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Abstract

In this paper, using Laplace transform technique, we propose the generalized solutions of the fourth order Euler differential
equations

t4y(4)(t) + t3y ′′′(t) + t2y ′′(t) + ty ′(t) +my(t) = 0,

where m is an integer and t ∈ R. We find types of solutions depend on the values of m. Precisely, we have a distributional
solution for m = −k4 − 5k3 − 9k2 − 4k and a weak solution for m = −k4 + 5k3 − 9k2 + 4k, where k ∈ N. c©2017 All rights
reserved.
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1. Introduction

A linear ordinary differential equation of order n can be expressed in the form

an(t)y
(n)(t) + an−1(t)y

(n−1)(t) + · · ·+ a1(t)y
′(t) + a0(t)y(t) = f(t),

where a0(t),a1(t), · · · ,an(t), f(t) are continuous real functions and an(t) 6= 0. We can write the above
equation in the short from as

P(D)y = f, (1.1)

where

P(D) = an(t)
dn

dtn
+ an−1(t)

dn−1

dtn−1 + · · ·+ a1(t)
d

dt
+ a0(t).

In searching for a solution y of differential equation (1.1), we may have the following situations (see
Kanwal [12]):

(i) The solution y is a smooth function such that the operation can be performed as in the classical
sense and the resulting equation is an identity. Then y is a classical solution.
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(ii) The solution y is not smooth enough, so that the operation cannot be performed but it satisfies as a
distribution. Then y is a weak solution.

(iii) The solution y is a singular distribution. Then the solution is a distributional solution.

All these solutions are said to be generalized solutions.
For the solution y in the first case, i.e., the classical solution, we consider the n-th-order Euler differ-

ential equation which can be written as

αnt
ny(n)(t) +αn−1t

n−1y(n−1)(t) + · · ·+α0y(t) = 0,

where α0,α1, · · · ,αn are real constants and αn 6= 0. Details for a method to construct solutions to
the problem of solving the classical solution was explained in [2, 4, 5]. Moreover, Sabuwala and Leon
[18] studied the particular solution for the most general n-th-order Euler differential equation when the
non-homogeneity is a polynomial. They found a formula which can be used to compute the unknown
coefficients in the form of the particular solution.

For the weak solution, Kananthai and Nonlaopon [10] studied the weak solution of the compound
ultra-hyperbolic equation. Next, Sarikaya and Yildirim [19] studied the weak solution of the compound
Bessel ultra-hyperbolic equation. Furthermore, several papers have also studied the weak solution in the
field of theory of distributions; see [3, 11, 23].

The distributional solution of ordinary differential equations, particularly in the form of series of
Dirac delta function, have been used in several areas of applied mathematics. Many important areas in
theoretical and mathematical physics, theory of partial differential equations, quantum electrodynamics,
operational calculus, and functional analysis have used the methods of the theory of distributions. We
refer the readers to [6, 7, 16, 25, 27, 28] for more details.

For the generalized solutions, by using Laplace transform technique, Nonlaopon et al. [17] studied
the generalized solutions of the differential equation ty(n)(t) +my(n−1)(t) + ty(t) = 0, where m and n
are integers with n > 2, and t ∈ R. See [26] for more details about generalized solutions of functional
differential equations. For numerical solution, Singh et al. [21] studied the numerical solution of the
damped Berger’s equation by using the concept of an iterative method. Moreover, there are works on
analytical and numerical techniques to solve differential equations, see [14, 15, 22, 24] for more details.

In 1999, Kananthai [8] studied the distributional solutions of the third order Euler differential equation

t3y ′′′(t) + t2y ′′(t) + ty ′(t) +my(t) = 0, (1.2)

where m is an integer and t ∈ R. He found that solutions of (1.2), which are either the distributional
solutions or the classical solutions, depend on the values of m. Next, Kananthai [9] studied the distri-
butional solutions of ordinary differential equation with polynomial coefficients. Furthermore, the third
order Euler differential equation was studied by Akanbi [1], where Euler methods for solving initial value
problems in ordinary differential equations were improved and the numerical solutions were obtained.

