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Abstract

In this paper, we introduce and analyze a hybrid implicit steepest-descent algorithm for solving the triple hierarchical
variational inequality problem with the hierarchical variational inequality constraint for finitely many nonexpansive mappings
in a real Hilbert space. The proposed algorithm is based on Korpelevich’s extragradient method, hybrid steepest-descent
method, Mann’s implicit iteration method, and Halpern's iteration method. Under mild conditions, the strong convergence of
the iteration sequences generated by the algorithm is established. Our results improve and extend the corresponding results in
the earlier and recent literature. (©2017 All rights reserved.
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1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm | - ||. Let C be a nonempty closed
convex subset of H and P¢ be the metric projection of H onto C. If {xy} is a sequence in H, then we denote
by xx — x (respectively, x, — x) the strong (respectively, weak) convergence of the sequence {xy} to x. Let
S : C — H be a nonlinear mapping on C. We denote by Fix(S) the set of fixed points of S and by R the set
of all real numbers. A mapping S : C — H is called L-Lipschitz continuous if there exists a constant L > 0
such that

Isx—Syll <Llx—yl, ¥xyeC.
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In particular, if L =1 then S is called a nonexpansive mapping; if L € [0,1) then S is called a contraction.
Let A : C — H be a nonlinear mapping on C. The classical variational inequality problem (VIP) is to

find x € C such that
Ax,y—x) >0, WvyeC. (1.1)

The solution set of VIP (1.1) is denoted by VI(C, A). In 1976, Korpelevich [13] proposed an iterative
algorithm for solving the VIP (1.1) in Euclidean space R™:

Yk = Pc(xk — TAXy),
Xk+1 = Pc(xx —TAYyk), Vk >0,

with T > 0 a given number, which is known as the extragradient method. The literature on the VIP is
vast and Korpelevich’s extragradient method has received great attention given by many authors, who
improved it in various ways; see e.g., [1, 5, 6, 24-26] and references therein.

Let A:C — Hand B : H — H be two mappings. Consider the following bilevel variational inequality
problem (BVIP).

Problem 1.1. We find x* € VI(C, B) such that
(Ax*,x —x*) >0, Vxe VI(C,B),
where VI(C, B) denotes the set of solutions of the VIP: find y* € C such that
(By*,y—y*) >0, WweC

Bilevel variational inequalities are special classes of quasivariational inequalities ([7]) and of equilib-
rium with equilibrium constraints considered in [14, 16]. However it covers some classes of mathematical
programs with equilibrium constraints ([14]), bilevel minimization problems ([17]), variational inequalities
([27]), and complementarity problems.

In what follows, suppose that A and B satisfy the following conditions:

C1) B is pseudomonotone on H and A is 3-strongly monotone on C;
C2) A is Ly-Lipschitz continuous on C;
C3) B is L,-Lipschitz continuous on H;

(
(
(
(C4) VI(C,B) # 0.

In 2012, Anh et al. [1] introduced the following extragradient iterative algorithm for solving the above
bilevel variational inequality.
Algorithm 1.2 ([1, Algorithm 2.1]). Initialization: choose u € R™, xq € C.
Step 1. Compute yx := Pc(xx —AxBxk) and zy := Pc(xx — AByx).
Step 2. Inner loop j =0,1,.... Compute

Xk, 0 i= Zx — AAZy,

Yi,j = Pclxk,j —8jBxk 5),

Xk,j+1 = &XKk,0 T BjXk,j +'YjPC(Xk,j — b; Byi,j).

If ka,j+1 - PVI(C,B)XK,OH < €y then set hy := Xk,j+1 and go to Step 3.

otherwise, increase j by 1 and repeat the inner loop Step 2.
Step 3. Set xy 41 := oxu + Brxk +Yrhk. Then increase k by 1 and go to Step 1.

Theorem 1.3 ([1, Theorem 3.1]). Suppose that the assumptions (C1)-(C4) hold. Then the two sequences {x\} and
{zn} in Algorithm 1.2 converge to the same point x* which is a solution of the BVIP.
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On the other hand, recall the variational inequality for a monotone operator A; : H — H over the fixed
point set of a nonexpansive mapping T: H — H:

Find x € VI(Fix(T), A1) :={x € Fix(T) : (A1x,y —%) > 0,Vy € Fix(T)},

where Fix(T) :={x € H: Tx = x} # 0. In [10, 11], liduka introduced the following three-stage variational
inequality problem, that is, the following monotone variational inequality with variational inequality
constraint over the fixed point set of a nonexpansive mapping.

Problem 1.4 ([11, Problem 3.1]). Assume that

(i) T:H — H is a nonexpansive mapping with Fix(T) # 0;

(ii) A1:H — His a-inverse strongly monotone;
(iii) A2 : H — His B-strongly monotone and L-Lipschitz continuous;
(iv) VI(Fix(T), Aq) # 0.

Then the objective is to find
x* € VI(VI(Fix(T), A1), A2) = {x* € VI(Fix(T), A1) : (Ax*,v—x") > 0, € VI(Fix(T), A1)}.

Since this problem has a triple structure in contrast with bilevel programming problems ([14, 16]) or
hierarchical constrained optimization problems or hierarchical fixed point problem, it is referred to as a
triple-hierarchical constrained optimization problem (THCOP). More precisely, it is referred as a triple
hierarchical variational inequality problem (THVIP); see Ceng et al. [4]. Very recently, some authors
continued the study of liduka’s THVIP (i.e., Problem 1.4 and its variant and extension; see e.g., [2, 4, 28]).

Algorithm 1.5 ([11, Algorithm 4.1]). Let T: H -+ Hand A; : H — H (i = 1,2) satisfy the assumptions
(i)-(iv) in Problem 1.4. The following steps are presented for solving Problem 1.4.
Step 0. Take {axxJ3_ o, (AR C (0,00), and u > 0, choose xo € H arbitrarily, and let k := 0.

Step 1. Given xi € H, compute xyx 41 € H as yx = T(x — AkA1xk) and Xx41 = Yk — LAYk
Update k :=k +1 and go to Step 1.

The convergence analysis of the proposed algorithm was also studied in [11]. The following strong
convergence theorem is established for Algorithm 1.5.

Theorem 1.6 ([11, Theorem 4.1]). Assume that {y\ }3°_, in Algorithm 1.5 is bounded. Then the sequence {xi.}}°_
generated by Algorithm 1.5 satisfies the following properties.

(@) {xk}¥ is bounded;
(b) limk_mo ||Xk —ka =0and limk_mo ||Xk — TXkH =0 hOld,‘
(©) if Ixk — Y|l = o(Ax), {xilyr converges strongly to the unique solution of Problem 1.4.

In 2012, inspired by liduka’s Algorithm 1.5, Zeng et al. [28] proposed one relaxed hybrid steepest-
descent algorithm for solving Problem 1.4.

Algorithm 1.7 ([28, Algorithm 3.1]). Assume that the operators T: H - Hand A;: H—-H (i =1,2)
satisfy conditions (i)-(iv) in Problem 1.4.

Step 0. Take {4}, € (0,1], {Axlyo C (0,2a, n e (0, ZL—E'), choose xo € H arbitrarily, and let k := 0.
Step 1. Given xx € H, compute xy+1 € H as yx := T(xx — AkA1x) and xx41 = Y — LAYk
Update k := k +1 and go to Step 1.

The following theorem provides the strong convergence criteria for Algorithm 1.7.

Theorem 1.8 ([28, Theorem 3.1]). The sequence {xy }3_, generated by Algorithm 1.7 satisfies the following prop-
erties:
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(@) {xk}¥ is bounded;
(b) limk_,oo ||Xk —ka = 0and limk_mo ||Xk - TXkH = 0,‘
(c) {xxkJ¥, converges strongly to the unique solution of Problem I provided ||xy —yx|| = o(Ak).

Moreover, the authors [28] also considered the following monotone variational inequality with the
variational inequality constraint over the intersection of the fixed point sets of N nonexpansive mappings
Ti : H— H, with N > 1 an integer.

Problem 1.9 ([28, Problem II]). Assume that
(i) each T; : H — H is a nonexpansive mapping with NN  Fix(T;) # 0;
(ii) A1 :H — His a-inverse strongly monotone;

(iii) A2 : H — His B-strongly monotone and L-Lipschitz continuous;
(iv) VI(NN,Fix(Ty), A1) # 0.

Then the objective is to find

N N N
x* € VI(VI([Fix(Ty), A1), Az) = {x* € VI(["|Fix(Ti), A1) : {(Agx*,v—x*) > 0,%v € VI([ |Fix(Ti), Aq)}.
i=1 i=1 i=1
Obviously, Problem 1.9 of finding a unique element of VI(VI(ﬂiNleix(Ti),A1),A2) is more general
and more complex than Problem 1.4. We write Tjy) := Tymoan for integer k > 1 with the mod function
taking values in the set {1,2,..., N}, that is, if k = jN + q for some integers j > 0 and 0 < q < N, then
Tog = Tnif @ = 0and Tpg = Tq if 0 < g < N. The authors [28] also proposed another relaxed hybrid
steepest-descent algorithm for solving Problem 1.9, and established the strong convergence result for the
proposed algorithm.

