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Abstract

In this article, we consider the incompressible Navier-Stokes equations with linearly growing initial data Ug := up(x) — Mx.
Here M is an n x n matrix, trM = 0, M2 is symmetric and uy € [2(R™) N L™(R™). Under these conditions, we consider
v(t) == u(t) — e *Aug, where u(x) := U(x) — Mx and U(x) is the mild solution of the incompressible Navier-Stokes equations
with linearly growing initial data. We shall show that DPBv(t) on the L2(R™) norm like t~ Bt for all |B] > 0. ©2017 All
rights reserved.
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1. Introduction

In this article, we investigate the Cauchy problems to the Navier-Stokes equations:

U +U-VU-AU+VP=0, inR"™x(0,T),
V-u=0, in R™ x (0,T), (1.1)
u |t:0: UO, in R™.

Here U is the velocity field of the flow, and P(,t) : R™ — R represents the pressure function. V-U =0
represents the incompressible condition, Uy is a given initial data with V - Uy = 0.

Let Up := up(x) — Mx and x € R™, where the initial disturbance uy is a function nondecaying at space
infinity satisfying V - up = 0 in the tempered distribution sense, M = (mj)1<k,j<n is an n x n real-valued
matrix fulfilling with trM = 0 and M? is symmetric. In the following, let

w:=U+Mx, P:=P—(IIx, x)
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forallx e R"and t > 0,
1 1
II = E(M%‘f‘M%)/ M = E(M+MT)/
and

1
M, = E(M —M"),

where MT stands for the transposed matrix of M. If (U, P) is the classical solution of (1.1), then (u,p)
should satisfy the following equations:

u —Au4+u-Vu—2Mu+ Vp =0, inR™ x (0, T),
V-u=0, in R™ x (0, T), (1.2)
u |t:0: Uo, in ]RT‘L.
Let the operator A be
Au:= —Au— Mx - Vu+ Mu,

with domian
D(A)(R™) :={u e W*P(R™)NLE(R™)}, Mx-Vu e LP(R™")},

where W2P is the Sobolev space whose norm is

ullpr mny + VUl e (R0 -

Thanks to the results of Ornstein-Uhlenbeck semigroup theory [5, 6], we know that —A generates a Co-
semigroup in LE(R™) for p € [1,00). Meanwhile, —A generates a semigroup in L¥(R™). We also have a
representation form of semigroup

1

e M(x) = -
(470)2 (detQy

¥ e tM J fletMx —y)e*}T(QtU'y)dS,
2 n

where .
Qt ::J esMesMT gs
0
for all t > 0. According to the Duhamel principle, the mild solution (u,d) for system (1.2) can be
represented as:

u= e_tAuo—J
0

t t
e (IAPY . (u@u)(-, s)ds + ZJ e SIAPMu(s)ds. (1.3)
0

Here P is the Leray projection operator, which can be expressed as an n x n matrix:
P = {Pj x h<ik<n = 105,k + RjRihgikgn,

with §; 1 being the Kronecker symbol, R; = 0; (—A)_% being the Riesz transform [11, 12].
In the case M = 0, the existence of the mild solution with the initial data in L™ was proved by Kato [4]
and it was proved that the unique mild solution u satisfies

t2(5)=au e BC([0, T); LY(R™))

forn < q < oo and
nol 14,1
t2 (W) =aravu e BC([0, T); LI(R™)),

whenn < q < oo for some T > 0, where BC((0, T), Z) stands for the class of bounded continuous functions
from (0, T) onto the Banach spaces Z. Recently, this result was extended by Giga and Sawada, they proved
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in [2] that if the initial dada up € L™(IR™), there exist Tp > 0 and a unique mild solution u satisfying

-1

J:}\.—-

n(1_
IDPu(t)]|raqrey < ct™ 2

for all 0 < t < Tp and fixed B € IN™, note that here q € [n, co]. Moreover, it was proved in [4, 7] that if the
initial data uy € L>(R™) N L™(IR™), then there exists a constant C > 0 such that

_1
[w(® 2wy < ¢ [IVUt)][i2gn) < ct2

for all t € [0, T1) with some 0 < Ty < Tp. In all these results we should assume that the initial data decay
as [x| — oo.

