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Abstract

We introduce some generalizations of the contractions for multi-valued mappings and establish some fixed point theorems
for multi-valued mappings in b-metric spaces. Our results generalize and extend several known results in b-metric and metric
spaces. Some examples are included which illustrate the cases when the new results can be applied while the old ones cannot.
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1. Introduction and preliminaries

In the papers of Bakhtin [4] and Czerwik [10, 11], the notion of b-metric space has been introduced
and some fixed point theorems for single-valued and multi-valued mappings in b-metric spaces proved.
Successively, this notion has been reintroduced by Khamsi [18] and Khamsi and Hussain [19], with the
name of metric-type space. Several results have appeared in metric-type spaces, we refer to [3, 9–16, 19,
23–26].

Definition 1.1. Let X be a nonempty set and let s > 1 be a given real number. A function d : X×X→ [0,∞)
is said to be a b-metric with coefficient s if and only if for all x,y, z ∈ X the following conditions are
satisfied:

(1) d(x,y) = 0 if and only if x = y;

(2) d(x,y) = d(y, x);

(3) d(x, z) 6 s[d(x,y) + d(y, z)].

A triplet (X,d, s) is called a b-metric space.
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doi:10.22436/jnsa.010.07.35

Received 2017-05-30

http://dx.doi.org/10.22436/jnsa.010.07.35
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Note that a metric space is included in the class of b-metric spaces. The concept of convergence in
such spaces is similar to that of the standard metric spaces. The b-metric space (X,d, s) is called complete
if every Cauchy sequence of elements from (X,d, s) is convergent. Some examples of b-metric spaces can
be seen in [3, 10, 11].

Let (X,d, s) be a b-metric space, let us denote CB(X) the collection of nonempty closed bounded
subsets of X and by CL(X) the class of all nonempty closed subsets of X. For x ∈ X and A,B ∈ CL(X), we
define

d(x,A) = inf
a∈A

d(x,a), D(A,B) = sup{d(a,B) : a ∈ A}.

Then the generalized Pompeiu-Hausdorff b-metric H on CL(X) induced by d is defined as

H(A,B) =
{

max{D(A,B),D(B,A)}, if the maximum exists,
+∞, otherwise

for all A,B ∈ CL(X). The following results are useful for some of the proofs in the paper.

Theorem 1.2 ([11]). If (X,d, s) is a complete b-metric space with coefficient s, then (CL(X),H), where H means
the Pompeiu-Hausdorff b-metric induced by d, is also a complete b-metric space with coefficient s.

Lemma 1.3 ([11]). Let (X,d, s) be a b-metric space with coefficient s and A,B ∈ CB(X). Then for each a ∈ A and
ε > 0 there exists a b ∈ B such that

d(a,b) 6 H(A,B) + ε.

Lemma 1.4 ([11]). Let (X,d, s) be a b-metric space with coefficient s. For any A,B,C ∈ CL(X) and any x,y ∈ X,
we have the following:

1. d(x,A) 6 d(x,a) for all a ∈ A;
2. d(x,B) 6 H(A,B) for all x ∈ A;
3. d(x,A) 6 s[d(x,y) + d(y,A)];
4. H(A,C) 6 s[H(A,B) +H(B,C)];
5. d(x,A) = 0⇔ x ∈ A.

Lemma 1.5 ([20]). Every sequence (xn)n∈N of elements from a b-metric space (X,d, s), having the property that
there exists γ ∈ [0, 1) such that

d(xn+1, xn) 6 γd(xn, xn−1)

for every n ∈N, is Cauchy.

Lemma 1.6 ([14]). Let (X,d, s) be a b-metric space and suppose that (xn) and (yn) converge to x,y ∈ X, respec-
tively. Then, we have

1
s2d(x,y) 6 lim

n→∞ infd(xn,yn) 6 lim
n→∞ supd(xn,yn) 6 s2d(x,y).

In particular, if x = y, then lim
n→∞d(xn,yn) = 0. Moreover, for each z ∈ X, we have

1
s
d(x, z) 6 lim

n→∞ infd(xn, z) 6 lim
n→∞ supd(xn, z) 6 sd(x, z).

Definition 1.7 ([20]). A mapping T : X→ CB(X), where (X,d, s) is a b-metric space, is called closed if for
all sequences (xn)n∈N and (yn)n∈N of elements from X and x,y ∈ X such that lim

n→∞ xn = x, lim
n→∞yn = y,

and yn ∈ T(xn) for every n ∈N, we have y ∈ T(x).