Algorithm 1.10 ([28, Algorithm 3.2]). Assume that the operators T;: H—+H (i=1,...,N)and Aj: H —
H (j =1,2) satisfy assumptions (i)-(iv) in Problem 1.9.

Step 0. Take {xJ3°_, € (0,1], {Ax}y C (0,2a, n € (0, ZL—%), choose xg € H arbitrarily and let k := 0.
Step 1. Given x € H, compute xy 41 € H as yx = Tiq)(xk — AcA1xi) and Xy 41 = Yx — Hotc Ay
Update k := k+1 and go to Step 1.

Theorem 1.11 ([28, Theorem 3.2]). Assume that ﬂ]iil Fix(Ty) = Fix(TiTr---Tn) = Fix(TNTy -+ - Tn—1) =
-+ =Fix(ToT3 - - - Tn'T1). Then the sequence {xy }3°_, generated by Algorithm 1.10 satisfies the following properties:
(a) ()2 is bounded;
(b) hmk_mo ||Xk+N —XkH =0 ﬂi’ld hmk_,oo ||Xk — T[k+N] cee T[k+1]XkH = 0,'
(c) {xi )y converges strongly to the unique solution of Problem I provided |xic —yi | = o(Ax).

In this paper, we introduce and analyze a hybrid implicit steepest-descent algorithm for solving the
triple hierarchical variational inequality problem (THVIP) with the hierarchical variational inequality
constraint for finitely many nonexpansive mappings in a real Hilbert space. The proposed algorithm is
based on Korpelevich’s extragradient method [13], hybrid steepest descent method [22], Mann’s implicit
iteration method [29] and Halpern’s iteration method. Under mild conditions, the strong convergence
of the iteration sequences generated by the algorithm is derived. Our results improve and extend the
corresponding results announced by some others, e.g., liduka [11, Theorem 4.1], Zeng et al. [28, Theorem
3.2], and Anh et al. [1, Theorem 3.1].

2. Preliminaries

Throughout this paper, we assume that C is a nonempty closed convex subset of a real Hilbert space
H. We use w,, (xx) to denote the weak w-limit set of the sequence {xy}, i.e.,

W (x) :=={x € H:xx, — x for some subsequences {xy, } of {xi}}.

Recall that a mapping A : C — H is called:
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(i) monotone if
(Ax—Ay,x—y) >0, Vx,yeC

(ii) m-strongly monotone if there exists a constant 1 > 0 such that
(Ax—Ay,x—y) 2nllx—yl?>, WxyeC
(iii) a-inverse-strongly monotone if there exists a constant o« > 0 such that
(Ax — Ay, x —y) > af|Ax — Ay|>, ¥x,yeC.

It is obvious that if A is a-inverse-strongly monotone, then A is monotone and 1-Lipschitz continuous.
The metric (or nearest point) projection from H onto C is the mapping Pc : H — C which assigns to
each point x € H the unique point Pcx € C satisfying the property

—Pex| = inf ||x —y|| = d(x, C).
[[x —Pcx|| ylrelCHx y|| (x,C)

Some important properties of projections are gathered in the following proposition.

Proposition 2.1 ([23]). For given x € Hand z € C:

(i) z=Pex < (x—2z,y—2z) <0, Yye(C
(i) z=Pex & x—z|* < [x—y[P—lly—z[>, YyeC
(iii) (Pcx—Pcy,x—y) > ||ch—PCy||2, Yy € H.

Consequently, Pc is nonexpansive and monotone.
If A is an a-inverse-strongly monotone mapping of C into H, then it is obvious that A is Z-Lipschitz
continuous. We also have that, for all u,v € Cand A > 0,

(T —=AA)u— (T—=AA)V|? < [[u—v|> + AA —20) |Au— Av|>. (2.1)
So, if A < 2«, then I — AA is a nonexpansive mapping from C to H.

Definition 2.2. A mapping T: H — H is said to be:

(a) nonexpansive if |[Tx — Ty|| < ||[x —y|| forall x,y € H;
(b) firmly nonexpansive if 2T — I is nonexpansive, or equivalently, if T is 1-inverse strongly monotone
(1-ism),
(x—y,Tx—Ty) > [[Tx—Ty|?, WxycH;

alternatively, T is firmly nonexpansive if and only if T can be expressed as T = %(I +S)where S: H — H
is nonexpansive; projections are firmly nonexpansive.

It can be easily seen that if T is nonexpansive, then I — T is monotone. It is also easy to see that a
projection Pc is 1-ism. Inverse strongly monotone (also referred to as co-coercive) operators have been
applied widely in solving practical problems in various fields.

Proposition 2.3. Let T : C — C be a nonexpansive mapping. Then the following hold:

(i) Fix(T) is closed and convex ([9, Proposition 5.3]);
(i1) Fix(T) # () when C is bounded ([9, Theorem 5.1]).

We need some facts and tools in a real Hilbert space H which are listed as lemmas below.

Lemma 2.4. Let X be a real inner product space. Then there holds the following inequality

Ix+yl* < IxIF+2(y,x+y), ¥xyeX.
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Recall that, a mapping A : C — H is called hemicontinuous if for all x,y € C, the mapping g: [0,1] —
H, defined by g(t) :== A(tx + (1 —t)y), is continuous. Some properties of the solution set of the monotone
variational inequality are mentioned in the following result.

Lemma 2.5. Let A : C — H be a monotone and hemicontinuous mapping. Then the following hold:

(i) VI(C, A) is equivalent to MVI(C,A) == {x* € C: (Ay,y —x*) > 0,y € C} ([12]);
(ii) VI(C, A) # () when C is bounded ([12]);
(iif) VI(C, A) = Fix(Pc(I—AA)) for all A > 0, where 1 is the identity mapping on H ([19, Lemma 2.24]);
(iv) VI(C, A) consists of only one point, if A is strongly monotone and Lipschitz continuous ([19, Theorem 2.31]).

Lemma 2.6 ([8, Demiclosedness principle]). Let C be a nonempty closed convex subset of a real Hilbert space
H. Let S be a nonexpansive self-mapping on C with Fix(S) # 0. Then 1—S is demiclosed. That is, whenever {x\ }
is a sequence in C weakly converging to some x € C and the sequence {(1 — S)xy} strongly converges to some vy, it
follows that (1 —S)x =vy. Here 1 is the identity operator of H.

Recall that, a mapping T : C — C is called a C-strictly pseudocontractive mapping (or a (-strict
pseudocontraction) if there exists a constant ¢ € [0,1) such that

ITx = Ty|? < [[x —y|? + ¢lI-Tx = (I-Thy|?> vxyeC.

Note that the class of strictly pseudocontractive mappings strictly includes the class of nonexpansive
mappings. It is clear that T is nonexpansive if and only if T is a 0-strict pseudocontraction.

Lemma 2.7 ([15, Proposition 2.1]). Let C be a nonempty closed convex subset of a real Hilbert space H and
T:C — C be a mapping.

(i) If T is a C-strictly pseudocontractive mapping, then T satisfies the Lipschitzian condition

14¢
[Tx — Tyl < _CHx—yH, vx,y € C.

1

(ii) If T is a C-strictly pseudocontractive mapping, then the mapping 1 —T is semiclosed at 0, that is, if {xn} is a
sequence in C such that x,, = X and (I1—T)x, — 0, then (I-T)Xx =0.

(iii) If T is C-(quasi-)strict pseudocontraction, then the fixed-point set Fix(T) of T is closed and convex so that the
projection Pry Ty is well-defined.

Lemma 2.8 ([24]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C — C bea
C-strictly pseudocontractive mapping. Let 'y and & be two nonnegative real numbers such that (y 4+ 0)C < y. Then

ly(x=y) +8(Tx =Ty)[| < (v +3)[x—yll, YxyeC
The following lemma can be easily proven, and therefore, we omit the proof.

Lemma 2.9 ([3, Lemma 2.8]). Let {ax}y_, be a bounded sequence of nonnegative real numbers and {by }3>_, be a
sequence of real numbers such that limsup, , by < 0. Then, limsup, _, _ axby <0.

Let C be a nonempty closed convex subset of a real Hilbert space H. We introduce some notations.
Let A be a number in (0,1] and let u > 0. Associating with a nonexpansive mapping S : C — H, we define
the mapping S : C — H by SMHx := Sx — AuF(Sx) for all x € C, where F : H — H is an operator
such that, for some positive constants k,1n > 0, F is k-Lipschitzian and n-strongly monotone on H, that is,
F satisfies the conditions:

IFx—Fyll < kllx—yll and (Fx—Fy,x—y) >nlx—y]’

for all x,y € H.
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Lemma 2.10 ([21, Lemma 3.1]). S™®) is a contraction provided 0 < p < %‘, that is,
[SAHx — SRy < (1—-M)x—yl, YxyeC,
where T:=1— /1 —p(2n—px?2) € (0, 1.

Remark 2.11. In Lemma 2.10, put F = %I and p = 2. Then we know that k =1 = %, O<pu=2< %} =4,
and

T—l—\/1—u(2n—u|<2)—1—\/1—2(2><;—Zx(;)z)—l.

