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Abstract
In this article, we investigate a split feasibility problem via a regularization iterative algorithm. Strong convergence theorems

of solutions for the split feasibility are established in the framework of Hilbert spaces. We also apply our main results to the
split equality problem. c©2017 All rights reserved.
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1. Introduction

In this paper, we always assume that H1 and H2 are real Hilbert spaces endowed with inner products
and induced norms denoted by 〈·, ·〉 and ‖ · ‖, respectively, while H refers to as any of these spaces. Let D
be a nonempty closed and convex subset of H. Recall that ProjHD is said to be a metric projection from H

onto D iff
‖x− ProjHDx‖ 6 ‖x− y‖, ∀x ∈ H,y ∈ D.

It is known that
〈x− y, ProjHDx− ProjHDy〉 > ‖ProjHDx− ProjHDy‖

2, ∀x,y ∈ H.

Moreover, ProjHDx is also characterized by the fact PDx ∈ C and

〈x− ProjHDx,y− ProjHDx〉 6 0,

and
‖x− y‖2 > ‖x− ProjHDx‖

2 + ‖y− ProjHDx‖
2, ∀x ∈ H,y ∈ C.

Recall that a mapping M : H→ H is said to be contractive iff there exists a constant κ ∈ (0, 1) such that

‖Mx−My‖ 6 κ‖x− y‖, ∀x,y ∈ H.
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Recall that M : H→ H is said to be contractive iff

‖Mx−My‖ 6 ‖x− y‖, ∀x,y ∈ H.

Also, recall that M : H → H is said to be averaged iff it can be written as the average of the identity
mapping and a nonexpansive mapping, i.e., M = (1 − α)I + αN where α ∈ (0, 1) and N : H → H is
nonexpansive and I is the identity operator on H. Recall that M : H→ H is said to be firmly nonexpansive
iff

‖Mx−My‖2 6 ‖x− y‖2 − ‖x− y− (Mx−My)‖2, ∀x,y ∈ H.

We note here that averaged mappings are nonexpansive. Further, firmly nonexpansive mappings are
averaged. We also remark here that metric projections on nonempty closed and convex subsets are aver-
aged. If T = (1 − α)N+ αA, where A : H → H is averaged, N : H → H is nonexpansive and α ∈ (0, 1),
then T is averaged. The composite of finitely many averaged mappings is still averaged. Recently, fixed
point methods of nonexpansive mappings have been studied for several convex optimization problems;
see [1, 8, 14, 17] and the references therein.

Recall that a mapping F : H→ H is said to be monotone iff

〈Fx− Fy, x− y〉 > 0, ∀x,y ∈ H.

Recall that F : H→ H is said to be inverse-strongly monotone iff there exists a constant ν > 0 such that

〈Fx− Fy, x− y〉 > ν‖Fx− Fy‖2, ∀x,y ∈ H.

In such a case, we also say that F is ν-inverse-strongly monotone. Recall that F : H → H is said to be
strongly monotone iff there exists a constant ν > 0 such that

〈Fx− Fy, x− y〉 > ν‖x− y‖2, ∀x,y ∈ H.

In such a case, we also say that F is ν-strongly monotone. Recall that F : H → H is said to be Lipschitz
continuous iff there exits L > 0 such that

‖Fx− Fy‖ 6 L‖x− y‖, ∀x,y ∈ H.

In such case, we also say that F is L-Lipschitz continuous. If F is ν-inverse-strongly monotone, then it is
1
ν -Lipschitz continuous and monotone. Let F be a (firmly) nonexpansive mapping and define a mapping
T : H → H by Tx = (I− F)x, for all x ∈ H. Then T is 1

2 -inverse-strongly monotone. Recently, zero point
problems of monotone (accretive) operators have been extensively investigated by many authors via fixed
point methods; see [2, 3, 10, 15, 16] and the references therein.

