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Abstract

In this work, we initiate the metric fixed point theory in modular vector spaces under Nakano formulation. In particular, we
establish an analogue to Banach contraction principle, Browder and Göhde fixed point theorems for nonexpansive mappings in
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1. Introduction

In most of the recent references on fixed point theory in modular vector spaces, there is a lack of
answers to some fundamental questions. One of which is the importance of modular vector spaces. The
concept of a modular finds its root in the work of Orlicz [21] published in 1931. In this publication, Orlicz
introduced the vector space

X =
{
(xn) ∈ RN :

∞∑
n=1

|λ xn|
n <∞ for some λ > 0

}
.

Questions about the geometry and topological properties of the vector space X were asked. The formal
definition of a modular that captured the essence of the definition of X was done by Nakano [18, 20]. Note
that the vector space X was a precursor to what is known as a variable exponent space [5]. These spaces
have seen a major development in recent years. A systematic study of their vector topological properties,
like reflexivity, separability, duality and embeddings, was initiated in 1991 by Koväčik and Rákosnı́k [13].
But one of the driving forces for the rapid development of the theory of variable exponent spaces has been
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the model of electrorheological fluids introduced by Rajagopal and Ružička [22, 23]. This model leads
naturally function spaces which involve variable exponents. Electrorheological fluids are an example of
smart materials, whose development is one of the major task in space engineering.

In this work, we initiate the fundamental properties in the development of the metric fixed point
theory in modular vector spaces. In particular, we investigate the geometric properties of the vector
space X described above. This investigation allowed us to discover some interesting properties not known
before.

For the readers interested into the metric fixed point theory, we recommend the book by Khamsi and
Kirk [9] and the recent book by Khamsi and Kozlowski [10].

2. Notations and definitions

Throughout this work, X stands for a linear vector space on the field R.

Definition 2.1 ([17, 18]). A function ρ : X→ [0,∞] is called modular if the following hold:

(1) ρ(x) = 0 if and only if x = 0;
(2) ρ(αx) = ρ(x), if |α| = 1;
(3) ρ(αx+ (1 −α)y) 6 ρ(x) + ρ(y), for any α ∈ [0, 1];

for any x,y ∈ X. If (3) is replaced by

ρ(αx+ (1 −α)y) 6 αρ(x) + (1 −α)ρ(y)

for any α ∈ [0, 1], and x,y ∈ X, then ρ is called a convex modular.

A modular function on X will give birth to a modular space in a natural fashion.

Definition 2.2. Let ρ be a convex modular defined on X. The set

Xρ = {x ∈ X : lim
α→0

ρ(αx) = 0},

is called a modular space. The Luxemburg norm ‖.‖ρ : Xρ → [0,∞) is defined by

‖x‖ρ = inf
{
α > 0 : ρ

( x
α

)
6 1
}

.

Throughout, we will assume that ρ is left-continuous, i.e., lim
α→1−

ρ(αx) = ρ(x), for any x ∈ Xρ.

Example 2.3. Since the 1930s many prominent mathematicians like Orlicz and Birnbaum recognized that
using the methods of Lp-spaces alone created many complications and in some cases did not allow to
solve some non-power type integral equations; see [2]. They considered spaces of functions with some
growth properties different from the power type growth control provided by the Lp-norms. Orlicz and
Birnbaum considered for instance function spaces defined as follows:

Lϕ = {f : R→ R : there exists λ > 0 such that
∫

R

ϕ(λ|f(x)|) dm(x) <∞},

where ϕ : [0,∞)→ [0,∞) was assumed to be a convex function increasing to infinity, that is, the function
which to some extent behaves similarly to power functions ϕ(t) = tp. Let us mention two typical exam-
ples of such functions: ϕ1(t) = e

t− t− 1 or ϕ2(t) = e
t2
− 1. The possibility of introducing the structure of

a linear metric in Lϕ as well as the interesting properties of these spaces, later named Orlicz spaces, and
many applications to differential and integral equations with kernels of nonpower types were among the
reasons for the development of the theory of Orlicz spaces, their applications and generalizations. Clearly
the modular functional associated to Lϕ is

ρ(f) =

∫
R

ϕ(|f(x)|) dm(x).
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Associated to a modular function, we introduce a kind of modular topology that mimic the classical
metric topology.