Definition 1.8 ([20]). Given a b-metric space (X,d, s), the b-metric d is called ∗-continuous if for every
A ∈ CB(X), every x ∈ X and every sequence (xn)n∈N of elements from X such that lim

n→∞ xn = x, we have

lim
n→∞d(xn,A) = d(x,A).
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2. The generalizations of Nadler contraction for multi-valued mappings

In this section, we introduce the following condition of contractions for multi-valued mappings in
b-metric space (X,d). A map T : X→ CB(X) is called weak quasi-contraction or (θ,k,L)-quasi-contraction
if there exist constant θ ∈ (0, 1),k ∈ [0, 1] and L > 0 such that

H(Tx, Ty) 6 θMk,T (x,y) + Ld(y, Tx) (2.1)

for all x,y ∈ X, where Mk,T (x,y) = max{d(x,y),kd(x, Tx),kd(y, Ty)}.

Remark 2.1. Due to the symmetry of the distance, the weak quasi-contraction condition (2.1) implicitly
includes the following dual one

H(Tx, Ty) 6 θM1,T (x,y) + Ld(x, Ty) (2.2)

for all x,y ∈ X, obtained from (2.1) by formally replacing d(Tx, Ty) and d(x,y) by d(Ty, Tx) and d(y, x),
respectively, and then interchanging x and y. Consequently, in the concrete applications it is necessary to
check that both conditions (2.1) and (2.2) are satisfied.

Again as in [8], Aydi et al. [3, Theorem 2.2] introduced the q-set-valued quasi-contraction in the
complete b-metric space. The multi-valued map T : X → CB(X) is said to be a q-multi-valued quasi-
contraction if

H(Tx, Ty) 6 kM(x,y) (2.3)

for any x,y ∈ X, where 0 6 k < 1 and

M(x,y) = max{d(x,y),d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)}.

Recently, Miculescu and Mihail [20, Theorem 3.3] used the following version of q-set-valued quasi-
contraction in the complete b-metric spaces. Let T : X→ CB(X) has a property that there exist c,d ∈ [0, 1]
and α ∈ [0, 1) such that

H(T(x), T(y)) 6 αNc,d(x,y) for all x,y ∈ X, (2.4)

where
Nc,d(x,y) = max{d(x,y), cd(x, T(x)), cd(y, T(y)),

d

2
(d(x, T(y)) + d(y, T(x)))}.

Remark 2.2. Notice that since

d(x, Ty) + d(y, Tx)
2

6 max{d(x, Ty),d(y, Tx)},

we then have that Nc,d(x,y) 6M(x,y) for all x,y ∈ X.

The following example shows that in b-metric spaces a weak quasi-contraction may not be a q-quasi-
contraction in the sense of Aydi et al. and may not be a contraction in the sense of Miculescu and Mihail.

Example 2.3. Let X = R, d(x,y) = (x− y)2 for all x,y ∈ X and T : X→ CB(X) be defined by Tx = {x}. We
obtain that d is b-metric (with s = 2), but (X,d) is not a metric space. For x = 0,y = 1, and z = 2, we have

d(x, z) = 4 > 2 = d(x,y) + d(y, z).

Then (X,d) is a complete b-metric space. Recall that for all x,y ∈ X,

(x− y)2 = H(Tx, Ty) 6 amax{d(x,y),kd(x, Tx),kd(y, Ty)}+ Ld(y, Tx) = (a+ L)(x− y)2 = (x− y)2

for a = 1
6 , k = 1, and L = 5

6 , we have that T satisfies condition (2.1) (note that d(y, Tx) = d(x, Ty)).
Suppose that T is a q-quasi-contraction in the sense of Aydi et al.. Thus, there exists α ∈ [0, 1) such that
for all x,y ∈ X,

(x− y)2 = H(Tx, Ty) 6 αmax{d(x,y),d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)} = α(x− y)2 < (x− y)2 if x 6= y.
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This is a contradiction. Similarly, suppose that T is a q-quasi-contraction in the sense of Miculescu and
Mihail. Thus, there exist c,d ∈ [0, 1] and α ∈ [0, 1) such that:

H(T(x), T(y)) 6 αNc,d(x,y) for all x,y ∈ X.

So,

(x− y)2 = H(Tx, Ty) 6 αmax{d(x,y), cd(x, Tx), cd(y, Ty),
d

2
(d(x, Ty) + d(y, Tx))}

= αmax{(x− y)2,d(x− y)2} < (x− y)2 if x 6= y.

