular closed sets of X, hence XG\(UyeQ Uy)NAy =0,ie., (ﬂyeﬂ Xc\Uy )N
Ay = 0. By (c), there is a countable sub-collection {Xg\Uy,, : n € IN} such that i, ((,,cn(Xc\Uy, )) NAy =
(. Thus,
Ay =Xe\iv( [ Xe\Uy, ) =cv(Xa\ [ Xe\Uy,)) =cv( | Uy,),
nelN nelN nelN
and (b) is proved.
(b) = (a) Let U = {U, : v € Q} be a v-open cover of Xg. By G-semiregularity, for each t € Xg,
t € V¢ C Uy for some U € U, and some v-regular open set Vi. Thus by (b) there exist {t, : n € IN} such
that
Av=J V) € | Ue) Cev( [ (U,
neN neN neN
Thus, {U¢, : n € N} is a countable sub-collection such that Ay = ¢y ([J,en(Ut,)), and then Xg is a
wv-Lindelof GTS. O

Definition 3.5 ([6]). A GTS (Xg, V) is called v-separable if Xg contains a countable v-dense subset.
Proposition 3.6. If a v-space (Xg, V) is v-separable, then it is wv-Lindelof.

Proof. Suppose {U, :y € Q} is v-open cover of v-separable v-space (Xg, V). Then Xg admits a countable
v-dense subset D = {tj,t2,--- ,tn,---}. Now, for every ty € D, there is yx € Q with tx € U,,. Thus
Xg = cv(D) = cv(Ukenttc)) = cv(Uken Uy, )- This proves that a v-space (Xg,Vv) is wv-Lindelof. O]
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Question 3.7. Dose the wv-Lindelof property imply av-Lindelof?

Our speculation for Question 3.7, that the answer is no, and we can answer it if the GTS (Xg, V) is
weak P-G-space as follows.

Definition 3.8. A GTS (Xg, V) is said to be weak P-G-space if for each countable collection {U,, : n € IN}
of v-open sets in Xg, then ¢y (Unen Uy, ) = Unen cv(Uy, ).

Proposition 3.9. In weak P-G-spaces, av-Lindelof property is equivalent to wv-Lindeldf property.
Proof. the proof follows directly from the Definition above. O
Proposition 3.10 ([1]). Every almost G-reqular av-Lindeldf GTS is nv-Lindelof.
On using Propositions 3.9, 3.10, we have the following corollary.
Corollary 3.11. A wv-Lindeldf, almost G-reqular and weak P-G-spaces is nv-Lindeldf.

Definition 3.12. A GTS (Xg, v) is said to be nv-normal [3] if for each v-regular closed sets F; and F, with
F1 N F, = 0, there are disjoint v-open sets U,V such that F;NA, C U, F,NA, C V.

Proposition 3.13 ([3]). Every nv-Lindelof almost G-regular GTS is nv-normal.

Corollary 3.14. A wv-Lindelof, almost G-regular and weak P-G-space is nv-normal.

Proof. The proof is directly deduced from Propositions 3.10, 3.13. 0
Corollary 3.15 ([1]). Every v-extremally disconnected, av-Lindelof and G-semiregular GTS is v-Lindeldf.
Corollary 3.16. A wv-Lindeldf, v-extremally disconnected, G-semiregular and weak P-G-spaces is v-Lindelof.

Lemma 3.17. If {Uy : o € T} be a locally finite system of sets in a QTS (Xg,V), then cy(Uyer Ux) =
UocEF Cv (u“)'

Proof. Obviously, Jycrcv(Ux) € cyv(Uger Ux). On the other hand, suppose t € cv([Jyer Ua). Thus
Vi N (Uger Ua) # 0 for every v-open set V; containing t. Now {Uy : & € T'} is v-locally finite, so there
is a v-open set Vi containing t intersects only finitely many of the sets Uy, say {Uy, : k =1,2,---,n},
ie, ViNUg, # 0 for each k =1,2,---,n. Since every v-open set of Vi containing t intersects | J wer Ua,
every v-open set of V; containing t must be then intersect J;_; Uu, e, Vi N Up_3 Ua, # 0. Hence, t €
cv (U1 Uag) = U1 (ev(Ugy,)), so that for some k, t € ¢y (Ua,) € Uger cv(Ug). Thus ey (Uger Ua) €
Uaer ¢v(Ug), this completes the proof. O

Proposition 3.18. A wv-Lindeldf, G-semiregular and nv-paracompact QTS (Xg,Vv) is an av-Lindelof.