Lemma 2.12 ([20]). Let {ax} be a sequence of nonnegative real numbers satisfying the property
ax+1 < (T—si)ax + skt +8k, vk =0,

where {s\.}, {tx}, and {51} are sequences of real numbers such that

(1) {Sk}C [0,1] and Z? 0S8k =
(i) either limsup, .,  ti <O, or Zk o Isktil < oo;
(i) >y o0k < oo with & >0, Vk > 0.

Then, limy_, o ax = 0.
Lemma 2.13 ([8]). Let H be a real Hilbert space. Then the following hold:

@ [x =yl = x> = [yll> —2(x—y,y) forall x,y € H;
(b) M+ pyll? = Allx|? + wlyl|? — Aullx —y||® for all x,y € Hand A, n € [0, 1] with A+ p = 1;
(c) if {xx} is a sequence in H such that x;. — x, it follows that

lim sup xic —yl = lim sup [ — x|+ [x—y[ vy € H.
k—o0 k—o0

3. Iterative algorithm and convergence criteria

Let H be a real Hilbert space. In this section, we always assume the following.
Ti : H — H is a nonexpansive mapping for each i =1,..., N such that ﬂiNleix(Ti) #0;
A : H — His fi-strongly monotone and L;-Lipschitz continuous, and F : H — H is n-strongly monotone
and k-Lipschitzian;
{o}, {Bx} C (0,1] and constants p, v > 0 satisfy the conditions (A1)-(A3):
(A1) pe (0,2n/k*) and v € (0,27/13),
(A2) limy, o0 (ot — otierN) /@i N = 0 01 317 ¢ o — ot | < 00,
(A3) limy—o0(Br — Br+N)/ocen =001 3 170 [Bicin — Bl < oo;
A:H — Hand B: H — H are two mappings such that the hypotheses (H1)-(H4) hold:

(H1) B is monotone on H,

(H2) A is B-inverse-strongly monotone on H,
(H3) B is L,-Lipschitz continuous on H,

(H4) O := VI(VI(N],Fix(T;),B), A) # 0.

Next, we introduce the following triple hierarchical variational inequality problem (THVIP) defined over
the common fixed point set of finitely many nonexpansive mappings.

Problem 3.1. The objective is to find
x* € Q = VI(VI(N\N,Fix(T;), B), A) = {x* € VI(N]Fix(T;), B) : (Ax*,x —x*) > 0,¥x € VI[N, Fix(T;), B)}.
That is, the (2 is the solution set of the THVIP: find x* € VI(ﬂ].\l 1Fix(T;), B) such that
(Ax*,x —x*) >0, Vx e VI(N]Fix(T;),B),
where VI(N}_ Fix(T;), B) denotes the set of solutions of the VIP: find y* € ﬂl\‘ 1Fix(T;) such that
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(By*,y—y*) =0, WYy eni Fix(Ty).

It is worth pointing out that Problem 3.1 is very different from Problem 1.9 because the solution set of
Problem 3.1 may not be a singleton but the solution set of Problem 1.9 must be a singleton.

Algorithm 3.2. Initialization: choose u € H, xg € H, k =0, 0 < A < 23, positive sequences {dy}, {Ax}, {ok},
{Bx}, {vx}, and {€x} such that

k—o0

o0 o0
lim &, =0, Zék<oo, Z?\k<oo,
k=0 k=0

1
“k+6k+YK:1/ \V/k>0, lim Bk:(ie(o,*],
k—o0 2

o0

1
Zock =00, limo =0, A¢=o0(ax), A <min{l,—}, Vk=>0.
=0 k—o0 I_2

Step 1. Compute
g = Brexi + (1= Brc) (T = ApF) Tpe 1y,

Vi = Uk — o VAU,
Yk = Pan pi(ry) (Ve = McBvi),
Zx = PﬂP:lFix(Ti) (Vk — AkByk).

Step 2. Inner loop j =0,1,.... Compute

Xk,0 ‘= Zk — AAZk,
Ykj = Pan pix(ry) (XK, — 85Bxic ),
Xk i1 7= %45Xi0 + BiXi +¥iPan pix(ry) (ki — 85BYyx5).

If ||Xk,j+1 — PVI(ﬂl\‘ZlFix(Ti),B)Xk/OH < & thenset hy = Xk,j+1 and go to Step 3.

Otherwise, increase j by 1 and repeat the inner loop Step 2.

Step 3. Set xyx+1 := o+ Brxk + Yrhk. Then increase k by 1 and go to Step 1.

We observe that by Lemma 2.10 for every z € H and t € (0,1], the mapping S : H — H defined by
S¢x :=tz+ (1 —t)SMHx satisfies

IStx —Seyll = (1= 1) SHMx =Sy < (1—t)(1=A1)[x—y, ¥xyeH,

where 0 <A <1, 0 < p<2n/k?, and T = 1— \/1 —u(2n—px?) € (0,1]. By the Banach Contraction
Principle, there exists a unique x; € H satisfying the equation

Xt = tu -+ (1 — t)SU"“)xt.

This shows that the implicit iteration step with perturbed mapping F in Step 1 of Algorithm 3.2 is well-
defined. Thus, Algorithm 3.2 can be employed for the approximation of solutions of Problem 3.1.

Let C be a nonempty closed convex subset of H, B : C — H be monotone and L,-Lipschitz continuous
on C,and S : C — C be a nonexpansive mapping such that VI(C, B) N Fix(S) # 0. Let the sequences {xn}
and {yn} be generated by

xp € C chosen arbitrarily,
Yk = Pcxx — dBxy),
Xk+1 = X0 + Brxk + YrSPc(xk — dkByx), Vk >0,
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where {0t }, {B1}, {vk}, and {8y} satisfy the following conditions:
5 >0, Vk>=0, lim 6y =0,
k—o0
ax+PBrk+tyvk=1 Vk=0,
Z(xk =00, lim o, =0,
k—o0

O < hmmek limsupfy < 1.
k—o0

Under these conditions, Yao et al. [25] proved that the sequences {xi} and {yi} converge strongly to the

Same pOil’lt PVI(C,B )NFix(S)X0-
Applying these iteration sequences with S being the identity mapping, we have the following lemma.

Lemma 3.3. Suppose that the hypotheses (H1)-(H4) hold. Then the sequence {xy ;} generated by Algorithm 3.2
converges strongly to the point Pyyon giy(,) B) (2k — AAzK) as j — oo. Consequently, we have
i — PVIm!;':lFix(Ti),B)(Zk —Mzll <&, Vk=0.

In the sequel we always suppose that the inner loop in Algorithm 3.2 terminates after a finite number
of steps. This assumption, by Lemma 3.3, is satisfied when B is monotone on N}, Fix(T;).
Lemma 3.4. Let the sequences {vi.},{yx}, and {z\.} be generated by Algorithm 3.2, B be L,-Lipschitzian and mono-
toneon H, and p € VI(O{\LlFix(T-) B). Then, we have

lzie = pI? < [vic = pII* = (1 = AkL2) i — el — (1 = AreL2) lyx — 2«1 G.1)

Proof. Let p € VI(ﬂ{ilFix(Ti),B). That means (Bp,x —p) > 0 for all x € ﬂiN: Fix(T;). Then, for each
Ak > 0, p satisfies the fixed point equation p = P~ gy (,) (P —AxBp). Since B is monotone on H and

p € VI(NN,Fix(T;), B), we have (Byx,yx —p) = (Bp, yx —p) > 0. Then, applying Proposition 2.1 (ii) with
vk — AkByk and p, we obtain
Iz = pII* < [Ivic = AByx — pII* — [vic = McBye — zic|1?
— v —PI2 — 20 By, vic — P) + N2 Byl — v — zi |2 — N2 [ By |
+ 2\ By, vic — zx)

= [vi = pII* = Ivi — zi|l* + 2M (B, p — zx)

= |[vic = pI* = [Ivic — zicl* + 2\ (Byie, P — i) + 2Mc (Byi, Y — 2k)

< v =PI = Vi — zi 1> + 22 By, yie — zic)-

(3.2)

Applying Proposition 2.1, we also have (vii —AxBvi —yx, zk — yk) < 0. Combining this inequality with
(3.2) and observing that B is L,-Lipschitz continuous on H, we obtain
Iz =PI < v = PI> = l(vic = yi) + (Y — zi) [ + 22k By, i — i)

= [vic=pI* = [Ivic = yiell* = llyx — zxl> = 20vi = yie, Yie — zi) + 2By, Y — 2x)
= Vi =PI = vk = yll* = Iy — 2l — 2(vi = McByr — yi, yie — zk)
= Vi =PI = Vi = yll* = Iy — zicl* — 2(vic = A Bvic — yi, yie — z)

+ 2A (Bvk — By, zx —yxk)

vie =PI = [Ivie = il = Iy — 2|1 + A (Bvic — By, 2k — yi)

vie =PI = [Ivic =yl = [lyre — 2|1 + 22k [ Bvic — By [[|zx — yk|

vie =PI = [Ivic = il = lyx — 2k |1 + 22k Lo [vic — yxcll|zx — yx|

vie =PI = [Ivie = il = Iy — 2| + McLa([lvie — i1 + [z — yxc?)