Let C and Q be nonempty closed convex subsets of H1 and H2, respectively. Let ProjH1
C and ProjH2

Q

be the metric projections onto C and Q, respectively. Recall that the split feasibility problem is to find a
point x ∈ H1 such that

x ∈ C, Ax ∈ Q,

where A : H1 → H2 is a bounded linear operator. From now on, we use Sol(SFP) to denote the solution
set of the split feasibility problem, that is, Sol(SFP) := {x ∈ H1, x ∈ C,Ax ∈ Q}. The split feasibility
problem is quite general. It includes many important problems, such as, variational inequality problems,
complementary problems, equilibrium problems, as special cases.

In 1994, Censor and Elfving [6] first introduced the split feasibility problem in finite dimensional
spaces. Since then, the split feasibility problem has been extensively studied by many authors due to its
extensive applications in signal processing and image reconstruction; see [4] and the references therein.
Recently, it is also found that the split feasibility problem could also be applied to study the intensity-
modulated radiation therapy; see, for example, [6, 7] and the references therein.
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It is well-known that if Sol(SFP) is not empty, then the split feasibility problem is equivalent to a fixed
point problem

PC(x− γA
∗(I− PQ)Ax) = x, (1.1)

where γ > 0 is a constant and A∗ is the adjoint operator of A. The split feasibility problem has recently
been investigated via fixed point methods; see [9, 11, 13, 18, 20] and the references therein. Define a
mapping Aγ by

Aγx = x− γA∗(I− PQ)Ax.

Then (1.1) is reduced to x = PCA
γx. It is easy to see that Fix(Aγ) = A−1(Q) and hence Sol(SFP) =

C∩ Fix(Aγ) = Fix(PCAγ) for sufficiently small γ > 0; see Zhou and Wang [20] for the details.
The rest of the paper is organized as follows. Section 2 contains several useful lemmas. In Section

3, we introduce a CQ type iterative for the split feasibility problem. A strong convergence theorem is
established in the framework of Hilbert spaces. We also provide an application to the split equality
problem.

2. Preliminaries

Lemma 2.1 ([19]). Let H be a Hilbert space. Then there exists a strictly increasing continuous convex function
W : [0,∞)→ [0,∞) with W(0) = 0 such that

a‖x‖2 + (1 − a)‖y‖2 > ‖ax+ (1 − a)y‖2 + (1 − a)aW(‖x− y‖), ∀a ∈ [0, 1]

for all x,y ∈ Br(0) := {x ∈ H : ‖x‖ 6 r}, where r is some positive real number. In particular, we have

a‖x‖2 + (1 − a)‖y‖2 > ‖ax+ (1 − a)y‖2, ∀a ∈ [0, 1].

Lemma 2.2 ([12]). Let {an} be a sequence of nonnegative real numbers such that an+1 6 (1 − tn)an + bn + cn,
for all n > 0, where {cn} is a sequence of nonnegative real numbers, {tn} ⊂ (0, 1), and {bn} is a sequence of real
numbers. Assume that
(a) lim supn→∞ bn

tn
6 0,

∑∞
n=0 tn = ∞;

(b)
∑∞
n=0 cn <∞.

Then limn→∞ an = 0.

The following two lemmas are not hard to derive.

Lemma 2.3. Let ProjHC : H → C be the metric projection from H on a nonempty, closed, and convex subset of C.
Then the following conclusions hold true
(a) 〈PHCx− PHCy, x− y〉 > ‖PHCx− PHCy‖2, x,y ∈ H.
(b) Given x ∈ H and z ∈ C, then z = PHCx iff there holds the inequality 〈x− z,y− z〉 6 0, y ∈ C.
(c) ‖PHCx− PHCy‖2 6 ‖x− y‖2 − ‖(I− PHC )x− (I− PHC )y‖2, ∀x,y ∈ H.
(d) 〈(I− PHC )x− (I− PHC )y, x− y〉 > ‖(I− PHC )x− (I− PHC )y‖2, ∀x,y ∈ H.

Lemma 2.4. Let H be a Hilbert space. Then the following inequality holds.

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2〈x,y〉 6 ‖x‖2 + 2〈y, x+ y〉.

