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Abstract

In this paper, a Halpern-like iterative algorithm is investigated for finding a solution of a split feasibility problem and
a solution to a nonexpansive operator equation. Strong convergence theorems are established in the framework of infinite
dimensional Hilbert spaces. c©2017 All rights reserved.
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1. Introduction and preliminaries

Let C andQ be nonempty closed and convex subsets of real Hilbert spacesH1 andH2, respectively, and
let ProjC and ProjQ be the metric projections from H1 and H2 to C and Q, respectively, and A : H1 → H2
be a bounded linear operator.

Recall that the split feasibility problem is formulated as to find a point q ∈ H1 such that:

q ∈ C and Aq ∈ Q. (1.1)

It is easy to see that q ∈ H1 solves equation (1.1) if and only if it solves the following fixed point equation

q = ProjC(I− γA
∗(I− PQ)A)q, x ∈ C,

where A∗ is the adjoint of A.
In 1994, Censor and Elfving [6] introduced the split feasibility problem in finite dimensional Hilbert

spaces for modeling inverse problems which arise from phase retrievals and in medical image reconstruc-
tion. It has been found that the split feasibility problem can also be used in various disciplines such as
image restoration, computer tomograph and radiation therapy treatment planning [4, 5, 7].

Recently, Byrne [4] considered the split feasibility problem in an infinite dimensional Hilbert space.
In many disciplines, including image restoration, computer tomograph, control theory, and quantum
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physics, problems arise in infinite dimension spaces. Therefore, it is important to consider the split
feasibility problem in the framework of infinite dimensional spaces. On the other hand, the split feasibility
problem covers convex feasibility problems that it is to find a common element in the intersection of a
family of closed and convex subsets of Hilbert spaces. Recently, many authors have studied the split
feasibility problem via fixed point methods; see [8, 11, 15, 17–19] and the references therein.

Let H be a Hilbert space. Recall that a mapping T : H→ H is said to be monotone iff

〈Tx− Ty, x− y〉 > 0, ∀x,y ∈ H.

T : H→ H is said to be inverse-strongly monotone iff there exists a constant ν > 0 such that

〈Tx− Ty, x− y〉 > ν‖Tx− Ty‖2, ∀x,y ∈ H.

We also say that T is ν-inverse-strongly monotone. It is obvious that if F is ν-inverse-strongly monotone,
then it is 1

ν -Lipschitz continuous and monotone.
Recall that a mapping T : H→ H is said to be nonexpansive iff

‖Tx− Ty‖ 6 ‖x− y‖, ∀x,y ∈ H.

From Browder [3], we see that every nonexpansive mapping on bounded closed and convex subsets of
Hilbert spaces has a nonempty fixed point set; see [3] and the references therein. Halpern-like iterative
algorithms have recently investigated to study fixed points of nonexpansive mappings and zero points of
monotone operators; see [1, 2, 9, 10, 13, 14, 16] and the references therein. The advantage of Halpern-like
iterative algorithms is that strong convergence can be guaranteed without any compact assumptions.

Let D be a nonempty closed and convex subset of real Hilbert space H.
Recall that the metric projection PHD : H→ D from H onto D of H is defined as follows: for each point

x ∈ H, there exists a unique point PHDx ∈ D with the property:

‖x− PHDx‖ 6 ‖x− y‖.

Thus for any x ∈ H, x̃ = PHDx iff x̃ ∈ D and ‖x− x̃‖ = inf{‖x−y‖ : y ∈ D}. We also have the following facts

‖x− y‖2 − ‖(I− PHD)x− (I− PHD)y‖2 > ‖PHDx− PHDy‖2, ∀x,y ∈ H,

〈(I− PHD)x− (I− PHD)y, x− y〉 > ‖(I− PHD)x− (I− PHD)y‖2, ∀x,y ∈ H,
and

〈PHDx− PHDy, x− y〉 > ‖PHDx− PHDy‖2, ∀x,y ∈ H.

Lemma 1.1 ([12]). Let {an} be a sequence of nonnegative real numbers such that

an+1 6 (1 − tn)an + bn, ∀n > 0,

where {tn} ⊂ (0, 1) and {bn} is a sequence of real numbers. Assume that
∞∑
n=0

tn =∞ and lim sup
n→∞

bn

tn
6 0.

Then limn→∞ an = 0.