Vi —plI* — (1= AkLa) v — Y[ — (1 — AkL2) yx — z« |-

(3.3)

VA A/ AN/ AN/AN
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Lemma 3.5. Suppose that the conditions (A1) and (H1)-(H4) hold. Then the sequence {x} generated by Algorithm
3.2 is bounded.

Proof. Since limy_, Bx = & € (0, 2] we may assume, without loss of generahty, that {Bx} C [a,b] C (0,1).
Take an arbitrary p € (2 := VI(VI(ﬂ]l\lele(T) B),A). We put Sl ¥y .= (I — axvA)x for all x € H.
Then S(® Yy = (I— ogvA)uy and S(¥V)p = (I — xvA)p. Utilizing Lemma 2.10 and the fj-strong
monotonicity and L;-Lipschitz continuity of A we have

=PIl < 1815ty — 5= p 4 55 p |

vHApH}, (34)

< (1= auc0) we = pl[ + o v[[Ap|| < max{[fuwi —pll,

where 0:=1— \/1 —v(2q—vL3).

Also, we put TRy = (I— AxuF) T q)x for all x € H. Then TRy, = (I— AF) T 1wk and
TAp = (I—AuF)p for all k > 0. Since p € Q == VI(VI(ﬂFZlFix(Ti),B),A), we obtain that Ty, 1jp = p
and

[ —pll < Brlx —pll + (1= Br) [THeM e —p). (3.5)

Utilizing Lemma 2.10 we have

T g —pl| < TR g = TR p | 4 TR p —p| < (1=t wic — |+ Acl[Fp,

where T =1 — /1 — p(2n — uk?2). This together with (3.5) yields

e =Pl < Billxi —pll + (1 — Bio) (1 = A [ — pl| + Awref Fpll,
< Brelxie — Pl + (1= Bio)[uk — pll + (1 — Br)Awr|Fpll,
and so IFp| IFp|
e =PIl < e =l + (1= Brlhsc =g P8 < fhac =l + A P (3.6)
Combining (3.4) and (3.6), we get
A F
e —pl < max(xi —pl, AP 4 5, HITPIL (57)

Since p € VI(VI(B ﬂ{\' 1Fix(Ty)), A), we have (Ap,x —p) > 0 for all x € VI(ﬁ]i\’:lFix(Ti),B) which implies
p = Pyy AN Fix(T, g)(p —AAp). Then, from (2.1), Proposition 2.1 (iii), -inverse strong monotonicity of A,
and 0 < A < 2(3, 1t follows that

HPVIm{ilFix(Ti),B)(Zk—?\Alk)—PHZ = [IPyr(a Fix(T0),B) (2 = AAZI) = Pyp(an pix(Ty),8) (P — AAP) )|I?
< (I=AA)zi — (I AA)p|?
< llz = pl* + AMA —2B) [ Azic — Ap|?
<

Iz = pII*.

(3.8)

Utilizing (3.3), (3.7), (3.8), and the assumptions 0 < A < 2B, > 7 Ak < 00, Y %€k < 0o, we obtain that

[Xk+1 =Pl = [Joxr + Brxx + vichk —pl
< ocf[u—pll + Brllxi = Pl + vicllhue = Pyran pixry), B) (2 — AAZK) |
T YlPyraN Fix(To),B) (2 —AAZi) — |
< oxc|[u—=pl[ + Brllxk =Pl + vrEx + vil[vi — Pl
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v||A F
< auelhu—pll + (Bi-+vi) max{fpes — pll, AP 2y MITP
v||A F

= aiu—pi| + (1~ oo max{ i — pl, M2E L 1 gy M

v||A F
< maxxi —pll Ju—pll, APL 12y 1, HITPI

vIApll, | o . p{Fpll
< — _
< max{fixo —pll u—pl, TP+ e+ AL,

k=0
which shows that the sequence {xy} is bounded, and so are the sequences {uy}, {vi}, {uyx}, and {zx}. O

Lemma 3.6. Suppose that the conditions (H1)-(H4) hold. Assume that the sequences {v\} and {z\} are generated
by Algorithm 3.2. Then, we have

{ 1Zien = 21l < (T4 MepnL2) [Vieen = viel |+ A Byl + A N (Bvicen |+ By s | + [[Bvicl]), (3.9)
< :

|z s1 — zic|l < (1 + A1l [vierr — vl + Al Byl + A1 (IBvicr1 || + 1Byl + [ Bvi D).

Proof. Since limy_o Br =& € (0, %], we may assume, without loss of generality, that {3} C [a,b] C (0,1)
for all k > 0. Taking into account the L,-Lipschitzian property of B, for each x,y € H we have

I(I=AkB)x — (I—=ABly|| = |[x —y — A (Bx — By)|| < (1 +AcLa)|[x —yl|-
Combining this inequality with Proposition 2.1 (iii), we have

zien =zl = [IPAN Eix(1y) (VN = Mt NBYIn) = Py gy ry) (Ve = AkBy |
< (Ve N — AN BYrgN) — Vie + A By ||
= (Ve N — AkNBViin) — (Ve — AN BV F Ak N (Bvicen — By v — Bvi) + Ak By ||
< (T + MeenL) vicen = viell 4+ Al Byl + Acen ([[Bvicen | 4 [Byis I+ [[Bvic] ).

Similarly, we can derive

1211 — 2]l < (T4 Aepal2)[[vicrs = vidll + AwlByill + A1 (IBvica || + By [l + [1Bvic]).
This completes the proof. O

Proposition 3.7 ([18]). Let {xi} and {yx} be two bounded sequences in a real Banach space X. Let {Bx} be a
sequence in [0,1]. Suppose that 0 < liminfy_,. Bx < limsup, ,  PBx < Lxiyr = (1 — Br)yx + Bixk and
limsup, _, ([lyx+1 — Ykl — [Ixk+1 —xxk|]) < 0. Then, limy_, [[yx —xk|| = 0.

Lemma 3.8. Suppose that the conditions (H1)-(H4) hold. Assume that the sequence {xy} is generated by Algorithm
3.2. Then,

(i) if the conditions (A1)-(A3) hold, then limy_, || Xk+N — Xi|| = 0;

(ii) if the condition (A1) holds and limy_,  ||xx —Vk|| =0, then limy_,  ||xx+1 —xk]|| = 0.

Proof.
(i) Assume that the conditions (A1)-(A3) hold. We write xi.1 = (1 — Bx)wk + Brxk for all k > 0. Then,
we have

X NUFVip NN ot +yichi

1- Bk+N 1— Bk (310)
TN s YichN Y YitN

- - u+ - hy + ———(h —hu).

(1_Bk+N l—Bk) (1_Bk+N 1_Bk) k 1_Bk+N( k+N k)

Wi4+N — Wk =
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Note that, for 0 < A < 2§, we have from (2.1) that
IPyr(an Fix(Ty),B) (Bt N = AAZIceN) = Pygan pix(my),B) (2 = Az < lzieen — 2z

Then, utilizing (3.9) and (3.10) we get

[Wicen —wi]|
XK+N Yk+N Yk -
S |1_Bk+N B 1 |Hu”+| — BriN - 1_Bk|(||PVI(0?’:1Fix(Ti),B)(Zk_AAZk)” + &)
Yk+N YN - _
+7+HZI<+N Zk‘|+7+(€k+N + &)
1—BrenN Br+n
XKk+N Yk+N Yk ~
<l Ben 1 IHuII +7 b 1By [Py Fix(ro,B) 2k — Az + &)
YN (1 +Ag NI—Z Yk+N - _
- - VN — Vil + e — (& N+ &)
1— Bk+N 1— Bk+N
Yk+N
+ (AN UIBVi N[+ By NI+ [Bvi]]) + A By [])
1—BrenN
XKk+N XK 4+N X ~
= — | +\ - [Py ~N w0 my (2 — AAZY) || + Ek)
1—Brn 1 —py —Pr+Nn 1Bk IPyace piscro) ) (22 Wil + & (3.11)
YN (1 +Ax NLz Yi+N _ _
+ - VN — Vil + — S —— (BN + k)
Xk+N T Yk+N OXk+N + Yr+N
Yk+N
—— N (AN (BN ]+ By N |+ IBviel)) + Al By )
Xk+N + Yk+N
lote N — o] o Br+N — Bl

<

u|| + ||P T zx —AAzy ||+ €

+ Ve N = Vil + AN Vi N = Vil + 8N+ Bk
+ NN IBVice N+ [IBYxeN L+ [Bvie]]) + A || By ||

[l Py AN Fix(T),B) (2 = AAZI) || 4 &
< Vi N = Vil + (loter N — o + BN — Bl 1%

+ &N + & AN (Lafvice N — Vil + (B N+ [Byree N+ [Bvie]]) + A [ By |-

On the other hand, utilizing Lemma 2.10, from the nonexpansivity of each T; and the n-strong monotonic-
ity and k-Lipschitz continuity of F, we conclude that for all k > 0,