3. Main results

Theorem 3.1. Let C and Q be two nonempty, closed, and convex subsets of real Hilbert spaces H1 and H2,
respectively. Let ProjH1

C and ProjH2
Q be the metric projections onto C and Q, respectively. Let A : H1 → H2 be a

bounded linear operator and let f : H1 → H1 be a κ-contractive mapping. Assume that Sol(SFP) 6= ∅. Let {xn} be a
sequence generated in the following iterative algorithm

x1 ∈ H, xn+1 = ProjH1
C

(
αnf(xn) + (1 −αn)(xn −βnA

∗(I− ProjH2
Q )Axn)

)
, (3.1)

where {αn} is a sequence in (0, 1) such that limn→∞ αn = 0,
∑∞
n=1 αn = ∞ and

∑∞
n=1 |αn − αn+1| < ∞ and
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{βn} is a sequence such that
∑∞
n=1 |βn − βn+1| < ∞, 0 < p 6 βn 6 q < 2

‖A‖2 , where p and q are two real
numbers. Then {xn} converges strongly to a point x∗ in Sol(SFP) and x∗ = PSol(SFP)f(x

∗).

Proof. Since Sol(SFP) is nonempty, closed, and convex, we see that projection PSol(SFP)x, ∀x ∈ H1 onto
Sol(SFP) is well-defined. Since ProjH1

Sol(SFP)f is κ-contractive, we see that PSol(SFP)f has a unique fixed

point. Next, we use x∗ to denote the unique fixed point, that is, x∗ = ProjH1
Sol(SFP)f(x

∗).

Define a mapping F : H1 → H1 by Fx = A∗(I− ProjH2
Q )Ax. Then (3.1) becomes

x1 ∈ H, xn+1 = ProjH1
C

(
αnf(xn) + (1 −αn)(xn −βnAFxn)

)
.

Using Lemma 2.3, we have

〈Fx− Fy, x− y〉 = 〈(I− ProjH2
Q )Ax− (I− ProjH2

Q )Ay,Ax−Ay〉

> ‖(I− ProjH2
Q )Ax− (I− ProjH2

Q )Ay‖2

>
1
‖A‖2 ‖A

∗(I− ProjH2
Q )Ax−A∗(I− ProjH2

Q )Ay‖2

=
1
‖A‖2 ‖Fx− Fy‖

2.

(3.2)

This shows that F is 1
‖A‖2 -inverse-strongly monotone. Next, we prove F−1(0) = A−1(Q). For all x ∈

A−1(Q), we find from the definition of F that A−1(Q) ⊂ F−1(0). Next, we prove F−1(0) = A−1(Q). It is
easy to see that A−1(Q) ⊂ F−1(0). Letting x ∈ F−1(0), we have Fx = 0. Since the split feasibility problem
is consistent, we can take a point y ∈ Sol(SFP). This implies Ay = ProjH2

Q Ay. Hence, Fy = 0. Using (3.2),
we have

‖(I− ProjH2
Q )Ax‖2 6 〈Fx− Fy, x− y〉 = 0,

which implies that x ∈ A−1(Q), that is, F−1(0) ⊂ A−1(Q). This shows that F−1(0) = A−1(Q). Putting
yn = xn −βnFxn, we have

‖yn − x∗‖2 = ‖βn(Fxn − Fx∗) − (xn − x∗)‖2

= β2
n‖Fxn − Fx∗‖2 − 2βn〈Fxn − Fx∗, xn − x∗〉+ ‖xn − x∗‖2

6 β2
n‖Fxn‖2 −

2βn
‖A‖2 ‖Fxn‖

2 + ‖xn − x∗‖2

= ‖xn − x∗‖2 − (
2βn
‖A‖2 −β2

n)‖Fxn‖2.

(3.3)

Since 0 < p 6 βn 6 q < 2
‖A‖2 , we have ‖yn − x∗‖ 6 ‖xn − x∗‖. This implies that

‖xn+1 − x
∗‖ = ‖PC

(
αnf(xn) + (1 −αn)yn

)
− PCx

∗‖
6 ‖αn(f(xn) − x∗) + (1 −αn)(yn − x∗)‖
6 αn‖f(xn) − f(x∗)‖+αn‖f(x∗) − x∗‖+ (1 −αn)‖yn − x∗‖
6 αn‖f(x∗) − x∗‖+ (1 −αn(1 − κ))‖xn − x∗‖

6 max{
‖f(x∗) − x∗‖

1 − κ
, ‖xn − x∗‖}.