Lemma 1.2 ([3]). Let H be a Hilbert space and let S be a nonexpansive mapping on H. Then I− S is demiclosed at
the origin. That is, {xn} converges weakly to p and {xn− Sxn} converges strongly to 0. Then p is a fixed point of S.

2. Main results

Theorem 2.1. Let C be a nonempty closed and convex subset of Hilbert space H1 and let Q be a nonempty closed
and convex subset of Hilbert space H2. Let ProjC be the metric projection from Hilbert space H1 onto C and let
ProjQ be the metric projection from Hilbert space H2 onto Q. Let S : C→ C be a nonexpansive mapping with fixed
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points. Let A : H1 → H2 be a bounded linear operator such that split feasibility problem (1.1) is consistent. Let {xn}
be a sequence generated in the following iterative algorithm: x1 ∈ C is the initial and{

λn = ProjC
(
(1 −βn)(xn − γnA

∗(I− ProjQ)Axn) +βnSxn
)

,

xn+1 = αnu+ (1 −αn)λn, n > 1,

where u is a fixed element in C, {αn}, {βn} are two sequences in (0, 1) with limn→∞ αn = 0,
∑∞
n=1 αn = ∞,∑∞

n=1 |αn − αn+1| < ∞, 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1,
∑∞
n=1 |βn − βn+1| < ∞, and {γn} is

a sequence with 0 < lim infn→∞ γn 6 lim supn→∞ γn < 2
‖A‖2 and

∑∞
n=1 |γn − γn+1| < ∞. If Sol(SFP) ∩

Fix(S) 6= ∅, then {xn} converges strongly to a point ū in Fix(S)∩ Sol(SFP), where ū = ProjSol(SFP)∩Fix(S)u.

Proof. First, we show that sequence {xn} is bounded. Define a mapping T : H1 → H1 by

Tx = A∗(I− ProjQ)Ax, ∀x ∈ H1.

Using the properties of metric projection ProjQ, we find that

〈Tx− Ty, x− y〉 = 〈A∗(I− ProjQ)Ax−A
∗(I− ProjQ)Ay, x− y〉

= 〈(I− ProjQ)Ax− (I− ProjQ)Ay,Ax−Ay〉

> ‖(I− ProjQ)Ax− (I− ProjQ)Ay‖
2

>
1
‖A‖2 ‖A

∗(I− ProjQ)Ax−A
∗(I− ProjQ)Ay‖

2

=
1
‖A‖2 ‖Tx− Ty‖

2.

(2.1)

This shows that T is 1
‖A‖2 -inverse-strongly monotone. From the restriction imposed on {γn}, we may,

without loss of generality, assume that 0 < γ 6 γn 6 γ̄ < 2
‖A‖2 , where γ and γ̄ are real constants. Since T

is 1
‖A‖2 -inverse-strongly monotone, we find that

‖(I− γnT)x− (I− γnT)y‖2 = ‖(x− y) − γn(Tx− Ty)‖2

= γ2
n‖Tx− Ty‖2 + ‖x− y‖2 − 2γn〈x− y, Tx− Ty〉

6 γ2
n‖Tx− Ty‖2 + ‖x− y‖2 −

2γn
‖A‖2 ‖Tx− Ty‖

2

= ‖x− y‖2 − γn(
2
‖A‖2 − γn)‖Tx− Ty‖2

6 ‖x− y‖2.

This shows that (I−γnT) is a nonexpansive mapping. Letting x ∈ A−1(Q), we find from the definition of
T that x ∈ T−1(0). This proves A−1(Q) is a subset of T−1(0). Letting x ∈ T−1(0), we have Tx = 0. Take a
point y ∈ Sol(SFP)∩ Fix(S). This implies Ay = ProjQAy. Hence, Ty = 0. Thanks to (2.1), one arrives at

0 = 〈Tx− Ty, x− y〉 = 〈(I− ProjQ)Ax− (I− ProjQ)Ay,Ax−Ay〉 > ‖(I− ProjQ)Ax‖
2.

This proves x ∈ A−1(Q), that is, T−1(0) is a subset of A−1(Q). This completes the proof that

T−1(0) = A−1(Q).