TNl = TR | = (11— NN BF) Ty Ny N — (1= AetF) Tequc|
= (1= A NHF) Tiepruies N — (= A wF) Ty gy ue |
I = A NP Tieg i N — (T= AN F) T apu|
A (T =M NF) T e — (1= MeptF) T gy
< (1= MeND Juree N = wiel| 4+ AN = Al [F Ty,
and hence
kN — Uil = [[Brenxicen + (1= Bryn) TR N — Bioxe — (1 — i) TRy |
= [|Br(xien — xi) 4+ (1= Br) (TRt — TRty )
+ (Bran — Bic) (i n — TR )|

< Brelxiern — x| + (1= B [T g — TRty |
+ BreN — Bl i n — TN ]
< Brellxren =Xkl + (1= Br) (1 =AM nT) e N — uke|
PN = Ml [F T e[+ [Brean — Bicllxican — TN |

< Brlxran — x| + (1= Bi) kN — ux|| + (1 — Br) Ak N — Al | F T 17wk
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+ 1B n — Bl — TN,
which immediately leads to

([ F T 1y
N = ui]l < PN =il + (1= Br) AN *M\T
_ TAreenNom)
XN — TN N
+ BN — Bl o |
Bn
[ F Ty ul|
< eien = xill + P — Ayl o 512
B B |||Xk+N = (=M NP Ty N ukN |
K+N — B o
HFTpe 1wk
< XN = Xkl 4 e —Ak\w
XN I Tieprwier NI TRF T Wil
+ IBrN — Bl .
a
From (3.12) and Lemma 2.10 it is found that
[Vican — Vil = [|S (Nt g — Sty |
< Hs(cxk+N,Hk+N)uk+N _ S(Oék+N,Hk+N)uk|| + ||S(‘xk+N/Plk+N)uk _ S(Oék,llk)ukn
< (1= o N o) N — i || + ot — o[ VAU ||
| WF Ty
< (1= oty N ) xici N — i+ g — Agel
XN TN+ ToF T we |
+ IBrgnN — Bl . 14 lote N — ol VAU || (3.13)

| F Ty
< (1= oty NO) XN — Xk || + AN *}\k|f

XN TN+ TeF T wieen|
a
< (1= ot NO) XN — Xic || + (AN + Ak + ot N — o] + BN — Bil) Mo,

+|Bk+N — B + ot N —cxk|||vfluk||

WFT, u XN [+ Ty uNer.FT JWk+N
where Supk>o{HVAukH+ [ [lzl+l k” [N 41 Ty Wi N TF Ty e II}<M0

for some Mgy > 0. Utiliz-
ing the relation X1 = Prxk + (1— Bk)wk, we obtain from (3.11) and (3.13) that
X N1 — X ]
= [IBranXrN + (1= Bryn)WirN — Brxi — (1 — Br)wi]|
Brllxian — x|l + (1= Br) Wi — Wiel| + BN — B[N — Wi |

<
< Brellxkan = xi |l + (1T = Br ][V n — V|| + (Jok N — il + B~ — Bxl)

X 7 U+ Py rixer By (21 = AAZK [+ &) + M (Lol vis N = vl + [Bvicen ]

+ IBY NI+ [BVic]]) + Al By} + IBrs N — Biel[[Xier N — Wi N || + Exg N + Ex
< Brellxkan = xk |l + (T = B (1 — kN O) (XN — X || + (AN + Ak

3.14
- loten — ot B — Biel Mo+ (loen — ot + [Bresny — Biel) (6-19)
[l =+ [PyiaN  Fix(To,B) (2K — Mz || + &
x R + NN (Lefvieen = viell + [[Bvicen |

+ IBYran |+ [Bvic]l) + Al By [} + IBre N — Bl Xk N — Wi N || + €N + Ex
< Brellxrrn —xkl| + (1= Br) (1 — ot NO) [ Xaer N — k|| + (Aepn + Ak

+ oty N — ol + BN — Brl)My + &N + &k
= (1 — ot N (1= Br) o) [ xre N — xic || + (Jore N — ot + [Bren — Br) My

+ (AN + A)M1 + Exy N+ Ex,
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where there is a constant M > 0 such that

sup{Mo + || Byx| + + [[Xk+N — Wi N

k>0 1-Db
+ Laflvicen = viel [+ [Bvicen [+ [Byren || + [[Bvic]l} < My
Applying Lemma 2.12 to (3.14), we deduce from conditions (A2) and (A3) that limy_,  ||xx+~n — Xk|| = 0.
(ii) Assume that the condition (A1) holds and limy_, ||xx — Vi || = 0. Observe that for all k > 0,

X 1U+ Yiepihiepr o+ yichi

W41 — Wk =

1—PBxs1 1—PBx (3.15)
K+1 (4973 Yi+1 Y Yi+1
= ( - Ju+ ( - Jhi + ———— (1 —hy).
1—Br+1 1Bk 1—Br+1 1—PBx 1—Brer
Utilizing (3.9) and (3.15) we get
W1 —wil| = [[x41 — x|
K41 593 Yk+1 Yk _
N b 1 Bk|||u|| i b 1 Bk|(\|Pv1(my:1FiX(Ti),B)(Zk — Mz ) || + &)
Yk+1
+ 1_ Bk:1 HPVI(O‘;‘:lFix(Ti),B) (zk+1 — Az 41) — PVImyleiX(Ti),B) (zk — ANAzZy)||
Yi+1
+ ﬁ(“PVI(miNleix(Ti),B) (zk 41 — Az 1) — e ||
+ Pyrian Fix(r),B) (2 = AAZI) — huc]]) — X141 — xic|
K +1 (4973 Yi+1 Yk ~
S |1 “Bea 1- Bk|||u|| + |1 “Bea 1- Bk|(||PVI(0?':1Fix(Ti),B)(Zk —AAzZy )| + &)
1 Yr+1 - _
+ LHZkH —zi || + 7+(€k+1 + &) — [ X1 —xk-
1—Pr+1 1—PBx+1
Thus,
W1 —wiel| — [Ixk41 — k||
Kk +1 X Yi+1 Yk _
< |1 “Br 1= Bk|||u” +|1 ~ Brat 1 Bk‘(||PVI(Q{\1:1FiX(Ti)rB)(Zk — Az )| + &)

Yi+1(1+ A1l

)
([vice1 = Xieg1 || + X1 — x| + [[x = vie])

1— By
+ R (1Bvicsa ||+ 1Bkt |+ BVl + Ml Byil] + 2 (2h 1 + &x) — [xicss — x|
1— Byt 1— By

Since ax + B +vk =1, ok — 0, P — & € (0, %], €x — 0, Ax — 0, and ||xx —vk|| — 0, we deduce from
the boundedness of the sequences {xi}, {vik}, {yx}, {zx} that

limsup(|[wic+1 —wil| — [[xk+1 —x«k) <0.
k—o0
Therefore, in terms of Proposition 3.7, we have limy_,q, |[wi — x| = 0 which together with xy; =

(1—Br)wx + Brxk, yields
im [[xe 1 —xk|| = lim (1—By)[[wi —xk|| = 0.
k—o00 k—o00
O

Lemma 3.9. Suppose that the conditions (A1) and (H1)-(H4) hold. Then for any p € (2 := VI(VI(ﬂiNleix(Ti), B),
A) we have

X1 —PII* < aacflw—plI* + Billxk — plI* + vil[vi — plI* + 2viexllzx — Pl
+viker —vi(l— AL (i =y |* + llyk — z« |1
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Moreover, if limy_, || Xk — V|| = 0, then

kh_{n ||Pv1 AN le(T)B)(Zk_AkAZk)_ZkH = 11m HPVI AN, Fix(T. (Uk_AkAyk — Ykl =0.

Proof. By Lemma 3.3, we know that

lim Xk,j = PVI ﬂN JFix(Ty), B)(Zk —)\AZk),
]*}OO

which together with 0 < A < 23, inequality (3.1), limy_,, Bx = & € (0, ] and
p € Q= VI(VI(Nn},Fix(T;),B), A),
implies that

i1 —pIP = [loacu+ Broxi + yichi —p|I?
o [lu—p|* + Brcllxi — pII* + vl — p|?
ock||u—p|]2 + Brellxx —PHZ +Yk(HPVI(m.lN:1Fix(Ti),B) (zk —AAzZy) —p| + &)’
o[ —p% + Brllxic =PI + i (I=AA)zic — (1= AA)p|| + &x)?
otcllw—p|I* + Brllx — 1> + vi(lz — pll + &) (3.16)
= ogel[u—p|I* + Brcllxi — PII* + vicllzi — pII* + 2viexllzi — pll +vicEi
< oucl[u— P> + Brcllxic — 11> + 2vierllz — pll + v Ex
+yr(vie = plI> = (1= ALo) vk — yill* = (1 = ML) [[yie — z«|?)
= ogel[u—pI* + Brcllxi — PI* + Vicllvic — pII* + 2vic€llz — pll +vicEi
—yi(1 = ML) (v =yl + i — z 1)