This is a contradiction.

The aim of this paper is to obtain sufficient conditions for the existence of fixed point for the multi-
valued mappings which satisfy condition (2.1) in b-metric spaces.

3. Main results

The following theorem is our main result, which can be regarded as an extension of Nadler’s fixed
point theorem [21] in b-metric space.

Theorem 3.1. Let (X,d, s) be a complete b-metric space and T : X → CB(X) weak quasi-contraction for which
there exist θ ∈ (0, 1),k ∈ [0, 1] and L > 0 such that

H(Tx, Ty) 6 θmax{d(x,y),kd(x, Tx),kd(y, Ty)}+ Ld(y, Tx) (3.1)

for all x,y ∈ X. Then there exists a sequence (xn)n∈N in X which converges to some point x∗ ∈ X such that
xn+1 ∈ T(xn) for every n ∈N. Also, x∗ is a fixed point of T if any of the following conditions are satisfied:

(i) T is closed;

(ii) d is ∗-continuous;

(iii) sθk < 1.

Proof. Let x0 ∈ X. Choose x1 ∈ Tx0. Let

ε =
1 − θ

1 + θ
H(Tx0, Tx1).

If H(Tx0, Tx1) = 0, we obtain Tx0 = Tx1 and x1 ∈ Tx1. In this case the proof is completed. So, we may
assume ε > 0. From Lemma 1.3 we obtain that there is a point x2 ∈ Tx1 such that

d(x1, x2) 6 H(Tx0, Tx1) + ε =
2

1 + θ
H(Tx0, Tx1).

Similarly, there is a point x3 ∈ Tx2 such that

d(x2, x3) 6 H(Tx1, Tx2) + ε,

where
ε =

1 − θ

1 + θ
H(Tx1, Tx2).

If H(Tx1, Tx2) = 0, we obtain Tx2 = Tx1 and x2 ∈ Tx2. In this case, the proof is completed. So, we may
assume ε > 0. Hence,

d(x2, x3) 6
2

1 + θ
H(Tx1, Tx2).
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Continuing this process we produce a sequence (xn) of points of X such that

xn+1 ∈ Txn for every n ∈N, (3.2)

and
d(xn, xn+1) 6

2
1 + θ

H(Txn−1, Txn) for every n ∈N. (3.3)

From condition (3.1), we obtain

H(Txn−1, Txn) 6 θmax{d(xn−1, xn),kd(xn−1, Txn−1),kd(xn, Txn)}+ Ld(xn, Txn−1)

6 θmax{d(xn−1, xn),kd(xn−1, xn),kd(xn, xn+1)}+ Ld(xn, xn)
= θmax{d(xn−1, xn),kd(xn, xn+1)}.

If max{d(xn−1, xn),kd(xn, xn+1)} = kd(xn, xn+1), from (3.3) we obtain a contradiction 1 < 2θk
1+θ . So,

d(xn, xn+1) 6
2θ

1 + θ
d(xn−1, xn).

Now, since 2θ
1+θ < 1, from Lemma 1.5 we obtain that the sequence (xn) is a Cauchy sequence. Since

(X,d, s) is complete, the sequence (xn) converges to some point x∗ ∈ X.

(i) Suppose that T is closed. From Definition 1.7 and (3.2) we obtain x∗ ∈ Tx∗.
(ii) Suppose that d is ∗-continuous. Then, we have

lim
n→∞d(xn, Tx∗) = d(x∗, Tx∗). (3.4)

From Lemma 1.4 and (3.1) we have

d(xn+1, Tx∗) 6 H(Txn, Tx∗) 6 θmax{d(xn, x∗),kd(xn, Txn),kd(x∗, Tx∗)}+ Ld(x∗, Txn)
6 θmax{d(xn, x∗),kd(xn, xn+1),kd(x∗, Tx∗)}+ Ld(x∗, xn+1).

Hence, using (3.4) we obtain
d(x∗, Tx∗) 6 θkd(x∗, Tx∗).

Since θk < 1, we conclude that d(x∗, Tx∗) = 0 and from Lemma 1.4 we obtain x∗ ∈ Tx∗.
(iii) We follow some ideas from [20]. Let

d(x∗, T(x∗)) 6 lim
n→∞d(xn, T(x∗)).