Proof. Suppose {U, : y € Q} is a v-regular open cover of A,. Since QTS Xg is nv-paracompact, then
this cover admits a locally finite v-open refinement {V : « € T'}. Since Xg is wv-Lindeldf, there is a
countable sub-collection {V,, : n € N} such that Ay = ¢y (Unen Vo )- By Lemma 3.17, ¢ (Upen Vo) =
Unen ¢v(Va, ). Choosing, for each n € N, vy € Q such that V,, C U, , thus

Ay = U Cv(vocn) - U Cv(uvn)'

nelN neN

This proves that a QTS (Xg, v) is an av-Lindelof. O

3.1. wv-Lindelof subspaces and subsets

In [27], Sarsak defined the generalized topological subspace in GTS, since a collection {UNA : U € v}
is the subspace generalized topology on a subset A of a GTS (Xg, V), and (A, Vv(A)) denotes the general-
ized topological subspace (A, v(A)).
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Definition 3.19. Let a GTS (Xg,v) and A C X, then A is said to be:

(a) av(A)-Lindelof if for any v(A)-open cover {U, : y € Q} of AN A, admits a countable sub-collection
{Uy,. :n € N} such that

Am/\v = CV(A)( U an);
neN

(b) av-Lindelof relative to X¢ if for each v-open cover {U, : vy € Q} of A, where ANA, C Uy colly),

there exists a countable sub-collection {U,, : n € IN} such that

ANAy Cevl( | Uy,
neN

Proposition 3.20. Let A be a subset of a GTS (Xg,V). Then A is a wv-Lindelof relative to X¢ if and only if for
each collection {F, : v € Q} of v-closed sets of Xg such that ((,cq Fy) N (ANAy) = 0, there is a countable
sub-collection {F, :n € IN} such that iy (), en Fyo ) N(ANAL) = 0.

Proof. Suppose {F, : vy € Q} is a collection of v-closed subsets of a GTS Xg such that
() FY)N(ANAY) =0.
yeQ

Then (ANA,) C Xg\(ﬂYGQ Fy) = UveQ(XG\FV)' so {Xg\Fy : v € Q} forms a collection of v-open
subsets of Xg covering A N A,. By hypothesis, there is a countable subcollection {Xg\Fy, : n € N} such
that ANAy C cv(Unen(XG\Fy, ). Hence

(Xe\(ev( [ Xe\Fy )N (ANAL) =0,

nelN

ie., iv(Xe\ Unen(Xc\Fy, )) N(ANAy) =0. Thus iy (Npen Fyn) N(ANAY) = 0.

Conversely, let {Uy : v € Q} be a collection of v-open subsets in Xg such that ANAy C U, cq Uy.
Then (Xg\Uyeq Uy) N(ANAY) =0, ie, (NyeaXc\Uy))N(ANAy) = 0. Since {Xg\Uy : v € Q}isa
collection of v-closed subsets of Xg, by hypothesis there is a countable sub-collection {Xg\U,, : n € IN}
such that iy (N, en(Xc\Uy, ) N (AN Ay) = 0. Therefore,

ANAy CXe\iv( [ (Xa\Uy,)) = ev(Xe\( [] (Xe\Uy,)) = ev( [ Uy,).
nelN nelN nelN

This completes the proof. O
Proposition 3.21. Let a GTS (Xg,Vv) and A C Xg, for the following conditions:
(a) A is wv-Lindelof relative to Xg;

(b) every v-reqular open sets {U., : vy € Q} of Xg that cover AN A, admits a countable sub-collection
{U,, :neN},
with v-dense union in ANAy,;

(c) each collection {Fy : v € Q}of v-regular closed sets of Xg such that (|, c o Fy N (ANAy) = 0 has a countable
sub-collection {F,,, : n. € IN} such that iy ((\,en Fya) N (ANAS) = 0, then the relation: (a) = (b) < (c)
is true. Further, if a GTS Xg is G-semiregular, then (b) = (a).

Proof. The proof of this proposition is similar to the proof of Proposition 3.4, so we omitted. O
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Proposition 3.22. Suppose a GTS (Xg,v) and A C Xg, if A is a wv(A)-Lindeldf then A is a wv-Lindelof relative
to X(;.