INCINININ

On the other hand, note that |[vi —uk| = ax|vAuy|. Since A is L;-Lipschitz continuous and {uy} is
bounded, we know that {Auy} is bounded. Hence, it follows that

lim |jvk —uk| =0,
k—o0

which together with the assumption limy_, || xk — vk || =0, yields
lim [|x —ug| =0.
k—+o00

Also, from (3.16) it is found that

Vi1 =AL)([[vic =y l? + lyk — zl?) < cellw—pl* + Brellxic =PI +vicllvie = plI> = [[xi1 — P12

+2yierlz — pll +vrEr

= o[ —pl* = [Ixi+1 — PI?) + Brclllxx — plI* = [xk1 —PIIP)
+Yi([vie =PI = [xis1 — PIP) + 2vicerllzc —pll + viex

< ogelu—pl* + Brelx — xic1 | (xie — Pl + [[xi1 — pIl)
+yillvic = x| (v = Pl + [xe1 =PIl + 2vkExllzie — Pl + vieek

< ol —pl* + Brelxic — xier1 lxie — Pl + [Ixis1 — pll)
+ i (vie = x| + e = %1 D (v = pll + [xk+1 —pll)
+2ykekllze — pll + viEx-

Since ax + B +vk =1, ox = 0, P = & € (0, %], €k > 0, Ak = 0, |Ixk —vk| = 0, and ||xx11 —xx|| — 0
(due to Lemma 3.8 (ii)), we deduce from the boundedness of {xy},{vx}, and {zy} that

lim [[vx —yx|| =0 and lim |Jyx —zk| =0, (3.17)
k—o00 k—o00
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which together with limy_,, || xk — V|| = 0, imply that
k11_r>1f01O Ixk —yx||=0 and 1}520 Ixx — zk|| = 0. (3.18)
Again by Proposition 2.1 (iii) and Lemma 3.3 we have
Py Fix(ty),B) (Yk = AMAYK) — Xiep1 |
HPVI NN Fix(T (Uk —MAyy) — PVI(FW{\’:lFix(Ti),B) (zk —AAzZy)||
+ HPVI(ﬂ{":lFix(Ti),B) (zk —Mzy) — x4 1]|
< (14 ALYk = zicll + e lPyran Fiy ) B) (2 —AAZI) —u|
+ BrelPyra Fix(,),B) (2 — AMAZI) — X[ + Exc

] (3.19)
< (T4 ALYk = zicll + e [Pyran Bix(y),B) (2 — AMzi) —uf + &

+ BrlPyrnn Fix(m),B) (2 = AAZK) = Pygan pix(ty),8) (U — AAYL) ||

+ BrlPyran Fix(r),B) (U — AMAYK) UleBkHyk—XkH

< (1+ALy) ||yk*Zk|| +0¢k|\Pv1 AN FiX(T-)B)(Zk*AAZk)*uH + €k
+Bic(1+ ALz = il + Bicl Pyrn mix(ri,8) (Yk — M) =yl + Bil[yx —xic]|-

Consequently, from (3.19), we have

Py Fix(T),B) Uk — AMAYK) — i

<Py pix(To),B) (Y = AAYK) = X | + (X = x| + e — yiel|

< (1+ALy) Hyk—zkH + oue| [Py AN Fix(T1), B)(zk—?\Azk —ul + éx
+ BT+ ALz =yl + BiclPyran Fix(to),B) (U — AAYI) = Yiel| + Bicllyre — xic]|
+ X1 — x| + [xx — Y|

= (14 Bx) (1 +AL)|lyk —zk|| + ockHPVImiN:lFiX(Ti),B) (zk —AAzZy) —uf| + &
+ BrlPuran Fix(r),B) (Y = AMYK) =Yl + (14 Bid [y — x| + [Ixier1 —xicll,

which immediately yields

HPVI AN Fix(T (Uk — AAyy) UkH
1+ Bk €x
< 14+ AL |lyx — p o Az —
1— Py (1+AL)[[yx — z«|| + H VI(N F1x(T1),B)(Zk zi) —ul| + 1-B,
144 1
. k||Uk x| + 1_Bk||xk+1—XkH~

Since o + Bx+vk = 1, ax = 0, Bx — & € (0,1], & — 0, |y —z«|]| = 0, |[xk —yx|| — 0, and
Ix1+1 —xk|| — 0 (due to Lemma 3.8 (ii), (3.17), and (3.18)), we conclude that

hm IPyr(an Eix(Ty),B) Uk = AAYK) — Y| = 0. (3.20)

From Proposition 2.1 (iii), it follows that

HPVI(miNZIFix(Ti),B)(Zk_7‘A7~k)_Zk” < [Py AN Fix(T-)B](Zk_AAZk) PVI(mN JFix(T;),B B) (YU —AAYL) ||
TPy Fix(T,),8) Uk =AY = Yiel[ + [[yxe — 2]
< (T4 ALD [l = Yl + [Pyran piry), ) (U = M) =Yl + [y — 2|

S Pyiian i, ) Uk = MY =Yl + (24 A1) [y — 2.
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Utilizing the last inequality we obtain from (3.17) and (3.20) that
‘}1_{130 Py Fix(Ty),B) (2 — AAzK) — 21| = 0.

O

Theorem 3.10. Suppose that the conditions (Al) and (H1)-(H4) hold. Then the two sequences {xy} and {zy} in
Algorithm 3.2 converge strongly to the same point x* € 2 = VI(VI(H}\':lFix(Ti),B),A) provided ||xx —Vvi|| =
o(ay), which is a unique solution to the VIP

Ax*,p—x") =0, VYpe.

Proof. Note that Lemma 3.5 shows the boundedness of {xi}. Since H is reflexive, there is at least a weak
convergence subsequence of {xi}. First, let us assert that w,,(xx) C 2. As a matter of fact, take an
arbitrary w € w,, (xx). Then there exists a subsequence {xy, } of {xi} such that x;, — w. From (3.18), we
know that yy, — w. It is easy to see that the mapping PVI(ﬁ{\’:lFix(Ti),B) (I-—AA):H — VI(ﬂ{ilFix(Ti), B) C
H is nonexpansive because Pyi(nN Fix(T,),B) 18 Nonexpansive and I — AA is nonexpansive for p-inverse
strongly monotone mapping A with 0 < A < 2f. So, utilizing Lemma 2.6 and (3.20), we obtain

W = Pyr(aN Fix(T,),B) (W — AAW),

which leads to w € VI(VI(N]\;Fix(T;),B), A) =: Q. Thus, the assertion is valid.
Also, note that A is n-strongly monotone and L;-Lipschitz continuous on H. Thus, by Lemma 2.5 (iv),
we know that there exists a unique solution x* € (2 := VI(VI(O{\leFix(Ti), B),A) to the VIP

Ax*,p—x") >0, Vpe. (3.21)

Next, let us show that xi — x*. Indeed, take an arbitrary p € (2 := VI(VI(ﬂiNleix(Ti), B), A). Utilizing
the monotonicity of A, we obtain from Algorithm 3.2 that for all k > 0,

[vie — P[> = [k — o vAu — p|?
< (u —p) — e vAug |

= |Ju — p* + 200V (A, p — uie) + V2o A )

(3.22)
<l = plI? + 20007 (Ap, p — k) + v [ A ||
= [l = plI* + 2000 (Ap, P — xic + xxc — i) + Ve [ A ||
< e =PI + 200 ((Ap, p — x10) + [Pl — wael) + V2o [l A |,
Also, utilizing the convexity of || - ||?, we obtain from Algorithm 3.2 that
e —pl1? = [[Broxic + (1= Br) TAHwy —pl?
= [|Bi o —p) + (1= Bi) (T Akf“)uk— |2 (323)
< Bl =l + (1= Br) [T Mg —p >

Utilizing Lemma 2.10, we get

HTO\k/H)uk —pll = ||T(?\k,u)uk _ T(?\k,u]p + T(Ak,u)p —7ll
< ||T(?\k,u)uk _T(?\k,u)pH + HT(Ak,u)p —7|
< (1= A1) [w — pll + Acrf[Fpll,
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which implies that

2 2
ue||F
[Ty, — 2 < (1 her) s — pl 4 A EIPIE

This together with (3.23) yields

huie =PI < Bl =PI + (1= Bi) [T e —pl?