Definition 2.4 ([12]). Let ρ be a modular defined on a vector space X.

(a) We say that a sequence {xn} ⊂ Xρ is ρ-convergent to x ∈ Xρ if and only if ρ(xn − x) → 0. Note that
the ρ-limit is unique if it exists.

(b) A sequence {xn} ⊂ Xρ is called ρ-Cauchy if ρ(xn − xm)→ 0 as n,m→∞.
(c) We say that Xρ is ρ-complete if and only if any ρ-Cauchy sequence in Xρ is ρ-convergent.
(d) A set C ⊂ Xρ is called ρ-closed if for any sequence of {xn} ⊂ C which ρ-converges to x implies that

x ∈ C.
(e) A set C ⊂ Xρ is called ρ-bounded if δρ(C) = sup{ρ(x− y); x,y ∈ C} <∞.
(f) A set K ⊂ Xρ is called ρ-compact if any sequence {xn} in K has a subsequence which ρ-converges to a

point in K.
(g) ρ is said to satisfy the Fatou property if ρ(x− y) 6 lim inf

n→∞ ρ(x− yn) whenever {yn} ρ-converges to y,
for any x,y,yn in Xρ.

Note that the Fatou property plays an important role when studying the geometric properties of the
modular. For example, if ρ satisfies the Fatou property then the ρ-balls are ρ-closed, where a ρ-ball is any
subset

Bρ(x, r) = {y ∈ Xρ : ρ(x− y) 6 r},

for any x ∈ Xρ and r > 0. A very important property associated to a modular which plays a central role
in the study of modular vector spaces is the ∆2-condition.

Definition 2.5. Let ρ be a modular defined on a vector space X. We say that ρ satisfies the ∆2-condition if
there exists K > 0 such that

ρ(2x) 6 K ρ(x)

for any x ∈ Xρ. The smallest such constant K will be denoted by ω(2) [6].

A nice discussion about the importance of the ∆2-condition and its variants may be found in [10, 14,
17].

3. Modular uniform convexity

Throughout X is a vector space and ρ a convex modular function. As we have seen, ρ induces a
natural norm ‖.‖ρ in Xρ. Some of the early questions that mathematicians dealt with is whether the
normed vector space (Xρ, ‖.‖ρ) is uniformly convex. The answer came as of no surprise that ρ must
satisfy some good behavior. In fact, this problem was fully investigated in Orlicz function spaces [5, 17].
The modular uniform convexity was initiated and studied by Nakano [20].

Definition 3.1 ([10]). We define the following uniform convexity type properties of the modular ρ:

(a) Let r > 0 and ε > 0. Define

D1(r, ε) = {(x,y) : x,y ∈ Xρ, ρ(x) 6 r, ρ(y) 6 r, ρ(x− y) > εr} .

If D1(r, ε) 6= ∅, let

δ1(r, ε) = inf
{

1 −
1
r
ρ

(
x+ y

2

)
: (x,y) ∈ D1(r, ε)

}
.

If D1(r, ε) = ∅, we set δ1(r, ε) = 1. We say that ρ satisfies (UC1) if for every r > 0 and ε > 0, we have
δ1(r, ε) > 0. Note that for every r > 0, D1(r, ε) 6= ∅, for ε > 0 small enough.
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(b) We say that ρ satisfies (UUC1) if for every s > 0 and ε > 0, there exists η1(s, ε) > 0 depending on s
and ε such that

δ1(r, ε) > η1(s, ε) > 0, for r > s.

(c) Let r > 0 and ε > 0. Define

D2(r, ε) =
{
(x,y) : x,y ∈ Xρ, ρ(x) 6 r, ρ(y) 6 r, ρ

(
x− y

2

)
> εr

}
.

If D2(r, ε) 6= ∅, let

δ2(r, ε) = inf
{

1 −
1
r
ρ

(
x+ y

2

)
: (x,y) ∈ D2(r, ε)

}
.

If D2(r, ε) = ∅, we set δ2(r, ε) = 1. We say that ρ satisfies (UC2) if for every r > 0 and ε > 0, we have
δ2(r, ε) > 0. Note that for every r > 0, D2(r, ε) 6= ∅, for ε > 0 small enough.