In the case M # 0, when the initial data may grow as Mx, where M = (myj)i<ij<n is a revalued
constant matrix satisfying trM = 0 and M2 is symmetric. The authors [3] established the local-in-time
solvability and show solution of system (1.1) is analytic in x. We also can refer the reader to [8, 9] about
linearly growing initial data. Clearly, the authors obtained the following result about the systems (1.2)
from [3, Proposition 4.1].

Theorem 1.1. Let n > 2 and B € IN™ fixed. Assume that |[e*™| < 1 forall t > 0, and v € (n,00),q €
[n, oo], up € L™ (R™) with V -ug = 0. Let u be the local mild solution of (2.1) for some T > 0. Suppose that there
exist constants My, My > 0 such that

1 1

sup [[u(t)|[ngn) < M1 <00, sup t2(m=v) () ILr (rny < M2 < 00 (1.4)
0<t<T 0<t<T

Assume further that
ogu € C((0, T, LY(R™))

for all q € I, 00) and all o« € N Then, given & € (3,11, there exist constants Ky and Ky (depending only on
n, 1, M, M1, Mo, T and 6) such that,

V™) a ey < Ki(Kom)™ 8t 320750 < og
forany t € (0,T],n € INg and q € [n, o0].

Note that q is restricted by q > n in Theorem 1.1. The authors are not able to give any results for
q < n under the assumption ug € L™.

Based on the ideas introduced in [3, 4], we construct L? estimate of solution to the Navier-Stokes
equations [1, 10] with linearly growth initial data of the form Uy := ug(x) — Mx, where 1y € L2(R™) N
L™(IR™) for n > 3,

Proposition 1.2. Let n > 3 and ug € L™(R™) NLP(IR™), where 1 < p < n. The solution u of system (1.2) has
the following properties:

ue BC((0, ;L™ (R™)NLP(R™)), t2Vu € BC((0, ;L™ (R™)NLP(R™)),
with some 0 < T, < T.
Proof. For the proof of Proposition 1.2, we refer the reader to see [3, Theorem 2.1] and [4, Theorem 3]. O

Our main result is the following.

Theorem 1.3. Letn > 3 and p € INY. Assume that | et™ ||< 1 for all t > 0, and uy € L™(R™) N L2(R™) with
V -ug = 0. Let u be the local-in-time mild solution of the system (1.2) from Proposition 1.2 for some T > 0 and

aE’u € C((0,T); L2(R™)) forall p € INg with B < B. If there exists constant Ky such that

n(
2

:\~

1
sup t —5) () Lp (re) < K1 < 00 (1.5)

0<t<T
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for some p € (n,2nl, then there exists a constant K > 0 dependingly only on Ky, n,p, |Bl, [\t || 2(rny, 1 [Ln (r7)
and T, such that

D (u(t) — ) 2 gy < K~ 16

forany 0 <t <T.

Throughout this article, we use ¢ > 0 to denote a constant independent of the main variables, which
may be different from line to line. We will employ the notation a < b to mean that a < cb for a universal
constant ¢ > 0 that only depends on the parameters coming from the problems.

2. Preliminaries
In this section, we prepare the following lemmas.

Lemma 2.1. If n > 1,1 < p < q < oo, then there exist constants ¢ > 0 and w > 0 such that for all f € LP, we
have

@

ncl

_ _nel_1 _ _1
e ]| g gn) < ce®tt?2 ) gy, || Ve || o ey < e 2 1]l ey - 2.1)
(II) Forallt >0,m € IN, and f € W™P , we have

n

197 e M|y ey < ST G O )

(I) Forallt>0,m € NN, and f € LP, we have

V™ e 2| L ey < ea(eam) T el =3 GO F g e
(IV) Forall f € LP and t > 0, we have
Ve APel| oy < cpe®?t e 1l ren) -
Proof. For the proof of Lemma 2.1, we refer the reader to [3]. O