2 Fpll2
< Brloc—pl* + (1 - Bk)[(l—AkT)Huk—puzﬂkw]

2 F 2
1 - o eI

< Brlxi —pl* + (1= By [w — plI* + -

and so

< |lxx = p* + Ak

A 2 F 2
lue —p? < Ixie—pl* + (1= Bre) 5= H”TPH

) quFp”z (3.24)
Pk Ta
Combining (3.22) and (3.24), we get

i = pI? < e —pII* + 2000v({(Ap, p —xic) + [|4Pl[xic — ul]) + v od [Aux |

2
o AT

< xe—pl*+ + 2vou ((Ap, p — xi) + AP Ixic — w ) + Ve | Au %,

which immediately leads to

2 2
ue||F
0< i — I~ e — I +Mc - S 4 oy, p i) + 1Ap i — i)+ V2o A
w2 Fpl? 2,2 2
< e =viel e = I+ v =PIl + M- B2 4 o p, i) + 140l e — el + V2 ocd A 2
That is,
Jxic = vl L
0< —F—(llxk —pl + v + (Ap,p—x
S ay UPac=pllFIvie=pl) + veq T APP = X) (325

VX
APl — e + S A |

Since for any w € w.,(xi) there exists a subsequence {xy,} of {xy} such that xi, — w, we deduce from
(3.25), ac — 0, [|xk —ux|| = 0, Ax = oo ) and ||xx — vk || = o(ax) that forall p € VI(VI(ﬂFZlFix(Ti),B),A)

A — Vil A, 12 [Fpll?
0< lim{———— . — = L.
i%l oo{ 200V (kal pll+ Hvk‘ pll)+ O, 2vTa

1
Wi Hz}

= lim (Ap,p —xk,) = (Ap,p —w).
1—00

+ (AP, p —xiy)

Thus, by Lemma 2.5 (i), we know that

(Aw,p—w) >0, VYpe,

that is, w is a solution of VIP (3.21). By the uniqueness of solutions of VIP (3.21), we get w = x*, which
hence implies that w,, (xx) = {x*}. Therefore, it is known that {xy} converges weakly to the unique solution
x* € 02 == VI(VI(NN ,Fix(T;), B), A) of VIP (3.21).
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Finally, let us show that ||xx —x*|| — 0 as k — oco. Indeed, in terms of Algorithm 3.3 and Lemma 2.4,
we conclude from (3.3) and the -inverse-strong monotonicity of A with 0 < A < 243, that

[Xk1 — x*[|* = [loact + Brxx + yichi — x* |
< B (xi = x*) + i (e — x¥)||* + 200 (1 — X*, Xp 41 — X¥)
< Bl = X[ + vl [ue — x| + 2000 (w —x*, xi 11 — x¥)
S YillPyran rix(my),B) (2 = AAZI) = Pyran pix(ry),8) (X —AAXT)|| + &)’
+ Bl — x> + 200 (u — x*, xpe 41 —x*)
< Brellxie = X P Vi (| (T =AA)zge — (I = AA)XH|| + &) + 20 (1L — X*, Xqe 1 — X )
= Bl ¥ = X7+ vicllze — X2 + Vit (2llzi — x| + &) + 200 (u—X*, xpe 11— xF)

< Brllxr = |17 + v [lvic = X7 + yrEr 2]z — X || 4 &) + 200 (u — X*, X141 — X*)

% " " 3.26
= Belxie— % v — X724 200 — X7, v — ) + [vic— xi ) (3.26)
+ YK€k (2]|zi — x| + &) + 200 (U — X, X1 — XT)
< Bl = [P + v ([xie — x| + [[vic — x| (2] — x| + [[vic — x[])
+ YK€k (2]|zi — x| + &) + 200 (U — X7, X 41 — XT)
< (1= o) Jxie — x*[2 + [vie — x| (2fxac = x* || + [[vic — x| ])
+ €k (2]|zik = XF|| 4 Ex) + 200 (U — X", X1 —XT)
* Vk — Xk *
= (1 e e =12+ ol 2K ey o — )
+2(u— X", X1 — X)) + € (2]|zi — x| + Ex)-
Since oc — 0, |[xx —vi|| = olak), Y p o€k < oo and x, — x*, we deduce from the boundedness of

[, (vich Az that 312 €k (2|zie — x*|| + €x) < oo and

[||Vk—XkH

lim sup (2lxic = x| 4+ v = xill) + 20 = X", xi051 —x)] < O.

k—o0

Therefore, applying Lemma 2.12 to (3.26), we infer from ) oy = oo that |[xx —x*|| — 0 as k — oo.
Utilizing (3.18) we also obtain that ||z —x*|| — 0 as k — oco. This completes the proof. O

Theorem 3.11. Suppose that the conditions (A1) and (H1)-(H4) hold. Then the two sequences {x\} and {zy} in
Algorithm 3.2 converge strongly to the same point x* € 2 := VI(VI(NN_,Fix(T;), B), A) provided ||xi4+1 — xx| +
€x = o(ow ), which is a unique solution to the VIP

(T4 EvAX* —u,p—x*) >0, Vpe, (3.27)
where & =1— &,

Proof. Assume that the conditions (A1) and (H1)-(H4) hold and that ||x}4+1 — xx|| = o(axk). In this case, it
is easy to see that Lemmas 3.3-3.6 hold.
Next, we divide the rest of the proof into several steps.

Step 1. We prove that limy_, ||xx — k|| = 0.
Indeed, take an arbitrary p € (2 := VI(VI(O}\'ZlFiX(Ti), B),A). By Lemma 3.3, we know that

]-l.g& Xij = PVI(ﬁiNleix(Ti),B) (zk —AAZy).

From 0 < A < 23, inequality (3.1) and limy_,o Bk = & € (0, %], utilizing the same argument as in (3.16),
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we obtain

X1 — P> < axcllu—pl* + Brlxk — plI* + vrlvie — pII* + 2vkexlze — pll + viEx

(3.28)
— Y (1 =AeL2) (vic =yl + [k — 2z [1?)

Utilizing Lemma 2.10, we have from the fj-strong monotonicity and L;-Lipschitz continuity of A that

vic =l = [I8'* Yy —p)?

< (st g — S(@Ip | 4 |s(%e)p —p| 2
< [(1— o) uge =l + v | A1
(11— cco) fuic Il + o~ [1Ap|12 (3:29)
V2| Ap?

< (11— oeo)|Juge — plf* + o

2 2
vo||A
< lhus—pl + oo 2P

where 0:=1— \/1 —v(2q—vL3).
Also, utilizing Lemma 2.13 (b), we obtain from Algorithm 3.2 that
e =Pl = [[Brexic + (1= Br) TRy —p] 2
= [[Br(xic—p) + (1= Bi)(T Ak'”)uk—p)uz

= Brllxic —pl?+ (1= Bi) [ TPy —p||2 = Bre(1— Bi)Jxx — TRy |12,

Utilizing Lemma 2.10, we get
TRy —pl| = TPy — TRy L TRy g

< TRty — TRt p || 4 | TRy —p)|
< (1 =Axt) [[we — pll + Axref[Fpll,
which implies that
(A1) 2 2 M2||FP||2
TP —p> < (1= Net) e —p| Hhe—
So, it follows that

[uk —pI® = Billxi — pI* + (1= Bi) [ TPt —p|2 — B (1 — B [[xie — TRty |12

Foll?
< Bl — pIE-+ (1~ B 1~ Aew)us —pI + 2 I (1 ey — T

2 F 2
< Brllxi —pI* + (1= B fuk —p|* + Bk)?\kw — Br(1— Bi)[Jxie — TPy |2,

and hence ) )
A F
A wfFpl” (1— i) |[xx — TPeyy |2

Jux —pl* < ||7<k*19||2+(1*[3k)B -
k (3.30)

2 F 2
< e = I+ A - wiFell” R E
Ta
Combining (3.28), (3.29), and (3.30), we get
VZ A 2
[t — P < el I+ Bl — I + vl — I + oo AP

+2vierllz — pll + YieZ — vie(1— ML) (JIvic — yuel* + [y — zi|?)
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2 2 2 HZHFsz
< o= pI* + Billxic =PI+ vicllxic —pIP A - P

V4P|,
(0)
v (1 =2 L) (vie =y + vk — zie|?)

— Ju — x> + o + 2yiezi — pll + viEx

2 F 2 V2 A 2
= o lhu— I+ B+ il — I+ vl EIPIE g VIR

— Yl — xk | + 2ykexlzx — Pl + YR — Vi (1T —ALa) (v — yll* + lyx — zi[1?)

2 F 2 VZ A 2
A | Fp| o [Apl| )
Ta o
+2ykexllze — Pl +veEr — Vil —xxl[? — Vi (1 — ML) (|vie — yel* + lyx — 2« [)?)

2 F 2 ‘\/2 A 2
PRI VA
Ta o

= ogeflu—p* + (1 — oue) xx —pII* + vl

< oflu—pl* + [[xi — pl?
+2&x |z — Pl + &% — Vieluk — xk|* — v (1 — AL2) (v —yi|* + [[yx — z«][%),
which immediately yields

Yielwk — x| +vie (1= AL2) (v —yil* + [[yx — z«][%)

2 F 2 2 A 2

w[Fpl b |Ap||
TAa (0}

< oelu—pl* + [} — P> = [[xr+1 — PII* + Ak + 28|z — pll + &

2 2 2 2
ue||F vo||A _ _
T R MY [ [ | O L L A =

Since o + P +vk =1, ax = 0, B — & € (0, %], €k — 0, Ax = 0, and ||xx41 —xx|| = 0 (due to the
assumption), we deduce from the boundedness of {xi} and {zy} that

lim [[ux —x¢|| =0, lm [jvk —yx||=0, and lim ||yx —zk| =0. (3.31)
k—o0 k—o0 k— o0

Note that |[vi —uy| = x| vAuy||. Since A is L;-Lipschitz continuous and {uy} is bounded, we know that
{Auy} is bounded. Hence, it follows that

li — =
m v —uk =0,
which together with limy_, ||ux —x«|| =0, yields
li - =0.
Jim. [vic —=xk|| =0
This together with (3.31), imply that
lim |[xx —yk||=0 and lim [jxx —zk| =0.
k—o0 k—00

Step 2. We prove that w,,(xx) C 2:= VI(VI(ﬂiNleix(Ti), B),A).
Indeed, from Lemma 3.9 and limy_, o, [|xx — vk|| = 0, we have

Hm [[Pyren pixr),B) (20 = MeAzid) = zicll = M IPyyan pixer,), ) (Y = AAYK) = yil| = 0.