It follows that
Fix(S)∩ Sol(SFP) = Fix(S)∩ T−1(0)∩C.
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On the other hand, we have

‖xn+1 − x
∗‖ 6 (1 −αn)‖ProjC

(
(1 −βn)(I− γnT)xn +βnSxn

)
− ProjCx

∗‖+αn‖u− x∗‖

6 (1 −αn)‖
(
(1 −βn)(I− γnT)xn +βnSxn

)
− x∗‖+αn‖u− x∗‖

6 (1 −αn)(1 −βn)‖(I− γnT)xn − x∗‖+ (1 −αn)βn‖Sxn − x∗‖+αn‖u− x∗‖
6 (1 −αn)‖xn − x∗‖+αn‖u− x∗‖
6 max{‖xn − x∗‖, ‖u− x∗‖}.

This proves that
‖xn+1 − x

∗‖ 6 max{‖x1 − x
∗‖, ‖u− x∗‖}.

This completes the proof that {xn} is a bounded sequence. Note that

λn = ProjC
(
(1 −βn)(I− γnT)xn +βnSxn

)
.

It follows that

‖λn+1 − λn‖ 6 ‖
(
(1 −βn+1)(I− γn+1T)xn+1 +βn+1Sxn+1

)
−
(
(1 −βn)(I− γnT)xn +βnSxn

)
‖

6 (1 −βn+1)‖
(
(I− γn+1T)xn+1 − (I− γnT)xn

)
‖

+βn+1‖Sxn+1 − Sxn‖+ |βn+1 −βn|‖(I− γnT)xn − Sxn‖
6 (1 −βn+1)

(
‖xn+1 − xn‖+ |γn − γn+1|‖Txn‖

)
+βn+1‖xn+1 − xn‖+ |βn+1 −βn|‖(I− γnT)xn − Sxn‖

6 ‖xn+1 − xn‖+ |γn − γn+1|‖Txn‖+ |βn+1 −βn|‖(I− γnT)xn − Sxn‖.

This implies that

‖xn+2 − xn+1‖ 6 |αn+1 −αn|‖u− λn‖+ (1 −αn+1)‖λn+1 − λn‖
6 ‖u− λn‖+ (1 −αn+1)‖xn+1 − xn‖
+ |γn − γn+1|‖Txn‖+ |βn+1 −βn|‖(I− γnT)xn − Sxn‖

6 (1 −αn+1)‖xn+1 − xn‖+ (|γn − γn+1|+ |βn+1 −βn|+ |αn+1 −αn|)M,

where
M = max{sup

n>1
{‖u− λn‖}, sup

n>1
{‖Txn‖}, sup

n>1
{‖(I− γnT)xn − Sxn‖}}.

Using Lemma 1.1, we find that
lim
n→∞ ‖xn+1 − xn‖ = 0. (2.2)

On the other hand, we have

‖x∗ − (I− γnT)xn‖2 = ‖(xn − x∗) − γn(Txn − Tx∗)‖2

6 γ2
n‖Txn − Tx∗‖2 + ‖xn − x∗‖2 −

2γn
‖A‖2 ‖Txn − Tx∗‖2

= ‖xn − x∗‖2 − (
2γn
‖A‖2 − γ2

n)‖Txn − Tx∗‖2

= ‖xn − x∗‖2 − (
2γn
‖A‖2 − γ2

n)‖Txn‖2.

(2.3)

This in turn implies from (2.3) that

‖λn − x∗‖2 6 ‖
(
(1 −βn)(I− γnT)xn +βnSxn

)
− x∗‖

6 (1 −βn)‖x∗ − (I− γnT)xn‖+βn‖Sxn − x∗‖

6 ‖x∗ − xn‖2 − (1 −βn)(
2γn
‖A‖2 − γ2

n)‖Txn‖2.
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Hence, we have

‖xn+1 − x
∗‖2 6 αn‖u− x∗‖2 + (1 −αn)‖λn − x∗‖2

6 αn‖u− x∗‖2 + (1 −αn)‖x∗ − xn‖2 − (1 −αn)(1 −βn)(
2γn
‖A‖2 − γ2

n)‖Txn‖2

6 αn‖u− x∗‖2 + ‖x∗ − xn‖2 − (1 −αn)(1 −βn)(
2γn
‖A‖2 − γ2

n)‖Txn‖2.

It follows that

(1 −αn)(1 −βn)(
2γn
‖A‖2 − γ2

n)‖Txn‖2 6 αn‖u− x∗‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

6 αn‖u− x∗‖2 + (‖xn − p‖+ ‖xn+1 − p‖)‖xn+1 − xn‖.