Consider the fourth order Euler differential equation in the form

t4y(4)(t) + t3y ′′′(t) + t2y ′′(t) + ty ′(t) +my(t) = 0,

where m is an integer and t ∈ R. It is well-known that the solutions of the above equation are of the form
tλ, where λ are real or complex numbers, that is, the solutions are in the space C(−∞,∞) of continuous
functions, classical solution. The goal of this work is to determine the solutions of such equation in D ′,
the space of distributions. To obtain such solutions, we use the Laplace transform of distribution to solve
the equation. For more details on applications of the theory of distributions to differential equations, see
Schwartz [20] and Zemanian [29].

The next section gives the necessary facts about Laplace transform. We use Laplace transform to
obtain our main results in Section 3. At the end of Section 3, some examples as a consequence of our
results are shown. Finally we give the conclusions in Section 4.
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2. Preliminaries

Before proceeding to our main results, the following definitions and concepts are required.

Definition 2.1. A distribution T is a continuous linear functional on the space D of the complex-valued
functions with infinitely differentiable and bounded support. The space of all such distributions is de-
noted by D ′.

For every T ∈ D ′ and ϕ ∈ D , the value that T acts on ϕ is denoted by 〈T ,ϕ〉. Note that 〈T ,ϕ〉 ∈ C.
Now ϕ is called a test function in D .

Example 2.2.

(i) The locally integrable function f is a distribution generated by the locally integrable function f. Then
we define 〈f,ϕ〉 =

∫
Ω f(t)ϕ(t)dt, where Ω is a support of ϕ and ϕ ∈ D .

(ii) The Dirac delta function is a distribution defined by 〈δ,ϕ〉 = ϕ(0) and the support of δ is {0}.

A distribution T generated by a locally integrable function is called a regular distribution, otherwise,
it is called a singular distribution.

Definition 2.3 (The Differentiation of Distribution). The k-order derivative of a distribution T , denoted by
T (k), is defined by

〈
T (k),ϕ

〉
= (−1)k

〈
T ,ϕ(k)

〉
for all ϕ ∈ D .

Example 2.4.

(i) 〈δ ′,ϕ〉 = − 〈δ,ϕ ′〉 = −ϕ ′(0).
(ii)

〈
δ(k),ϕ

〉
= (−1)k

〈
δ,ϕ(k)

〉
= (−1)kϕ(k)(0).

Definition 2.5 (The Multiplication of a Distribution by Infinitely Differentiable Function). Let α(t) be
an infinitely differentiable function. We define the product of α(t) with any distribution T in D ′ by
〈αT ,ϕ〉 = 〈T ,αϕ〉 for all ϕ ∈ D .

Definition 2.6. Let T ∈ R, and f(t) be a locally integrable function satisfying the following conditions:

(i) f(t) = 0 for all t < T .
(ii) There exists a real number c such that e−ctf(t) is absolutely integrable over R.

The Laplace transform of f(t) is defined by

F(s) = L {f(t)} =

∫∞
T

f(t)e−stdt,

where s is a complex variable.

It is well-known that if f is continuous, then F(s) is an analytic function on the half-plane <(s) > σa,
where σa is an abscissa of absolute convergence for L {f(t)}.

Definition 2.7. Let f(t) be a function satisfying the same conditions as in Definition 2.6, and L {f(t)} =
F(s). The inverse Laplace transform of F(s) is defined by

f(t) = L −1 {F(s)} =
1

2πi
lim
ω→∞

∫c+iω
c−iω

F(s)estds,

where <(s) > σa.

Recall that the Laplace transform G(s) of a locally integrable function g(t) satisfying the conditions of
Definition 2.6, that is,

G(s) = L {g(t)} =

∫∞
T

g(t)e−stdt,

where <(s) > σa, can be written in the form G(s) =
〈
g(t), e−st

〉
.
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Definition 2.8. Let f(t) be a distribution satisfying the following properties:
(i) f is a right-sided distribution, that is, f ∈ D ′R.

(ii) There exists a real number c such that e−ctf(t) is a tempered distribution.

The Laplace transform of a right-sided distribution f(t) satisying (ii) is defined by

F(s) = L {f(t)} =
〈
e−stf(t),X(t)e−(s−c)t

〉
, (2.1)

where X(t) is an infinitely differentiable function with support bounded on the left, which equals to 1
over the neighbourhood of the support of f(t).