Proof. Suppose {U, : vy € Q} is a collection of v-open sets of Xg that cover AN A,. Then for each vy, we
can find v-open set V,, of ANA, with U, N(ANAy)=V,. Thus {V, : vy € Q} is v(A)-open cover. Since
A is wv(A)-Lindelof, then there is a countable sub-collection {V,, : n € IN} such that

ANAy =cyia)( | V) Cev(|J Uy,
nelN neN

Therefore, A is a wv-Lindelof relative to Xg. O
Question 3.23. Is the converse of Proposition 3.22 above true?

Our speculation for the question above that the answer is no, and the converse of Proposition 3.22
holds if we restrict a GTS (Xg,v) to be a QTS and A C Xg to be a v-open subset. We prove that as
follows.

Proposition 3.24. Let (Xg,Vv) bea QTS and A be a v-open subset of Xg. Then A is a wv(A)-Lindeldf if and only
if it is wv-Lindelof relative to Xg.
Proof. (=) The necessity of proof was shown in Proposition 3.22.

(<) Suff1c1ency, since A be a v-open then AN A, = A. Now, let {V,, : v € O} be a v(A)-open cover of
A, then for each y € Q, V,, = Uy N A where Uy is v-open, and A C {J, .o Uy. Thus by hypothesis there
is a countable sub-collection {U,, :n € N} of U, such that A C ¢y ([J,,en Uy, ), then

A C eyl U Uy JNA =cy U (Uy, NA)) =Cyv(A) U (Vy,)-
neN nenN nenN

It follows that a subset A is wv(A)-Lindelof. O

Note that, in Proposition 3.24 above it shows that in a v-open set of a GTS (Xg,Vv), wv-Lindelof
property and wv-Lindelof relative to Xg are equivalent. If we consider Xg itself is a wv-Lindelof GTS,
we conclude the following proposition.

Proposition 3.25. Every v-reqular closed subset of wv-Lindelof and G-semiregqular QTS (Xg,Vv) is wv-Lindelof
relative to Xg.

Proof. Let A be a v-regular closed subset of Xg. If {U, : v € Q} is a cover of AN A, by v-regular open
subsets of Xg, then A, = (UyeQ U,) U (Xg\ANA,). Hence the collection {U, : y € O} U{Xg\ANA}
forms a v-regular open cover of A,. Since Xg is a wv-Lindelof, by Proposition 3.24 there will be a
countable sub-collection {Xg\A N Ay, U,,,U,,, -} such that

Ay =cv( | Uy, UX\ANAV))) =y (( [ Uy, ) UXG\ANAL).

nelN neN
Then,

VO Uy ) Uev(Xe\ANAY) = ey (| Uy, ) UXG\ANAY),

nelN nelN
but AN A, and Xg\A N A, are disjoint. Hence ANA, C cv(Unen Uy, ). This proves that A is wv-
Lindelof relative to Xg. O

Since every v-clopen subset is v-regular closed, we have the next corollary.

Corollary 3.26. Every v-clopen subset of wv-Lindelof and G-semiregqular QTS (Xg, V) is wv-Lindeldf relative to
XeG.
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Question 3.27. Is v-closed (v-reqular open) subset of wv-Lindelof QTS Xg wv-Lindelof?

We leave the answer for readers.
So, we can say that in general wv-Lindelof property is not a hereditary property.

Definition 3.28. A GTS (Xg, V) is said to be hereditary wv-Lindelof if every subspace of Xg is wv-
Lindelof.

Proposition 3.29. Let (Xg,Vv) be a G-semireqular GTS. Then Xg is hereditary wv-Lindelof GTS if and only if
any A € vs is wv(A)-Lindelof.
Proof. (=) Suppose Xg is a G-semiregular GTS and v-open hereditary wv-Lindelof. Since vs C v, it is
obvious that any A € vs implies A € v and hence A is wv(A)-Lindelof.

(<) Let V C X be a v-open subset of GTS Xg. By Proposition 3.24, it is sufficient to prove that
V is wv-Lindelof relative to Xg. Let {U, : v € Q} be a collection of v-open subsets of Xg such that
VNA, C Uye o Uy. By Lemma 2.4, we have {i,cy U, : vy € Q} is a collection of v-regular open subsets
of Xg. The set ANA, = UyeQ ivey(Uy) € vs, since A is wv(A)-Lindelof. Then there is a countable
sub-collection {iycy(Uy,) : n € N} such that

ANAy =cy( U ivey(Uy,)) € eyl U cv(Uy,)) € eyl U (Uy, ).
nelN nelN nelN

Therefore, VA A, C ANAy C cy(Unen(Uy,)) and this completes the proof. O

4. Mapping properties

The notions of continuous functions in generalized topological spaces was introduced by Csédszar [9]
in 2002. Let v and u be generalized topologies on Xg and Y, respectively. Then a function g: (Xg,v) —
(Yg, u) from a v-space (Xg,Vv) into a p-space (Yg, ) is called (v, pu)-continuous, if and only if U € p
implies that g~ 1(U) € v.