To prove our result, we need the following estimates: For any « € N§,| « [=m and f € LY(RM),
_tA o n
[D%e™ M PF| 2 gny < cpe®T T2 [[f]l (g -
Actually, in the case of || = 0, noting that A and IP can commute, we have

e~ APl sy = P Al sy < e Ay < e gy 22

)
And in the case of | « |> 1, it follows from (2.1) and (2.2) that
[ Ve APF|| 1 gmy < €162 1] 1 g -

Then, for 1 < q < oo, since
Ve 'Af = etMe tAyetAf,

and || et ||< ce®?2t for all t > 0, we have

_4A wyt mol (st —wy )i, —2(1-1)_m-1 _tA
HD“e ]PfHLq(IR“) < e T Gy(E(m—1))"T elwstwim—wi) i3 (1-g) =" [ge—1 le‘ LL(Rn)
wot — n m—
S e ay(ea(m—1)) 77 elwrtertam—wa) b= T 0= "F g (2.3)
_nq_1ly_m-1_1
< Ce®ty—20177) 2 [ £l gy -
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3. Proof of Theorem 1.3

Proof of Theorem 1.3. For simplicity, we prove the theorem under the additional assumption that T < 1.
Let | B |= m, we will prove Theorem 1.3 in the case of m > 1 by an induction in Step 1 and Step 2 below.
Based on the result in Step 1, we will prove (1.6) in the case of m = 0 in Step 3. In this section, ¢ denotes
a positive constant depending only on n,p, My, || ug |2, || uo |[Ln, while Cj(e)(j =1,2,---) depends only
onmn,p, My, || o [lr2(rny, [l Uo [[Ln(rn), T and e.

Step 1. We first consider the case m = 1. Differentiating (1.3) with respect to x, taking L? norm, and
dividing the integral into four parts for some € € (0,1), one has

ds

t(l—e)
<
V98]l < | -

t
|
t(l—e)

t(l—e)
+2J
0

t
+2J
t(l—e)

= A1+ A+ B+ By

‘Ve_(t_s)AlPu -Vu(s)

‘Ve_(t_s)A]Pu -Vu(s)

L2(R™)

‘Ve*(t*S)A]PMu(s)

L2(R")

‘Ve*(t*S)A]PMu(s) ds

L2(R™)

We shall estimate each term. First, by multiplying both sides of first term of system (1.2) by u, and
integrating by parts, note that trM = 0, for all t > 0, the Gronwall Lemma furnishes that

()l 2rny < [[1oll2rny) exp(IMIt),

we can refer the reader to see [8].

For A;, by Proposition 1.2 and (2.3), we also make use of the estimate ||Vu(s)|[{2 < cs~2, it follows
that
t(l—e) w1
A< =T g [Vl9) e, ds
t(1—e) N ]
< L (t—s)"* 2572 [luf[2(gn) ds
1

< Ct_% ”u(]HLz(]Rn)J §_I_%(1 —§)_%ds

3

= Cyle)t ™4,
where § = "*TS and
Cr(e) = cluollizgeny | 53 H1-9) Has
Using (2.3) and Holder’s inequality, we have

1

A2<J (t—s) 20D u(s)| . ds
t(l1—e) LP+2 (R™)

1 ,n(lﬁ,l),l
gj (t—s) 22 "2 2 |lu- Vv(s)| 2 ds

t(1—e) Lp+2(R")
1 n 2

+J (t—s)*f(%*%)*% Hu-Ve_SAuOH 2p ds
t(l—e) LP+2 (R™)

= Ay + A



M. H. Yang, ]J. Nonlinear Sci. Appl., 10 (2017), 3824-3833

3829

It follows from (2.3) that

|
—
[
—
—_
|
o
-
]
N
he]
wl
NI=
N
=
<=
c
=
=
N
=
3
o
o
Il
o)
N
—
m
—
7
NE]

Ap <ct™d

7

where § = { and
—lomo 1om1o 1y
Ca(e) :CHU'OHLZ(]R“) (1—8)" 272»g 27227 p/'(3.
(1—e)
From (1.5), we obtain

t
Az < chJ (t—s) 2 s 2 2077) V()2 (gn) ds.
t(l—e)

For By, similarly as Ay, since T < 1, we thus have

e

t(l—e) 1
B] < CJ (t— S)i2 HuHLZ(IR“') dS < C3(€)t7 7
0

where

N—=

1—e
C3(€) :CHUO‘LZ(]Rn)JO (1—5)7 ds.