Utilizing the same argument as in the proof of Theorem 3.10, we obtain that w., (xx) C (2.

Step 3. We prove that x; — x* where the x* is a unique solution in (2 to the VIP (3.27).
Indeed, we define the mapping I' : H — H as below

1
I'x = vAx + g(x—u), Vx € H,
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where u € H and & € (0,1]. Since A is fi-strongly monotone and Ll-LlpSChltZ continuous, it is easy to
see that I' is vij + %-strongly monotone and Lipschitzian with constant vL; + 1 ¢ > 0. Thus, there exists a
unique solution x* € (2 to the VIP

1
(VAX® + E(x* —u),p—x") =0, Vpe. (3.32)
Utilizing the similar arguments to those of (3.22), (3.24), and (3.26), we get

[vic = pII* < [lwie = pII* + 2000V ((Ap, p — xic) + [[AP [ — wic|]) + V2o [|Awc 1%,
|[Fpl?
—pl? < —plZ+A &
s —pIP < e —pl 4 A TP
and
ies1 —PI* < Brlxe — Pl +vilvie = pIIP + vicew (2llz — pll + &) + 200 (w —p, Xic1 — P).

Combining the last three inequalities, we get
X1 = PI* < Bl = PI* + viellwe = pII* + 200cv((Ap, p —xic) + [ Ap|llIx1c — wic]])

+ V2o Ak [P + vicex(2]|zx — Pl + &) + 200 (W — P, i1 — P)
at H 1D||2

< Bullxk — pII* +vicllxk —pII* + Ak + 200 V((Ap, P — Xx)

+ APl I — wk|)) + v o [[ A |2 +Yk€k (2]|zk — p| + k) + 2 (W —P, XK1 —P)

u || p||2
Ak + 2o ((VAP, P — xk) (3.33)

= (1—au)|xx — Pl +vx
+ [[vAP[[xi —u]) +vkockv2||AukHZ +Viek 2]z — Pl + & )d + 200 (L — P, Xic 11 — P)

n?||Fpl?
Ta

1
< Jxk =PI +vihk - +2Yk“k(<V-Ap+ﬁ(p_u)/P_Xk>

+ VAP Ixic — wie])) + vicod v A ||* + viex 2]z — pl| + &)

+ 200 (W — P, XK1 — Xk ),

which hence implies that

M 2Pl
_pl2— _ Ak HITPIE
(I =PI = 1 = pI) + 5o T

1
VAp + —(p—u),xxk —p) <
(vAp Yk(p ), Xk —P) o

(XkV2 D) €x -
+ [[vAP[|xk — ux | + ——[[Auk||* + —— (2]|zx — p|| + &)
2 20
1
+ —(u—p, Xk 11 —Xx)
Yk (334)

Xk — XK1 A p2[[Fplf?
I + ”(HX IFpll

< —pll+ —pl) + =
s P+ i —pl) + 5 EC

o V2 5 €k ~
+ (VAP I} — uxe || + ——[[Auk||” + 5— 2]z — p| + &)
2 200

1
+ —[lu—pllxw+1 —xxk-
Yx

Since for any w € w,,(xi) there exists a subsequence {xy,} of {xy} such that xi, — w, we deduce from
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(3.34), ||lux —xk|| = 0 (due to (3.31)), # — %, M = o(o) and |[xx1 — xk|| + Ex = oo ) that
1 ) 1
(VAp + = (p—u),w—p) = lim (vAp + —(p —u), xx; —p)
E, 1—o00 Yk

1
< limsup(vAp + e (p—u),xxk —p)

k—o00

: [ — Xk M W[Fpl?
<limsup————(|[xk —pl| + [Ixk+1 — pl|) + limsu

k~>oop Z'Yk(Xk M k;)()op Ta

. . o V2
+ lim sup||vAp||||xk — uk|| + im sukaHAukH2

k—o0 k—o0

. € _ . 1

+limsup. ' (22 — || + &) +limsup—ju—p]l|pacs1 — x| = 0.
k—o0 Xk k—o0

So, it follows that

1
E(p—u),p—w} >0, Vpe.

Since w € wy, (xx) C 2, by Lemma 2.5 (i) (Minty’s lemma), we have

(vAp +

1
(vﬂw+z(w—u),p—w> >0, Vpe(

that is, w is a solution of VIP (3.32). Utilizing the uniqueness of solutions of VIP (3.32), we get w = x*,
which hence implies that w,, (xx) = {x*}. Therefore, it is known that {xy} converges weakly to the unique
solution x* € (2 of VIP (3.32).

Step 4. We prove that ||xx —x*|| — 0 as k — oo.
Indeed, utilizing (3.33) with p = x*, we get
W [[Fx*|12

X1 —x¥)12 < (1= o) — x*|12 + YiA + 2y ((VAXE, x* — %)

+ VA e — wiel]) + vicog VA | + yice (2]]zic — x| + &)
+ 200 (u—x", X1 —x¥)
2 Fx* 2
X*Hz"i_)\ku H X H
Ta

< (1 — o) || xk — + 2y o (VAXT, X —xk)

+ 200 [vAX" e = il + of v A + (221 — X7 + &) (3.35)

+ 200 (uw—x", X1 —X5)

. Ak 12||Fx*||?

= (1= o) i — [P+ o eI €
(089 TA

+ 2 VA s — ]| + o v A ||

+ 271 (VAXT, X" —x5) + 2(u — X", X341 — X))

2HZ =X+ &)

Since ax + P +vk =1, ax = 0, B — & € (O, %], Ex = o(ax), Ak = o(ak), and |lux —xk|| — 0 (due to
(3.31)), we deduce from the boundedness of {x}, {ux}, and {z} that

A w22

a ZHZ — X" 4 &) + 2| vAXT|[|xx — wk]|

lim sup{—
k—oo Xk

+ o V2 [ Ay | + 21/k<vAx X =) 2 — X, x5 11 — x¥)} < 0.
Consequently, applying Lemma 2.12 to (3.35), we derive
li —x*|| =0.
Jim xic —x" =0

This completes the proof. O
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It is clear that a mapping T : H — H is a (-strict pseudocontraction if and only if there exists a constant

¢ € 10,1) such that
2 1-¢ 2
(Tx =Ty, x—y) < [x —y[" = —=[[I=Tx— (I-Ty[", ¥xyeH.

It is easy to see that in this case the mapping I —T is %-inverse strongly monotone. According to Lemma
2.7 (i), we know that if T is a (-strictly pseudocontractive mapping, then T is Lipschitz continuous with
constant %, ie, [[Tx—Ty|| < %Hx —y|| for all x,y € H. We denote by Fix(T) the fixed point set of T. It
is obvious that the class of strict pseudocontractions strictly includes the class of nonexpansive mappings
and the class of pseudocontractions strictly includes the class of strict pseudocontractions.

Corollary 3.12. Let A = I —T where T is a (-strict pseudocontraction on H. Let B = % Suppose that the
conditions (A1) and (H1)-(H4) hold. Then the two sequences {x\} and {z\} in Algorithm 3.2 converge strongly to
the same point x* € (2 := VI(VI(ﬂiNleix(Ti), B),I—T) provided ||xx —vi|| = o(ow ), which is a unique solution
to the VIP

Ax*,p—x") >0, Vpe.

Proof. Putting A = I —T in Theorem 3.10, we know that A is B-inverse strongly monotone with p = 155.
In this case, we get

Q := VI(VI(N}_;Fix(T;), B), A) = VI(VI(n],Fix(T;),B), I - T).
So, utilizing Theorem 3.10 we derive the desired result. O

Corollary 3.13. Let N = 1 and T be a (-strict pseudocontraction on H. Let Ty = 01+ (1 —0)T with 6 € [, 1).
Suppose that the conditions (Al) and (H1)-(H4) hold. Then the two sequences {x\} and {zy} in Algorithm 3.2
converge strongly to the same point x* € 2 = VI(VI(Fix(T), B), A) provided ||xx —v|| = o(ax), which is a
unique solution to the VIP

(Ax*,p—x") =0, Vpe.

Proof. In Theorem 3.10, we put N = 1 and Ty = 01+ (1 —6)T with 6 € [(,1). Since T is a C-strict
pseudocontraction on H, it follows from Lemma 2.8 that T; is a nonexpansive mapping on H. In this case,
it is easy to see that Fix(T;) = Fix(T). Thus, we know that

Q : = VI(VI(N]_,Fix(T;), B), A) = VI(VI(Fix(T;), B), A) = VI(VI(Fix(T), B), A).

So, utilizing Theorem 3.10 we obtain the desired result. O
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