By mathematical induction, we find that

‖xn+1 − x
∗‖ 6 max{

‖f(x∗) − x∗‖
1 − κ

, ‖x1 − x
∗‖}.
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This shows that {xn} is bounded. Since F is 1
‖A‖2 -inverse-strongly monotone, we have

‖(I−βnF)x− (I−βnF)y‖2 = ‖βn(Fx− Fy) − (x− y)‖2

= ‖x− y‖2 − 2βn〈Fx− Fy, x− y〉+β2
n‖Fx− Fy‖2

6 ‖x− y‖2 −
2βn
‖A‖2 ‖Fx− Fy‖

2 +β2
n‖Fx− Fy‖2

= ‖x− y‖2 − (
2βn
‖A‖2 −β2

n)‖Fx− Fy‖2.

Since 0 < p 6 βn 6 q < 2
‖A‖2 , we find that (I−βnF) is nonexpansive. It follows that

‖xn+1 − xn‖ 6 ‖
(
αnf(xn) + (1 −αn)yn

)
−
(
αn−1f(xn−1) + (1 −αn−1)yn−1

)
‖

6 αn‖f(xn) − f(xn−1)‖+ (1 −αn)‖yn − yn−1‖+ |αn −αn−1|‖f(xn−1) − yn−1‖
6 αnκ‖xn − xn−1‖+ (1 −αn)‖(I−βnF)xn − (I−βnF)xn−1‖
+ (1 −αn)‖(I−βnF)xn−1 − (I−βn−1F)xn−1‖+ |αn −αn−1|‖f(xn−1) − yn−1‖

6
(
1 − (1 − κ)αn

)
‖xn − xn−1‖+ |βn −βn−1|‖Fxn−1‖+ |αn −αn−1|‖f(xn−1) − yn−1‖.

Using Lemma 2.2, we find that
lim
n→∞ ‖xn+1 − xn‖ = 0. (3.4)

Since ‖ · ‖2 is convex, we find from (3.3) that

‖xn+1 − x
∗‖2 6 ‖

(
αnf(xn) + (1 −αn)yn

)
− x∗‖2

6 αn‖f(xn) − x∗‖2 + (1 −αn)‖yn − x∗‖2

6 αn‖f(xn) − x∗‖2 + (1 −αn)‖xn − x∗‖2 − (1 −αn)(
2βn
‖A‖2 −β2

n)‖Fxn‖2.

It follows that

(1 −αn)βn(
2
‖A‖2 −βn)‖Fxn‖2 6 αn‖f(xn) − x∗‖2 + (1 −αn)‖xn − p‖2 − ‖xn+1 − p‖2

6 αn‖f(xn) − x∗‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

6 αn‖f(xn) − x∗‖2 + (‖xn − p‖+ ‖xn+1 − p‖)‖xn+1 − xn‖.
Using the restrictions imposed on {αn} and {βn}, we find from (3.4) that limn→∞ ‖Fxn‖ = 0. This implies
limn→∞ ‖xn − yn‖ = 0. Since F is Lipschitz continuous, we find that limn→∞ ‖Fyn‖ = 0.

We are now in a position to show that

lim sup
n→∞ 〈f(x∗) − x∗,yn − x∗〉 6 0.