(d) We say that ρ satisfies (UUC2) if for every s > 0 and ε > 0, there exists η2(s, ε) > 0 depending on s
and ε such that

δ2(r, ε) > η2(s, ε) > 0, for r > s.

(e) We say that ρ is strictly convex, (SC), if for every x,y ∈ Xρ such that ρ(x) = ρ(y) and

ρ

(
x+ y

2

)
=
ρ(x) + ρ(y)

2
,

we have x = y.

Note that in Orlicz spaces, as described in Example 2.3, if the modular satisfies the ∆2-condition,
then uniform convexity of the Luxemburg norm is equivalent to (UC1) [1, 4, 8, 15, 16]. But in the
absence of the ∆2-condition, we may still have (UC1) provided the Orlicz function is uniformly convex
like ϕ1(t) = e

|t| − |t|− 1 and ϕ2(t) = e
t2
− 1 [4, 11, 16].

Let us observe that for i = 1, 2, we have δi(r, 0) = 0, and δi(r, ε) is an increasing function of ε for every
fixed r. The following properties follow easily from Definition 3.1.

Proposition 3.2 ([10]). The following conditions characterize relationship between the above defined notions:

(a) (UUCi) implies (UCi) for i = 1, 2;
(b) δ1(r, ε) 6 δ2(r, ε);
(c) (UC1) implies (UC2);
(d) (UC2) implies (SC);
(e) (UUC1) implies (UUC2).

Note that if ρ satisfies the ∆2-condition, then (UC1) and (UC2) are equivalent. In the next example, we
discuss these properties in the modular vector space introduced by Orlicz and studied by many authors.

Example 3.3 ([19, 21, 24]). Consider the function ρ defined on X = RN by

ρ(x) = ρ((xn)) =

∞∑
n=1

|xn|
n+1.

It is easy to check that ρ is a convex modular according to Definition 2.1. Note that ρ does not satisfy the
∆2-condition since ρ(x) < ∞ while ρ(2x) = ∞ where x = (xn) with xn = 1/2 for any n > 1. Moreover,
the normed vector space (Xρ, ‖.‖ρ) is a reflexive Banach space [19]. Using the inequality

|a+ b|p + |a− b|p 6 2p−1
(
|a|p + |b|p

)
,
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we get ∣∣∣∣a+ b2

∣∣∣∣p + ∣∣∣∣a− b2

∣∣∣∣p 6
1
2

(
|a|p + |b|p

)
for any a,b ∈ R and p > 2. This easily implies the following inequality

ρ

(
x+ y

2

)
+ ρ

(
x− y

2

)
6

1
2

(
ρ(x) + ρ(x)

)
for any x,y ∈ Xρ. Hence ρ is (UC2) with δ2(r, ε) > ε, for any r > 0 and ε > 0. In fact ρ is (UUC2). On the
other hand, ρ fails to be (UC1). Indeed, set em = (xn), with xn = 0 if n 6= m and xm = 1, for any m > 1.
Next, we consider the vectors

xm =

(
1 +

1
m+ 1

)
em + b em+1, ym =

(
1 +

1
m+ 1

)
em − b em+1

for m > 1 and 1/2 < b < 1. Hence

ρ(xm) = ρ(ym) =

(
1 +

1
m+ 1

)m+1

+ bm+2, ρ
(
xm + ym

2

)
=

(
1 +

1
m+ 1

)m+1

,

and ρ (xm − ym) = ρ (2b em+1) = (2b)m+2, which implies

lim
m→∞ ρ(xm) = lim

m→∞ ρ(ym) = lim
m→∞ ρ

(
xm + ym

2

)
= e,

and lim
m→∞ ρ(xm − ym) =∞. This is not possible if ρ is (UC1).

The above example explains why we had to introduce the two uniform convexities of the modular.
In fact, almost all the papers published on the subject focus mainly on (UC1). This is important because
(UC2) allows us to prove modular geometric properties which are otherwise unknown in the absence of
(UC1).

The following technical lemma will be useful throughout.

Lemma 3.4. Let ρ be a convex modular defined in X which satisfies the Fatou property. Assume Xρ is complete and
ρ is (UUC2). The following properties hold.

(i) Let C be a nonempty ρ-closed convex subset of Xρ. Let x ∈ Xρ be such that

dρ(x,C) = inf{ρ(x− y) : y ∈ C} <∞.