For <(s) > σa, the function X(t)e−(s−c)t is a testing function in the space S of testing functions of
rapid descent and that e−ctf(t) is in the space S ′ of tempered distributions. Equation (2.1) can be deduced
to

F(s) = L {f(t)} =
〈
f(t), e−st

〉
,

possessing the sense given by the right-hand side of (2.1). Now, F(s) is a function of s defined over
the right half-plane <(s) > c. Zemanian [29] proved that F(s) is an analytic function in the region of
convergence <(s) > σ1, where σ1 is the abscissa of convergence and e−ctf(t) ∈ S ′ for some real c > σ1.

Example 2.9. Let δ(t) be the Dirac delta function, H(t) be the Heaviside function (which is given by
H(t) = 1 for t > 0 and H(t) = 0 for t < 0), and f(t) be a Laplace-transformable distribution in D ′R (so
that F(s) = L {f(t)} for <(s) > σ1). If k is a positive integer, then

(i) L {(tkH(t))/k!} = 1/sk+1, <(s) > σ1.
(ii) L {δ} = 1, −∞ < <(s) <∞.

(iii) L
{
δ(k)
}
= sk, −∞ < <(s) <∞.

(iv) L
{
tkf(t)

}
= (−1)kF(k)(s), <(s) > σ1.

(v) L
{
f(k)(t)

}
= skF(s), <(s) > σ1.

Lemma 2.10. If the equation
n∑
i=0

ai(t)t
iy(i)(t) = 0,

with infinitely differentiable coefficients ai(t) and an(0) 6= 0 has a solution

y(t) =

h∑
i=0

aiδ
(i)(t), ah 6= 0, (2.2)

of order h, then we obtain the relation
n∑
i=0

(−1)iai(0)(h+ i)! = 0. (2.3)

Conversely, if h is the smallest non-negative integer root of (2.3), then there exists an h-th order solution of (2.2)
at t = 0.

The proof of this lemma is given in [25].

Lemma 2.11. Let ψ(t) be an infinitely differentiable function. Then

ψ(t)δ(m) = (−1)mψ(m)(0)δ(t) + (−1)m−1mψ(m−1)(0)δ ′(t)

+ (−1)m−2m(m− 1)
2!

ψ(m−1)(0)δ ′′(t) + · · ·+ψ(0)δ(m)(t).
(2.4)

The proof of this lemma is given in [12].
A useful formula that follows from (2.4), for any monomial ψ(t) = tn, is

tnδ(m)(t) =

{
0, for m < n,
(−1)n m!

(m−n)!δ
(m−n)(t), for m > n. (2.5)
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3. Main results

In this section, we will state our main results and give their proofs.

Theorem 3.1. Consider the fourth order Euler differential equations of the form

t4y(4)(t) + t3y ′′′(t) + t2y ′′(t) + ty ′(t) +my(t) = 0, (3.1)

wherem is an integer and t ∈ R. Then the solutions of (3.1) depend on the value ofm and is given by the following
cases:

(i) If
m = −k4 − 5k3 − 9k2 − 4k, k = 1, 2, 3, · · · , (3.2)

then there exists the distributional solutions of (3.1), which are singular distribution of Dirac delta function
and its derivatives.

(ii) If
m = −k4 + 5k3 − 9k2 + 4k, k = 1, 2, 3, · · · ,

then there exists the weak solutions of (3.1), which are continuous functions.

Proof. From (3.1), taking the Laplace transform and using Example 2.9 (iv), (v), we obtain

d4

ds4

[
s4Y(s)

]
−
d3

ds3

[
s3Y(s)

]
+
d2

ds2

[
s2Y(s)

]
−
d

ds
[sY(s)] +mY(s) = 0.

Then we have the fourth order Euler differential equation

s4Y(4)(s) + 15s3Y ′′′(s) + 64s2Y ′′(s) + 81sY ′(s) + (19 +m)Y(s) = 0. (3.3)

Let a solution of (3.3) be in the form Y(s) = sr, where r is a real constant. Substituting Y(s), Y ′(s), Y ′′(s),
Y ′′′(s) and Y(4)(s) into (3.3), we obtain

[r(r− 1)(r− 2)(r− 3) + 15r(r− 1)(r− 2) + 64r(r− 1) + 81r+ 19 +m] sr = 0.