Take a subsequence {ynj} of {yn} such that

lim sup
n→∞ 〈f(x∗) − x∗,yn − x∗〉 = lim

j→∞〈f(x∗) − x∗,ynj − x∗〉.
Without loss of generality, we may assume that {ynj} converges weakly to x̂. We find that x̂ ∈ F−1(0).
Indeed, Since F is 1

‖A‖2 -inverse-strongly monotone, we have

‖A‖2〈Fynj − Fx̂, xnj − x̂〉 > ‖Fynj − Fx̂‖
2. (3.5)

Letting j→∞ in (3.5), we arrive at
0 > ‖Fx̂‖2,

which means that Fx̂ = 0. This further implies that

lim sup
n→∞ 〈f(x∗) − x∗,yn − x∗〉 = lim

j→∞〈f(x∗) − x∗,ynj − x∗〉 6 0.
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Finally, we prove xn → x∗. Using Lemma 2.4, we find that

‖xn+1 − x
∗‖2 6 ‖(1 −αn)(yn − x∗) +αn(f(xn) − x

∗)‖2

= (1 −αn)
2‖yn − x∗‖2 +α2

n‖f(xn) − x∗‖2 + 2αn(1 −αn)〈yn − x∗, f(xn) − x∗〉
6 (1 − 2αn +α2)‖yn − x∗‖2 +α2

n‖f(xn) − x∗‖2 + 2αn(1 −αn)‖yn − x∗‖‖f(xn) − f(x∗)‖
+ 2αn(1 −αn)〈yn − x∗, f(x∗) − x∗〉

6
(

1 − 2αn +α2 + 2αn(1 −αn)κ
)
‖xn − x∗‖2 +α2

n‖f(xn) − x∗‖2

+ 2αn(1 −αn)〈yn − x∗, f(x∗) − x∗〉

=
(

1 −αn(2 −α− 2(1 −αn)κ)
)
‖xn − x∗‖2 +αn

(
αn‖f(xn) − x∗‖2

+ 2(1 −αn)〈yn − x∗, f(x∗) − x∗〉
)

=
(

1 −αn(2 −α− 2(1 −αn)κ)
)
‖xn − x∗‖2

+αn(2 −α− 2(1 −αn)κ)
αn‖f(xn) − x∗‖2 + 2(1 −αn)〈yn − x∗, f(x∗) − x∗〉

2 −α− 2(1 −αn)κ
.

Using Lemma 2.2, we find that xn → x∗ as n→∞. This completes the proof.

Let H1, H2, and H3 be real Hilbert spaces, let C ⊂ H1 and Q ⊂ H2 be two nonempty, closed, and
convex sets, and let A : H1 → H3 and B : H2 → H3 be two bounded linear operators. Recall that the split
equality problem is to

find x ∈ C and y ∈ Q such that Ax = By.

We use Ω to denote the solution set of the split equality problem, which was first introduced and studied
by Moudafi and Al-Shemas [13]. By virtue of the product space techniques, we can convert the split
equality problem to another specific split feasibility problem. To see this, set S = C×Q and define

G = [A,−B], ω = [x,y]T .

With these notations, we know that solving the split equality problem is equivalent to finding a point
ω ∈ S such that Gω = 0. Assuming that the split equality problem is consistent, i.e., Ω 6= ∅, then it is
not hard to see that ω ∈ S solves the split equality problem if and only if it solves the operator equation
G∗Gω = 0, where G∗ is the adjoint operator of G. It is clear that G∗G : H1×H2 → H1×H2 is 1

‖G‖2 -inverse
strongly monotone. By using Theorem 3.1, we deduce immediately the following result.

Corollary 3.2. Let H1, H2, and H3 be real Hilbert space. Let C ⊂ H1 and Q ⊂ H2 be two nonempty, closed, and
convex sets of real Hilbert spaces H1 and H2, respectively. Let A : H1 → H3 and B : H2 → H3 be two bounded
linear operators. Let f : H1 → H1 be a κ-contractive mapping. Suppose that the Ω 6= ∅ is consistent. Let {αn} and
{βn} be given as in Theorem 3.1. Let a sequence {ωn} be generated by the algorithm

ω1 ∈ H1 ×H2, ωn+1 = ProjS[αnf(ωn) + (1 −αn)(ωn −βnG
∗Gωn)], n > 1.

Then {ωn} converges in norm to ω∗ = PΩf(ω∗), that is, ω∗ is a unique solution of the variational inequality

〈f(ω∗) −ω∗,ω∗ − y〉 > 0, ∀y ∈ Ω.
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