Then there exists a unique c ∈ C such that dρ(x,C) = ρ(x− c).

(ii) Xρ satisfies the property (R), i.e., for any decreasing sequence {Cn}n>1 of ρ-closed convex nonempty subsets
of Xρ such that sup

n>1
dρ(x,Cn) <∞, for some x ∈ Xρ, then we have

⋂
n>1

Cn is nonempty.

Proof. In order to prove (i), we may assume that x 6∈ C since C is ρ-closed. Therefore, we have dρ(x,C) > 0.
Set R = dρ(x,C). Hence for any n > 1, there exists yn ∈ C such that ρ(x− yn) < R(1 + 1/n). We claim
that {yn/2} is ρ-Cauchy. Assume otherwise that {yn/2} is not ρ-Cauchy. Then there exists a subsequence
{yϕ(n)} and ε0 > 0 such that ρ

(
(yϕ(n) − yϕ(m))/2

)
> ε0, for any n > m > 1. Since R(1 + 1/n) > R/2 = s,

for any n > 1, we conclude that

δ2(R(1 + 1/n), 2ε0/R) > η2(R/2, 2ε0/R) > 0,
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for any n > 1. Since max
(
ρ(x− yϕ(n)), ρ(x− yϕ(m))

)
6 R(1 + 1/ϕ(m)) and

ρ

(
yϕ(n) − yϕ(m)

2

)
> ε0 > R

(
1 +

1
ϕ(m)

)
ε0

2R

for any n > m > 1, we conclude that

ρ

(
x−

yϕ(n) + yϕ(m)

2

)
6 R

(
1 +

1
ϕ(m)

)
(1 − η2(R/2, 2ε0/R)).

Hence

R = dρ(x,C) 6 R
(

1 +
1

ϕ(m)

)
(1 − η2(R/2, 2ε0/R))

for any m > 1. If we let m → ∞, we get R 6 R(1 − η2(R/2, 2ε0/R)) which is a contradiction with the
facts R > 0 and η(R/2, 2ε0/R) > 0. Therefore, {yn/2} is ρ-Cauchy. Since Xρ is ρ-complete, then {yn/2}
ρ-converges to some y. We claim that 2y ∈ C. Indeed, for any m > 1, the sequence {(yn + ym)/2}
ρ-converges to y+ ym/2. Since C is ρ-closed and convex, we get y+ ym/2 ∈ C. Finally the sequence
{y+ ym/2} ρ-converges to 2y, which implies 2y ∈ C. Set c = 2y. Since ρ satisfies the Fatou property, we
have

dρ(x,C) 6 ρ(x− c)

6 lim inf
m→∞ ρ

(
x− (y+ ym/2)

)
6 lim inf
m→∞ lim inf

n→∞ ρ
(
x− (yn + ym/2)

)
6 lim inf
m→∞ lim inf

n→∞
(
ρ(x− yn) + ρ(x− ym)

)
/2

= R = dρ(x,C).

Hence ρ(x− c) = dρ(x,C). The uniqueness of the point c follows from the fact that ρ is (SC).
For the proof of (ii), we assume that x 6∈ Cn0 for some n0 > 1. In fact, the sequence {dρ(x,Cn)} is

increasing and bounded. Set lim
n→∞dρ(x,Cn) = R. We may assume R > 0. Otherwise x ∈ Cn, for any

n > 1. From (i), there exists a unique yn ∈ Cn such that dρ(x,Cn) = ρ(x− yn), for any n > 1. A similar
proof will show that {yn/2} ρ-converges to some y ∈ Xρ. Since {Cn} are decreasing, convex and ρ-closed,
we conclude that 2y ∈

⋂
n>1

Cn.

It is natural to wonder whether the property (R) extends to any family of decreasing subsets.

Proposition 3.5. Let ρ be a convex modular defined in X. Assume Xρ is complete and ρ is (UUC2). Let C be
ρ-closed nonempty convex subsets of Xρ which is ρ-bounded. Let {Ci}i∈I be a family of ρ-closed nonempty convex
subsets of C such that

⋂
i∈F

Ci 6= ∅, for any finite subset F of I. Then
⋂
i∈I
Ci 6= ∅.