Definition 4.1. Let A be a subset of GTS (Xg,V), then A is called v-preopen (resp. v-f-open) [11] if
A Ciycy(A) (resp. A C cyivey(A)). The complement of v-preopen (resp. v-p-open) is said to be v-
preclosed (resp. v-B-closed), we denote by 7t the class of all v-preopen sets in Xg, by (3 the class of all
v-B-open sets in Xg.
Definition 4.2. A function g: (Xg,v) — (Yg, 1) is called:

(1) almost (v, u)- continuous [18], if for each t € Xg and each p-open set U containing g(t), there is a

v-open set V with t € V such that g(V) Ci.cu(U);
(2) almost (7, i) - continuous (resp. almost (3, i)- continuous) [3] if for each t € Xg and each p-regular

open set U in Yg containing g(t), there is a v-preopen (resp. v-f3-open ) set V containing t such that
g(V)c U

Remark 4.3. Let g : (Xg,v) — (Yg, 1) be a function between GTS’s (Xg,Vv) and (Yg, 1). Then we have the
following implications but the reverse relations may not be true in general:

almost (v, p)-continuous = almost (7, it)-continuous = almost (3, it)-continuous.

Example 4.4. Let Xg ={a,b,c}and v = {0),{a, b}} be a GT on Xg. Then 7 = v U{{a},{b}}. Define a function
g: (Xg,v) = (Xg,V) as follows: g(a) = a, g(b) = g(c) = c. Then g is almost (7, p)-continuous function but
not almost (v, w)-continuous.
Example 4.5. Let Xg ={a, b, c}and

v ={0,{a},{b},{a, b}},
bea GT on Xg. Then m=~v and 3 = vU{{a, b},{a,c},Xg}. Consider a function g: (Xg,v) = (Xg, V) defined by
g(a) =g(b) =b, g(c) = a. Then g is almost (3, n)-continuous function without begin almost (7, w)-continuous.
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Proposition 4.6. Let g : (Xg,v) — (Yg, 1) be an almost (v, w)-continuous surjection from a v-space (Xg,v) into
a p-space (Yg, 1), if a v-space X is wv-Lindelof then a y-space Yg is so.

Proof. Suppose {U, :y € Q}is a u-open cover of Yg. Then by Lemma 2.4 {i, c.(U,) : v € Q}is a p-regular
open cover of Yg. Since g is almost (v, u)-continuous, that means g ! (ipcu(Uy)) is a v-open in a v-space
Xg. Thus {g_l(iucu(uy)) :y € Q} is a v-open cover of wv-Lindelof v-space (Xg,V), then there is a
countable sub-collection {g~!(i,,c,(Uy,)) : 1 € N} such that

VU g7 luen(Uy,)) Cev( U g7 en(Uy,))
nelN nelN
=cv(g7 U (cu(Uy, ) C evlg Hewl U (Uy, ).
neN neN

Since ¢ (Unen(Uy,)) is p-regular closed in a p-space Yg and g is an almost (v, u)-continuous, we have
g !(c w(Unen(Uy,))) is v-closed in a v-space Xg. Thus

X =cvlg el | Uy = g7 el U (Wy,)))

neN nelN

Since g is surjective, Yg = g(Xg) = g(gfl(cu(UneN(Uyn)))) = cu(Unen(Uy,)). Then a p-space Yg is
wu-Lindel6f. O

By the definitions above, it is clear that every (v, p)-continuous function is almost (v, it)-continuous
then we conclude the following corollary.

Corollary 4.7. wv-Lindelof property is a generalized topological property.

Since every v-space under finite intersection is topological space, so by Proposition 3.18 and Proposi-
tion 4.6 above, we have the following corollary.

Corollary 4.8. Let g : (Xg,V) — (Yg,T) be an almost (v, T)-continuous surjection from a v-space (Xg,Vv) into a
space (Yg, T), if Xg is wv-Lindelof and Y is semiregular and paracompact then it is almost Lindelof space.

Obviously, if Xg € vin GTS(Xg, v) then ¢+ (0) = 0, so the following proposition is proved immediately
by [14, Theorem 30].