Since sr 6= 0, we have

r(r− 1)(r− 2)(r− 3) + 15r(r− 1)(r− 2) + 64r(r− 1) + 81r+ 19 +m = 0,

or equivalently,
r4 + 9r3 + 30r2 + 41r+ 19 +m = 0. (3.4)

Case (i). If m = −19,−100,−309, · · · ,−k4 − 5k3 − 9k2 − 4k, · · · , then by (3.4), we have the real roots

r = 0, 1, 2, . . . ,k− 1, · · · ,

respectively, and the solutions of (3.3) are

Y(s) = 1, s, s2, · · · , sk−1, · · · ,

respectively.
Now Y(s) are analytic functions over the entire s-plane. Taking the inverse Laplace transform to Y(s)

and by Example 2.9, we obtain the solutions of (3.1), which are the singular distributions

y(t) = δ, δ ′, δ ′′, . . . , δ(k−1), . . . ,

respectively.
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Case (ii). If m = −1,−4,−15, · · · ,−k4 + 5k3 − 9k2 + 4k, · · · , then we have the real roots

r = −2,−3,−4, · · · ,−k− 1, · · · ,

respectively, and the solutions of (3.3) are

Y(s) =
1
s2 ,

1
s3 ,

1
s4 , · · · ,

1
sk+1 , · · · ,

respectively.
Now Y(s) are analytic functions over the entire s-plane. Taking the inverse Laplace transform to Y(s)

and by Example 2.9, we obtain the solutions of (3.1), which are the weak solutions

y(t) = H(t)t,H(t)
t2

2!
,H(t)

t3

3!
, · · · ,H(t)

tk

k!
, · · · ,

respectively.

Theorem 3.2. The distributional solution of the fourth order Euler differential equation

t4y(4)(t) + t3y ′′′(t) + t2y ′′(t) + ty ′(t) +my(t) = 0,

where m is an integer and t ∈ R, depends on the values of m of the form

m = −k4 − 9k3 − 30k2 − 41k− 19, (3.5)

where k = 0, 1, 2, · · · is the order of distribution.

Proof. By Lemma 2.10, substituting n = 4,ai(0) = 1 for i = 1, 2, 3, 4, and a0(0) = m into (2.3), we have

m · h! +
4∑
i=1

(−1)i(h+ i)! = 0.

Thus, we obtain (3.5) as required.

Remark 3.3. The values m in (3.2) and the values m in (3.5) are identical.
Remark 3.4. On finding the distributional solution of (3.1) by the methods of Krall et al. [13], and Littlejohn
and Kanwal [16], we find that the conditions of m in their methods are identical to ours.

Example 3.5.
(i) For m = −100, equation (3.1) becomes

t4y(4)(t) + t3y ′′′(t) + t2y ′′(t) + ty ′(t) − 100y(t) = 0. (3.6)

It follows that the distributional solution of (3.6) is

y(t) = δ ′(t). (3.7)

(ii) For m = −309, equation (3.1) becomes

t4y(4)(t) + t3y ′′′(t) + t2y ′′(t) + ty ′(t) − 309y(t) = 0. (3.8)

It follows that the distributional solution of (3.8) is

y(t) = δ ′′(t). (3.9)

By applying (2.5), it is easy to verify that the distributional solutions (3.7) and (3.9) satisfy (3.6) and
(3.8), respectively.

Example 3.6. For m = −15, equation (3.1) becomes

t4y(4)(t) + t3y ′′′(t) + t2y ′′(t) + ty ′(t) − 15y(t) = 0. (3.10)

It follows that the weak solution of (3.10) is y(t) = H(t)
t3

3!
.
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4. Conclusions

We use the Laplace transform technique to find generalized solutions in the space of distributions for
the fourth Euler differential equations

t4y(4)(t) + t3y ′′′(t) + t2y ′′(t) + ty ′(t) +my(t) = 0.

It is found that if m = −k4 − 5k3 − 9k2 − 4k, then there exists the distributional solution of such equation,
which is singular distribution of Dirac delta function and its derivatives, and if m = −k4 + 5k3 − 9k2 + 4k,
then there exists the weak solution of such equation for any k ∈ N. It should be noted here that there
are solutions to the considered equation which cannot be obtained by Laplace transform as shown in the
example. Furthermore, in our study we concern only the solution in the space of distribution which is
the one widely used in application. However, it would be of interest to find the generalized solutions in
the space of distributions having unbounded supports.