Proof. Let x ∈ C. Then sup
i∈I

dρ(x,Ci) 6 δρ(C) < ∞ holds. For any subset F ⊂ I, set dF = dρ(x,
⋂
i∈F

Ci).

Note that if F1 ⊂ F2 ⊂ I are finite subsets, then dF1 6 dF2 holds. Set

dI = sup
{
dρ

(
x,
⋂
i∈J
Ci

)
, J ⊂ I such that

⋂
i∈J
Ci 6= ∅

}
.

For any n > 1, there exists a subset Fn ⊂ I such that dI − 1/n < dFn 6 dI. Set F∗n = F1 ∪ · · · ∪ Fn,
for n > 1. Then

{ ⋂
i∈F∗n

Ci

}
is a decreasing sequence of nonempty ρ-closed convex subsets of Xρ. The
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property (R) implies
⋂
i∈J
Ci 6= ∅, where J =

⋃
n>1

F∗n =
⋃
n>1

Fn. Set K =
⋂
i∈J
Ci. Note that dρ(x,K) = dI

because dI − 1/n < dFn 6 dρ(x,K) 6 dI, for any n > 1. Lemma 3.4 implies the existence of a unique
y ∈ K such that ρ(x− y) = dρ(x,K) = dI. Let i0 ∈ I, then

K∩Ci0 =
⋂

i∈J∪{i0}

Ci 6= ∅,

because of the same argument using the property (R). Hence dρ(x,K) 6 dρ(x,K ∩ Ci0) 6 dI. Hence
dρ(x,K∩Ci0) = dρ(x,K) = dI which implies y ∈ K∩Ci0 . Therefore, we have y ∈

⋂
i∈I
Ci which proves our

claim.

The concept of ρ-type functions will play a major role in the next section.

Definition 3.6. Let {xn} be a sequence in Xρ. Let C be a nonempty subset of Xρ. The function τ : C→ [0,∞]
defined by

τ(x) = lim sup
n→∞ ρ(x− xn),

is called a ρ-type function. A sequence {cn} in C is called a minimizing sequence of τ if lim
n→∞ τ(cn) =

inf
x∈C

τ(x).

The ρ-type functions enjoy some interesting and powerful properties.

Proposition 3.7. Assume that Xρ is ρ-complete and ρ satisfies the Fatou property. Let C be a nonempty convex and
ρ-closed subset of Xρ. Consider the ρ-type function τ : C → [0,∞] generated by a sequence {xn} in Xρ. Assume
τ0 = inf

x∈C
τ(x) <∞.

(i) If ρ is (UUC1), then all minimizing sequences of τ are ρ-convergent to the same limit.
(ii) If ρ is (UUC2) and {cn} is a minimizing sequence of τ, then {cn/2} ρ-converges to a point which is indepen-

dent of the minimizing sequence {cn}.

Proof. First, we assume that τ0 > 0. Let {cn} be a minimizing sequence of τ. We will prove (i) and omit
the proof to (ii) since it is quite similar. Assume that {cn} is not ρ-Cauchy. Then there exist a subsequence
{cϕ(n)} of {cn} and ε0 > 0 such that

ρ(cϕ(n) − cϕ(m)) > ε0, for n 6= m.

Fix ε ∈ (0, 1). Then there exists n0 > 1 such that for any n > n0, we have τ(cϕ(n)) 6 τ0 + ε. For any
n > m > n0, there exists kn,m > 1 such that for any k > kn,m, we have

max
(
ρ(cϕ(n) − xk), ρ(cϕ(m) − xk)

)
6 τ0 + 2ε.

Since ρ is (UUC1) and
ρ(cϕ(n) − cϕ(m)) > ε0 > (τ0 + 2ε)

ε0

τ0 + 2
,

we get

ρ

(
cϕ(n) + cϕ(m)

2
− xk

)
6 (τ0 + 2ε)

(
1 − η2

(
τ0,

ε0

τ0 + 2

))
for any k > kn,m. Hence

τ

(
cϕ(n) + cϕ(m)

2

)
6 (τ0 + 2ε)

(
1 − η2

(
τ0,

ε0

τ0 + 2

))
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for any n > m > n0, which implies

τ0 6 (τ0 + 2ε)
(

1 − η2

(
τ0,

ε0

τ0 + 2

))
.