From the restriction imposed on {βn}, we may, without loss of generality, assume that 0 < β 6 βn 6 β̄ <
2
‖A‖2 , where β and β̄ are real constants. We find from (2.2) that

lim
n→∞ ‖Txn‖ = 0. (2.4)

Set ū = ProjSol(SFP)∩Fix(S)u. Now, we are in a position to show that

lim sup
n→∞ 〈u− ū, λn − ū〉 6 0. (2.5)

To this end, we take a subsequence {xnj} of {xn} such that

lim sup
n→∞ 〈u− ū, xn − ū〉 = lim

j→∞〈u− ū, xnj − ū〉.

Without loss of generality, let us assume that {xnj} converges weakly to a point in C. Next we denote the
point by ω. Setting W = I− T , we see that W is nonexpansive. From the demiclosed principal of W, we
find from (2.4) that

ω ∈ Fix(W) = T−1(0) = A−1(Q).

On the other hand, we find that

‖xn − Sxn‖ 6 ‖xn − xn+1‖+αn‖u− Sxn‖+ (1 −αn)‖λn − Sxn‖
6 ‖xn − xn+1‖+αn‖u− Sxn‖+ (1 −αn)(1 −βn)‖(xn − T)xn − Sxn‖
6 ‖xn − xn+1‖+αn‖u− Sxn‖+ (1 −βn)‖xn − Sxn‖+ ‖Txn‖.

This finds that
‖xn − Sxn‖ 6

1
βn
‖xn − xn+1‖+

αn

βn
‖u− Sxn‖+

1
βn
‖Txn‖.

Using (2.2) and (2.4), we find that
lim
n→∞ ‖xn − Sxn‖ = 0.

From the demiclosed principal of S, we find that ω ∈ Fix(S). This obtains that (2.5) holds.
Note that

‖xn+1 − ū‖2 6 α2
n‖u− ū‖2 + (1 −αn)

2‖λn − ū‖2 + 2αn(1 −αn)〈u− ū, λn − ū〉
6 α2

n‖u− ū‖2 + (1 −αn)
2((1 −βn)‖(I− γnT)xn − ū‖+βn‖Sxn − ū‖)2

+ 2αn(1 −αn)〈u− ū, λn − ū〉
6 (1 −αn)

2(1 −βn)
2‖xn − ū‖2 +α2

n‖u− ū‖2 + 2αn(1 −αn)〈u− ū, λn − ū〉
6 (1 −αn)‖xn − ū‖2 +αnξn,

where
ξn = αn‖u− ū‖2 + 2〈u− ū, λn − ū〉.

Using Lemma 1.1, we find that xn → ū as n→∞. This completes the proof.
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If S = I, the identity mapping, then Theorem 2.1 is reduced to the following result.

Corollary 2.2. Let C be a nonempty closed and convex subset of Hilbert space H1 and let Q be a nonempty closed
and convex subset of Hilbert space H2. Let ProjC be the metric projection from Hilbert space H1 onto C and let
ProjQ be the metric projection from Hilbert space H2 onto Q. Let S : C→ C be a nonexpansive mapping with fixed
points. Let A : H1 → H2 be a bounded linear operator such that split feasibility problem (1.1) is consistent. Let {xn}
be a sequence generated in the following iterative algorithm: x1 ∈ C is the initial and{

λn = ProjC
(
xn − (1 −βn)γnA

∗(I− ProjQ)Axn
)

,

xn+1 = αnu+ (1 −αn)λn, n > 1,

where u is a fixed element in C, {αn} and {βn} are two sequences in (0, 1) with limn→∞ αn = 0,
∑∞
n=1 αn =∞,∑∞

n=1 |αn − αn+1| < ∞, 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1,
∑∞
n=1 |βn − βn+1| < ∞, and {γn} is a

sequence with 0 < lim infn→∞ γn 6 lim supn→∞ γn < 2
‖A‖2 and

∑∞
n=1 |γn−γn+1| <∞. Then {xn} converges

strongly to a point ū in Sol(SFP), where ū = ProjSol(SFP)u.

Remark 2.3. Fixed point methods are investigated to split feasibility problem (1.1). A strong convergence
theorem of common solutions are established in the framework of infinite dimensional Hilbert spaces
without any compact assumption. It is of interest to improve the results presented in this article to the
framework of Banach spaces.
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