In the future, we will devote our attention to the generalization of the fourth order Euler differential
equation with constant coefficients of the form a1t

4y(4)(t)+a2t
3y ′′′(t)+a3t

2y ′′(t)+a4ty
′(t)+my(t) = 0,

where m depends on the values of ai, i = 1, 2, 3, 4.

Acknowledgment

The authors would like to thank the referees for generous advice and for valuable suggestions, which
have improved the final version of this paper. This work was supported by the Higher Education Re-
search Promotion and National Research University Project of Thailand, Office of the Higher Education
Commission, through the Cluster of Research to Enhance the Quality of Basic Education.

References

[1] M. A. Akanbi, Third order Euler method for numerical solution of ordinary differential equations, ARPN J. Eng. Appl.
Sci., 5 (2010), 42–49. 1

[2] W. E. Boyce, R. C. DiPrima, Elementary differential equations and boundary value problems, Seventh edition, John
Wiley & Sons, Inc., New York-London-Sydney, (2001). 1

[3] S. Bupasiri, K. Nonlaopon, On the weak solutions of compound equations related to the ultra-hyperbolic operators, Far
East J. Appl. Math., 35 (2009), 129–139. 1

[4] E. A. Coddington, An introduction to ordinary differential equations, Prentice-Hall Mathematics Series Prentice-Hall,
Inc., Englewood Cliffs, N.J., (1961). 1

[5] E. A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New
York-Toronto-London, (1995). 1

[6] K. L. Cooke, J. Wiener, Distributional and analytic solutions of functional-differential equations, J. Math. Anal. Appl.,
98 (1984), 111–129. 1

[7] L. G. Hernández-Ureña, R. Estrada, Solution of ordinary differential equations by series of delta functions, J. Math. Anal.
Appl., 191 (1995), 40–55. 1

[8] A. Kananthai, Distribution solutions of the third order Euler equation, Southeast Asian Bull. Math., 23 (1999), 627–631.
1

[9] A. Kananthai, The distribution solutions of ordinary differential equation with polynomial coefficients, Southeast Asian
Bull. Math., 25 (2001), 129–134. 1

[10] A. Kananthai, K. Nonlaopon, On the weak solution of the compound ultra-hyperbolic equation, CMU. J., 1 (2002),
209–214. 1

[11] A. Kananthai, S. Suantai, V. Longani, On the weak solutions of the equation related to the diamond operator, Vychisl.
Tekhnol., 5 (2000), 61–67. 1

[12] R. P. Kanwal, Generalized functions, Theory and applications, Third edition, Birkhuser Boston, Inc., Boston, MA,
(2004). 1, 2

[13] A. M. Krall, R. P. Kanwal, L. L. Littlejohn, Distributional solutions of ordinary differential equations, Oscillations,
bifurcation and chaos, Toronto, Ont., (1986), CMS Conf. Proc., Amer. Math. Soc., Providence, RI, 8 (1987), 227–
246. 3.4

[14] D. Kumar, J. Singh, D. Baleanu, A hybrid computational approach for Klein-Gordon equations on Cantor sets, Nonlinear
Dynam., 87 (2017), 511–517. 1



A. Liangprom, K. Nonlaopon, J. Nonlinear Sci. Appl., 10 (2017), 4077–4084 4084

[15] D. Kumar, J. Singh, D. Baleanu, A new analysis for fractional model of regularized longwave equation arising in ion
acoustic plasma waves, Math. Methods Appl. Sci., 2017 (2017), 12 pages. 1

[16] L. L. Littlejohn, R. P. Kanwal, Distributional solutions of the hypergeometric differential equation, J. Math. Anal. Appl.,
122 (1987), 325–345. 1, 3.4

[17] K. Nonlaopon, S. Orankitjaroen, A. Kananthai, The generalized solutions of a certain n order differential equations with
polynomial coefficients, Integral Transforms Spec. Funct., 26 (2015), 1015–1024. 1

[18] A. H. Sabuwala, D. De Leon, Particular solution to the Euler-Cauchy equation with polynomial non-homogeneities,
Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications, 8th AIMS Conference.
Suppl. Vol. II, (2011), 1271–1278. 1

[19] M. Z. Sarikaya, H. Yildirim, On the weak solutions of the compound Bessel ultra-hyperbolic equation, Appl. Math.
Comput., 189 (2007), 910–917. 1
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