If we let ε→ 0, we get

τ0 6 τ0

(
1 − η2

(
τ0,

ε0

τ0 + 2

))
,

which contradicts the fact τ0 > 0. Therefore {cn} is ρ-Cauchy. Since Xρ is ρ-complete, we conclude that
{cn} is ρ-convergent. Next we show that the ρ-limit is independent of the minimizing sequence. Let {c∗n}
be another minimizing sequence of τ in C. Define {c̄n} by c̄2n = cn and c̄2n+1 = c∗n, for any n > 1. Then
{c̄n} is also a minimizing sequence of τ in C. Hence {c̄n} is ρ-convergent. This fact will force both {cn}

and {c∗n} to have the same ρ-limit. In order to finish the proof of Proposition 3.7, let us take care of the
case τ0 = 0. For (ii), the proof is easy. Indeed, let {cn} be a minimizing sequence of τ in C. Then we have

ρ

(
cn − cm

2

)
6

1
2
ρ(cn − xk) +

1
2
ρ(cm − xk)

for any n,m,k > 1. Hence

τ

(
cn − cm

2

)
6

1
2
τ(cn) +

1
2
τ(cm)

for any n,m > 1. Since lim
n→∞ τ(cn) = τ0 = 0, we conclude that {cn/2} is ρ-Cauchy. Since Xρ is ρ-complete,

we conclude that {cn/2} is ρ-convergent. The same idea used before will show that the ρ-limit is in fact
independent of the minimizing sequence. The proof of (ii) in this case is little bit complicated. For any
n > 1, consider Kn to be the intersection of all ρ-closed convex subsets of Xρ which contains xi, for i > n.
Clearly {Kn} are decreasing. Let x ∈ C such that τ(x) <∞. For any ε > 0, there exists k0 > 1 such that

ρ(x− xk) 6 τ(x) + ε, for k > k0.

Hence xk ∈ Bρ(x, τ(x) + ε), for any k > k0. Since ρ satisfies the Fatou property, Bρ(x, τ(x) + ε) is ρ-closed.
Hence Kn ⊂ Bρ(x, τ(x) + ε), for any n > k0, which implies

dρ(x,Kn) = inf{ρ(x− y) : y ∈ Kn} 6 τ(x) + ε

for any n > k0. Using the property (R) satisfied by Xρ, we get K =
⋂
n>k0

Kn is not empty. Since {Kn} are

decreasing, we get K =
⋂
n>1

Kn. Let z ∈ K. Then z ∈ Kn, for any n > k0. Hence z ∈ Bρ(x, τ(x) + ε) which

implies ρ(x− z) 6 τ(x) + ε. Since ε was taken arbitrarily, we get ρ(x− z) 6 τ(x). Let {cn} be a minimizing
sequence of τ in C. Since lim

n→∞ τ(cn) = τ0 = 0 and ρ(cn − z) 6 τ(cn), for any n > 1, we conclude that

{cn} ρ-converges to z. Hence z ∈ C and is independent of the minimizing sequence. This completes the
proof of Proposition 3.7.

In the next section, we discuss some applications of the ideas discussed above to the fixed point theory
of mappings which are Lipschitzian in the modular sense.

4. Some fixed point results

In this section, we initiate the analogue to the fundamental metric fixed point results in modular vector
spaces. Throughout X is a vector space and ρ a convex modular function. Let us start with the modular
definitions in the modular sense of Lipschitzian mappings.
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Definition 4.1. Let ρ be a modular defined on a vector space X. Let C ⊂ Xρ be nonempty. A mapping
T : C→ C is called ρ-Lipschitzian if there exists a constant K > 0 such that

ρ(T(x) − T(y)) 6 K ρ(x− y), ∀x,y ∈ C.

If K < 1, then T is called ρ-contraction. And if K = 1, T is called ρ-nonexpansive. A point x ∈ C is called
a fixed point of T if T(x) = x. The set of fixed points of T will be denoted by Fix(T).

The first result is the modular version of the Banach Contraction Principle.

Theorem 4.2. Assume Xρ is ρ-complete. Let C be a nonempty ρ-closed subset of Xρ. Let T : C → C be a ρ-
contraction mapping. Then T has a fixed point z if and only if T has a ρ-bounded orbit. Moreover if ρ(x− z) <∞,
then {Tn(x)} ρ-converges to z, for any x ∈ C.