Proposition 4.9. Let (Xg, V) be a submaximal and v-extremally disconnected v-space. Then a function
g: (Xg,v) = (Yg, u) is an almost (v, w)-continuous if and only if it is almost (3, n)-continuous.

Corollary 4.10. Let g : (Xg,v) — (Yg, 1) be an almost (3, n)-continuous surjection. If Xg is submaximal,
v-extremally disconnected and wv-Lindelof v-space, then a u-space Yg is wy-Lindelof.

Proof. The proof follows directly from Proposition 4.6 and Proposition 4.9. O
Lemma 4.11. Let a (Xg, V) be a submaximal QTS then every v-preopen set is v-open.

Proof. Assume, a subset V is a v-preopen, then by [26, Proposition 3.11] V = UN A for some v-regular
open set U and v-dense set A of X¢. Since (Xg, V) is submaximal QTS, so A is v-open set of X and thus
V is v-open set of Xg. O

Next proposition is proved directly, by Lemma 4.11, so the proof is omitted.

Proposition 4.12. Let (Xg, V) be a submaximal QTS then a function g : (Xg,v) = (Yg, 1) is an almost (v, u)-
continuous if and only if it is almost (7, w)-continuous.

By Proposition 4.6 and Proposition 4.12 the following corollary is concluded.
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Corollary 4.13. Let g : (Xg,T) = (Yg, 1) be an almost (7, w)-continuous surjection. If a space Xg is submaximal
and weakly Lindelof then a p-space Y is wu-Lindelof.

Definition 4.14 ([4]). A function g: (Xg,v) — (Yg, 1) is said to be:
(a) almost (v, p)-open if g(V) C i.cu(g(V)) for each v-open set V in Xg;
(b) contra (v, u)-continuous if g~*(U) is v-closed in Xg for every p-open set U in Y.

In [4], Al-Omari, and Noiri showed that if a function g from a v-space (Xg, v) into a p-space (Yg, )
is an almost (v, pu)-open and contra (v, pu)-continuous, then g is almost (v, pu)-continuous. Moreover, if
g is a contra (v, p)-continuous and a p-space Yg is p-extremally disconnected, then g is almost (v, p)-
continuous. On using Proposition 4.6 above, we conclude the following corollaries.

Corollary 4.15. Let g : (Xg,Vv) = (Yg, 1) be an almost (v, w)-open and contra (v, w)-continuous surjection from
a v-space (Xg, V) into a u-space (Yg, W), if a v-space Xg is wv-Lindeldf, then a p-space Yg is so.

Corollary 4.16. Let g : (Xg,v) — (Yg, 1) be a contra (v, u)-continuous and a p-space Yg is p-extremally
disconnected from a v-space (Xg,Vv) into a p-space (Yg, 1), if a v-space X¢g is wv-Lindelof then a p-space Y is so.

Definition 4.17. A function g: (Xg,Vv) — (Yg, 1) is called:

(i) (8,8")-continuous [19] (resp. almost (5, d’)-continuous) if for each t € Xg and each p-regular open
set U containing g(t), there is a v-regular open set V containing t such that g(V) C U (resp. g(V) C

Cu(u))}

(ii) super (v, u)-continuous [20] if for each t € Xg and each p-open set U containing g(t), there is a
v-open set V containing t such that g(ivcyV) C U;

(iii) O(v, p)-continuous [9] (resp. strongly 6(v, u)-continuous [20]) if for each t € Xg and each p-open set
U containing g(t), there is a v-open set V containing t such that g(cV) C ¢, (U) (resp. g(c, V) C U).

Remark 4.18. From the definition above we obtain the following implications but the reverse relations, in
general are not true (see [18-20]).

strongly 6(v, u)-continuous = super (v, p)-continuous = (§,8')-continuous = almost (v, p)-continuous.

On using Remark 4.18 and Proposition 4.6 above we conclude the corollary below.

Corollary 4.19. Let g : (Xg,v) — (Yg, 1) be a strongly (v, uw)-continuous (resp. super (v, \)-continuous,
(8, d")-continuous) surjection, if a v-space Xg is wv-Lindelof space then so is a p-space Y.

Lemma 4.20. Let a function g : (Xg,Vv) = (Yg, 1) be a (v, u)-continuous and a u-space Yg is almost G-regular
then g is almost (v, w)-continuous function.