For B, since T < 1, we thus have

rt
Bz<C

)e—(t—S)A]PM’

Vu(s ny ds
t(l—e) L2(R™)—12(R") ” ( )HLZ(]R )
ot

t
_1
<c [Vv(s)|lL2(rn) ds —i—cJ s 2 [[uol 2(gn) ds
J ) t(l—e)

t(l—e
<c IVV(s)][12(rn) ds + Cyle)t™4
t(l—e)
_1l_ n ,l,n(l,l) _n
<c (t—s) 2 ws 272027 % ||Vv(s)||L2(]Rn)ds+C4(e)t 1,

where 1
_1
C4(€) :C‘uOHLZ(]R“)J s~ 2ds.
1—e

Combining these estimates A, Ap1, A, B1 and By, we finally get

i _n ¢ —lon 1 _n(l_1y
IVl 2(rny < ) Cile)t 4+CM1J (t—s) 2 s 272272 [[VV(s) | 2(gn) ds.
i=1 t(l—e)
Letn > 0and
$o(t) = sup s¥ [|[Vv(s)[li2(gn) -
n<sst
From (3.1), we have
4 n 1 1 n 1 n n
bolt) < Y CuleltF cMig(t) | (1-8) E s b A Tas
i=1 (1—e)

forall t € (22, T), where § = $. Let ¢g € (0,1), we thus obtain

1—e’

Jl (1—3) 2 %5 2t 5 ids < 1
—S P S P 3 .
(1—e) S 2CM;y

(3.1)
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Thus we have A

bo(t) <2) Ci(e)t”

i=1

i

forallt e (lﬂ -, T), that is, there exists a constant

K = K(ern/p/ ”uOHLZ(]RT‘v)/ HUOHLTI(]RTI)) > O/
such that for all t € (0, T), we have

Hv(u(t) - eitAuO) HLZ(]R“ < Kti%

)

Step 2. We shall prove (1.6) for m > 2. We argue by an induction, thus we assume that m > 1 and
(1.6) holds for | 3 |< m—1, we proceed to prove that (1.6) also holds for |3| = m. We see that for some
€€ (0,1),

t(l—e)
9™ () 2 e <JO

‘Vme*(t*S)A]Pu- Vu(s)’

LP (R")
t
—i—J ‘Vme*(t*s)AJPu : Vu(s)’ ds
t(1—e) LP (R)
t(l—e)
—I—ZJ ’Vme_(t_s)AlPMu(s)‘
0 LP(R™)
t
+2J )Vme_(t_s)AlPMu(s)‘ ds
t1—e) LP(RM)

= A1+A2+Bl+gz.
For A4, by (2.3), we obtain

rt(l—e)

it m,—(t—s)A .
A1 < . ‘V e ]P‘ (R )12 (R [w- Vu(s) 1 (gnyds
rt(l—e) n o
< . (t—s) 4 2 [[ullzrn) [V(s) [ 2(rnyds
J
t(l—e) " X
< (t—s)" 4 2s 2[[uf[2(gnds
JO
= Cs(e)t™ 4,
where
- t—s 1 _n_m O ¢
S=— Cs(€) :CHuO||L2(]Rn)J § 4 2(1—38) 2ds.
€

Applying (2.3) and the Leibniz’s rule, one obtains

As < J (t—s)*%*% H(Dﬁu) ®uH 2p ds
t(l—e) LP+2 (R™)

1
—i—J (t—s)*ﬁf% H(D"‘u)@(DB_“u)H 2 ds
t(1—e) LP+2 (R™)

1
< j )(t—sw% Il g [[DPVS)]| 2 g s

_n_1 _
+ " )(t—S) %2 [lu(s) |l 2 (rm) HDBe SAuOHLZ(an))dS
t(l—e
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1
+J (t—s)fﬁ*% H(D“v)@DB_"‘u)H o ds
t(l—e€) LP+2 (R")

1
+J (t—s) 5 2[|(D% Pug) @DP W) 2  ds
t(l—e) LP+2 (R")

= Ay +Axn + Axs + A

For A,;, we have
t

% 1l n 1. mn B
Ar < cMy (t—s) 27 wg 27 2p HD v
t(l—e)

(S)HLZ(IR“) ds.