Proof. It is obvious that if T has a fixed point z, the orbit {Tn(z)} is ρ-bounded. Assume there exists x0 ∈ C
such that {Tn(x0)} is ρ-bounded, i.e.,

δρ(x0) = sup{ρ(Tn(x0) − T
m(x0));n,m ∈N} <∞.

Since T is a ρ-contraction mapping there exists K < 1 such that

ρ(T(x) − T(y)) 6 K ρ(x− y), x,y ∈ C.

Hence
ρ(Tn(x0) − T

n+h(x0)) 6 Kn ρ(x0 − T
h(x0)) 6 K

n δρ(x0)

for any n,h ∈ N. Since K < 1, we conclude that {Tn(x0)} is ρ-Cauchy. Since Xρ is ρ-complete, {Tn(x0)}
ρ-converges to some z ∈ Xρ. Since C is ρ-closed, we obtain that z ∈ C. Let us prove that z is in fact a fixed
point of T . Indeed we have

ρ(Tn+1(x0) − T(z)) 6 K ρ(T
n(x0) − z)

for any n ∈N. Hence

ρ

(
z− T(z)

2

)
= ρ

(
z− Tn+1(x0)

2
+
Tn+1(x0) − T(z)

2

)
6

1
2
ρ(z− Tn+1(x0)) +

K

2
ρ(Tn(x0) − z)

for any n ∈N. If we let n→∞, we obtain

ρ

(
z− T(z)

2

)
= 0,

which implies that T(z) = z. Let x ∈ C be such that ρ(x− z) <∞. Then we have

ρ(Tn(x) − z) = ρ(Tn(x) − Tn(z)) 6 Kn ρ(x− z)

for any n ∈N. Since K < 1, we conclude that {Tn(x)} ρ-converges to z.

Remark 4.3. One may wonder what happened to the uniqueness of the fixed point in the fundamental
Banach Contraction Principle. Since ρ is allowed to take infinite values, this conclusion may fail. But
Theorem 4.2 allows us to conclude that if z1 and z2 are two fixed points of T such that ρ(z1 − z2) < ∞,
then we have z1 = z2. In particular, if C is ρ-bounded, then T has a unique fixed point in C.

Next we investigate the case of ρ-nonexpansive mappings. First note that if C is convex, then fix x0 ∈ C
and ε ∈ (0, 1) and define Tε : C→ C by

Tε(x) = ε x0 + (1 − ε) T(x).

Since ρ is convex, we deduce that Tε is a ρ-contraction. Assume that C is ρ-bounded ρ-closed and Xρ is
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ρ-complete, then Tε has a unique fixed point xε ∈ C. Hence we have

ε x0 + (1 − ε) T(xε) = xε,

which implies
ρ(xε − T(xε)) = ρ(ε(x0 − T(xε)) 6 ε ρ(x0 − T(xε) 6 ε δρ(C).

Since ε was chosen arbitrarily in (0, 1), we get inf
x∈C

ρ(x− T(x)) = 0. This implies that we almost have a

fixed point. Therefore, there exists a sequence {xn} in C such that lim
n→∞ ρ(xn − T(xn)) = 0. Such sequence

will be called a ρ-almost fixed point sequence of T . Assume that C is ρ-compact, then we may assume
that T has a ρ-almost fixed point sequence {xn} which is ρ-convergent to some z ∈ C. Hence

ρ

(
z− T(z)

3

)
6

1
3
ρ(z− xn) +

1
3
ρ(xn − T(xn)) +

1
3
ρ(T(xn) − T(z)),

which implies

ρ

(
z− T(z)

3

)
6

2
3
ρ(z− xn) +

1
3
ρ(xn − T(xn))

for any n > 1. If we let n→∞, we get

ρ

(
z− T(z)

3

)
= 0,

which implies that T(z) = z.

Theorem 4.4. Assume Xρ is ρ-complete. Let C be a nonempty ρ-compact convex ρ-bounded subset of Xρ. Let
T : C→ C be a ρ-nonexpansive mapping. Then T has a fixed point.

Clearly ρ-compactness is a strong assumption. In order to weaken this assumption and prove a
similar result to Browder-Göhde fixed point theorems [3, 7], we need to assume the uniform convexity of
the modular.