Proof. Let t € Xg and V be any p-open set of Yg containing g(t). Since (Yg, 1) is almost G-regular, we
can claim that there exists a p-regular open set U such that g(t) € U C ¢, U C i,c, V. Since V is p-open,
then by Lemma 2.4 F = c,iu(Yg\V) is p-regular closed and g(t) ¢ F. Moreover, there are p-open sets V|
and V; such that g(t) € V|, F C V; and V] NV} = 0. Thus c,j; NV, =0 and hence ¢, V] C Yg\V; C YG\F.
So, g(t) € V] C ¢ V] C YG\F. Again V] C iuc,V] C Yg\F. Therefore, if U =1i,c,V] then

Vi CUC c UCcuVy Cige,V.

Hence
git) eUCc UCiicuV.

Since g is 0(v, p)-continuous and c,, U is pu-closed in Y, there is a v-open set H € u containing t such that
g(cvH) Cc U Ciye,V, and hence g(H) C iuc,V. Then g is almost (v, p)-continuous function. O
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Since every v-extremally disconnected GTS is almost G-regular, by Lemma 4.20, we conclude the
following results.

Corollary 4.21. Let a function g : (Xg,v) = (Yg, 1) be a 0(v, u)-continuous and a p-space Yg is v-extremally
disconnected then g is almost (v, w)-continuous function.

Corollary 4.22. Let g : (Xg,v) — (Yg, 1) be a 6(v, n)-continuous surjection and a p-space Yg is almost G-
reqular (v-extremally disconnected), if a v-space X¢g is wv-Lindelof space then so is a p-space Yg

Proposition 4.23. Let g : (Xg,Vv) — (Yg, 1) be an almost (5, d")-continuous surjection from a v-space X¢g into a
u-space Y. If Xg is nv-Lindelof then Yg is wu-Lindelof.

Proof. Let {U, : vy € Q} be a p-regular open cover of a p-space Yg. Let t € Xg and each U,, containing
g(t). Since g is an almost (5, d’)-continuous, then there is v-regular open set V,,, of Xg containing t such
that g(Vy,) C cu(Uy,). So, {V,, : ¥ € Q} is v-regular open cover of nv-Lindelof v-space Xg. Thus there
exists a countable sub-collection {Vy, :n € N} such that Xg = U, cn(Vyy, ). Thus

Yo =9(Xe) =9( | Wy )= J 9Vy) € U cnlUy,) Senl | Uy)-
neN neN nelN neN
This implies that a p-space Yg is wv-Lindelof. O
Lemma 4.24. Let a function g: (Xg,v) — (Yg, 1) is 0(v, w)-continuous, then g is almost (5, d")-continuous.

Proof. Let t € Xg and a p-regular open set U of Yg containing g(t). Since g is (v, n)-continuous, then
there exists a v-open set V of Xg containing t such that g(cV) C ¢, (U). Thus i,cV is v-regular open set
of X containing t such that g(ivcyV) C g(cvV) C cu(U). This implies that g is almost (§, §’)-continuous
function. O

The converse is not true, as the following example.
Example 4.25. Let Xg ={a,b,c,d}and Yg = {r, s, t}, we define the GT's
V = {®’ {a/ b}/ {b/ C}/ {b/ d}/ {a’/ b/ C}I {a/ bl d}/ {bl C/ d}/ XG}/

and

n= {ml {T}/ {S}r {T, S}, YG }1
on Xg and Yg, respectively. If a function g : (Xg,v) — (Yg, 1) defined as g(A) =1, g(b) =s, g(c) =g(d) =1,
then g is almost (§,d")-continuous function but it is not (v, w)-continuous, since for a p-open set {r} containing
g(a) there is no v-open set V containing a such that g(cvV) C ¢, ({r}).

Corollary 4.26. Let g : (Xg,Vv) — (Y, 1) be a ©(v, u)-continuous surjection from a v-space Xg into a p-space
Y. If X is nv-Lindelof then Yg is wu-Lindelof.

On using Corollaries 3.11 and 3.14, Proposition 4.6, we have the following result.

Corollary 4.27. Let g : (Xg,Vv) = (Yg, 1) be an almost (v, w)-continuous surjection from a v-space (Xg,v) into
almost G-regular weak P-G-space (Yg, 1), if a v-space Xg is wv-Lindeldf then a p-space Yg is nu-Lindelof (resp.
nu-normal).

By Proposition 3.18 and Proposition 4.6, we also conclude the following.

Corollary 4.28. Let g : (Xg,Vv) — (Yg,T) be an almost (v, T)-continuous surjection from a v-space (Xg,v) into
semireqular and nearly paracompact space (Yg, ), if a v-space X is wv-Lindelof, then (Yg,T) is almost Lindelof
space.
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