It follows from (2.3) that

m—1

Ap <ct™z —

w3

1
J(l )(1 —5)*%*E§*%*7(%*%) HU’OHLZ(]RH) ds = C6(€)t_T_%_
—e

By our induction assumption, we have
1

~ _n_1 —
Fo<e e B DM D8 e s
t(l—e)
! —pn 1l el n Bood m1 1
gcJ (t—s) 2 257 2 “4s 2 ~2'nplds
t(l—e)
= Gyt
where § = { and
1 1l om-l n 1,n
Cy(e):cJ (1—8) 20 2§ 2 ~47272p(3,
(1—e)
Applying (2.3) and the induction assumption, it follows that
1
i —n—3 - —tA
Rae] e B DP s g D% A g ds

1
- CJ (t=5)5H[DP e M| 3 ) D% Mo Ly e s
t(l—e)

1
<CJ (t—s) 52 [uollin(rnys™ 2 2
t(l—e)

1
_n_ 1 2 &x
+cJ (t—s) 5 fuolPa g s 7
t(l—e)
m—1_n

= Cs(e)t—T 1,

where § = { and

—n 1 mol mn_ 1,m
Cs(e) =c (1—8) 2» 23 4727 2p d3.
(1—¢)
For By, we have
_ t(l—e)
B1 < CJ (t—s)" 2 ||ull2ds
0
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For By, since T < 1, we have
rt

By<c e (=9ApM| V™u(s)|| 2 g ds
25" e L2(Rm) o L2Rn) | UEES
rt t A
<c IVTV(s) |l 2(rn) ds "’CJ [vmes uO(S)HLZ(IRn) ds
Jt(1—¢) t(1—e)
t t .
<c| IVeme dste| 57 ol &
Jt(1—e) t(1—e)
t 1l »n 1, n m-1_n ! —m
<c (t—s) 2 g 27 HDBV(S)HLZ(RH) ds+ct 2z 14 ||U()HL2(R11)J s~ 2ds
Jt(l—e) 1—e
t
= J (t—s)_%_ﬁs_%+ﬁ HDBV(S)HLZ(IRH) ds + Clo(e)t*mTl*%.
t(l—e)
Combining above estimates, we finally obtain
m—1_n
1T

97 ((t) — =) 2 gy < K E,

Step 3. We shall prove (1.6) for m = 0. Similarly as Step 1,

5 t
2
—(t=s)A ) —(t=sJAP,,. .
||v(t)]!Lz(Rn)<J0 He S)APy Vu(s)HLZ(Rn)ds—i—L e Pu; Vu(s)‘LZURn) ds
t
+2 Hef(t*S)AlPMu(s)‘
0 L2(R")
=A1+A2+ B4
By (2.3), we obtain
! !
= _n _n _1 _n 1
A1 < Jo (t—s)" % [l 2mn) [[Vuls)|l2 ds < Jo (t—s)"#s72 |lufl2gn) ds < Kt ita,
It follows from (2.3) and Holder’s inequality that
= t —n(pf2_1, A
A< | (t—s) 2 2 2wV (vis) + e ug) || 2 ds
Js LP+2 (R™)
t —n(pt2_1, _SA
< |, (=) 3D (i 9V agmn) + u(s) 12 [ Ve Ao |2 ) ds
73
rt
_n _n _nl_1 —lon(l_1
< | (t—s) 2v(s 2s 2 nT Pl pgT27 202 v)ds
Js
rt
_n _n _nl_1 —lon(l_1
< | (t—s) 2v(s 28 2'n P4 222 P)ds
Js
<kt
We can estimate B as
t
_ _ny1
B, < CL iz s < et gy < Kt~ 3,
Thus, we completely prove (1.6) for m = 0. Thus the proof of the theorem is now completed. O
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