Theorem 4.5. Assume that Xρ is ρ-complete and ρ satisfies the Fatou property. Assume ρ is (UUC1). Let C be
a nonempty ρ-closed convex ρ-bounded subset of Xρ. Let T : C → C be a ρ-nonexpansive mapping. Then T has a
fixed point. Moreover Fix(T) is ρ-closed and convex.

Proof. Let x0 ∈ C. Consider the ρ-type function τ : C→ [0,∞] defined by

τ(x) = lim sup
n→∞ ρ(x− Tn(x0)).

Note that since {Tn(x0)} ⊂ C and C is ρ-bounded, we have τ(x) 6 δρ(C) < ∞, for any x ∈ C. Moreover,
we have

τ(T(x)) = lim sup
n→∞ ρ(T(x) − Tn(x0)) 6 lim sup

n→∞ ρ(x− Tn−1(x0)) = τ(x)

for any x ∈ C. Let {cn} be a minimizing sequence of τ in C. It is clear that {T(cn)} is also a minimizing
sequence of τ. Using Proposition 3.7, we conclude that {cn} and {T(cn)} ρ-converge to the same point
z ∈ C. Since

ρ(T(cn) − T(z)) 6 ρ(cn − z)

for n > 1, we conclude that {T(cn)} also ρ-converges to T(z). The uniqueness of the ρ-limit implies that
T(z) = z. Hence Fix(T) is not empty. Let us prove it is ρ-closed and convex. Let {xn} be in Fix(T) which
ρ-converges to some x ∈ C. We have

ρ(xn − T(x)) = ρ(T(xn) − T(x)) 6 ρ(xn − x), n > 1.
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This will imply that {xn} also ρ-converges to T(x). The uniqueness of the ρ-limit implies that x = T(x),
i.e., x ∈ Fix(T). Hence Fix(T) is ρ-closed. Let us finish the proof of Theorem 4.5 by showing that Fix(T) is

convex. Let x,y ∈ Fix(T). Assume that x 6= y. Let us prove that z =
x+ y

2
∈ Fix(T). Set u = x−

z+ T(z)

2
and v =

z+ T(z)

2
− y. Then we have

ρ(u) 6 ρ

(
x− y

2

)
, ρ(v) 6 ρ

(
x− y

2

)
, ρ

(
u+ v

2

)
= ρ

(
x− y

2

)
.

Since ρ is (UUC2), it is (SC). Hence u = v which implies T(z) = z, i.e., z ∈ Fix(T).

As an application to Theorem 4.5, we have the following common fixed point.

Theorem 4.6. Assume that Xρ is ρ-complete and ρ satisfies the Fatou property. Assume ρ is (UUC1). Let C be a
nonempty ρ-closed convex ρ-bounded subset of Xρ. Let T1, T2, · · · , Tn : C→ C be a finite family of ρ-nonexpansive

mappings which are commutative. Then {Ti}16i6n have a common fixed point. Moreover
n⋂
i=1

Fix(Ti) is ρ-closed

and convex.

Proof. It is enough to prove the conclusion for n = 2. Since T1 and T2 are commutative, then we have
T2(Fix(T1)) ⊂ Fix(T1). The restriction of T2 to Fix(T1) has a fixed point by Theorem 4.5. Since both Fix(T1)
and Fix(T2) are ρ-closed and convex, then Fix(T1) ∩ Fix(T2) is a nonempty ρ-closed and convex subset of
Xρ.

It is then natural to ask whether the conclusion of Theorem 4.6 is still valid for any commutative family
of ρ-nonexpansive mappings. A direct implication of Proposition 3.5 and Theorem 4.6 is the following
result.

Theorem 4.7. Assume that Xρ is ρ-complete and ρ satisfies the Fatou property. Assume ρ is (UUC1). Let C be
a nonempty ρ-closed convex ρ-bounded subset of Xρ. Let Ti : C → C, for i ∈ I, be a family of ρ-nonexpansive
mappings which are commutative. Then {Ti}i∈I have a common fixed point. Moreover

⋂
i∈I

Fix(Ti) is ρ-closed and

convex.

Acknowledgment

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University,
Jeddah, under Grant No. (D-057-363-1438). The authors, therefore, gratefully acknowledge the DSR
technical and financial support.

References
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