Then there exists a subsequence (xnk) of (xn) such that for every ε > 0 there exists k0 ∈ N such that
d(u, T(u)) − ε 6 d(xnk+1 , T(u)) for every k > k0. Since

d(xn+1, Tx∗) 6 θmax{d(xn, x∗),kd(xn, xn+1),kd(x∗, Tx∗)}+ Ld(x∗, xn+1),

using Lemma 1.6, we have
1
s
d(x∗, Tx∗) 6 θkd(x∗, Tx∗).

Since sθk < 1, from the above inequality, we conclude that d(x∗, T(x∗)) = 0, i.e. x∗ ∈ T(x∗), so T has a
fixed point. Now, let

d(x∗, Tx∗) > lim
n→∞d(xn, T(x∗)).

Then there exists n0 ∈N such that for every n > n0 we have

d(xn, Tx∗) 6 d(x∗, Tx∗).
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So,

d(x∗, Tx∗) 6 s[d(x∗, xn+1) + d(xn+1, Tx∗)]
6 s[d(x∗, xn+1) + θmax{d(x∗, xn),kd(xn, xn+1),kd(x∗, Tx∗)}+ Ld(x∗, xn+1)].

From the above inequality, when n→∞, we obtain

d(x∗, Tx∗) 6 sθkd(x∗, Tx∗).

Since sθk < 1, we obtain x∗ ∈ Tx∗.

4. Some applications

We shall present some applications of Theorem 3.1 in b-metric spaces.

Corollary 4.1 (Version of Nadler’s fixed point theorem in b-metric spaces, [21]). Let (X,d, s) be a complete
b-metric space and T : X→ CB(X) a mapping satisfying

H(Tx, Ty) 6 θd(x,y) (4.1)

for all x,y ∈ X, where θ ∈ (0, 1). Then T has a fixed point.

Proof. Put k = L = 0 in Theorem 3.1.

Corollary 4.1 improves the next result by Czerwik [11].

Corollary 4.2. Let (X,d, s) be a complete b-metric space and T : X→ CB(X) a mapping satisfying

H(Tx, Ty) 6 λd(x,y)

for all x,y ∈ X, where λ ∈ (0, 1
s). Then T has a fixed point.

Example 4.3. Let X = [1,+∞) be equipped with the complete b-metric d such that d(x,y) = (x− y)2 for
all x,y ∈ X (with coefficient s = 2). Define T : X → CB(X) by Tx = [1, 1 + 4x

5 ] for all x ∈ X. Also, take
θ = 9

16 . We have
H(Tx, Ty) 6 θd(x,y)

for all x,y ∈ X, that is (4.1) holds. All hypotheses of Corollary 4.1 are satisfied and x = 1 is a fixed point
of T .

On the other hand, Corollary 4.2 is not applicable. For x = 2 and y = 1, we have H(Tx, Ty) =
16
25 ,d(x,y) = 1, so

H(Tx, Ty) > λd(x,y) for all λ ∈ [0,
1
2
).

Also, we may not apply the main result of Aydi et al. [3, Theorem 2.2]. Again, for x = 2 and y = 1, we
have

d(x, Tx) = 0,d(y, Ty) = 0,d(x, Ty) = 0,d(y, Tx) = 0,

so
H(Tx, Ty) > λmax{d(x,y),d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)}

for all λ ∈ [0, 1
s2+s

).

Corollary 4.4 (Version of fixed point theorem by Berinde [5] and Abbas et al. [1] in b-metric spaces). Let
(X,d, s) be a complete b-metric space and T : X→ CB(X) a weak contraction, i.e., there exist θ ∈ (0, 1) and L > 0
such that

H(Tx, Ty) 6 θd(x,y) + Ld(y, Tx) for all x,y ∈ X. (4.2)

Then T has a fixed point.
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Proof. Put k = 0 in Theorem 3.1.

Example 4.5. Let T : [0, 1]→ [0, 1] defined by Tx = {x} for all x ∈ [0, 1]. Then

(i) T does not satisfy the contractive condition (2.3) of Aydi et al. [3];

(ii) T does not satisfy the contractive condition (2.4) of Miculescu and Mihail [20];

(iii) T satisfies condition (4.2) with θ ∈ (0, 1) arbitrary and L > 1 − θ.

A weak contraction has always at least one fixed point and there exist weak contractions that have
infinitely many fixed points.

Corollary 4.6 (Version of fixed point theorem by Kannan [17] in b-metric spaces). Let (X,d, s) be a complete
b-metric space and T : X→ CB(X) a mapping for which there exists λ ∈ (0, 1

2s) such that

H(Tx, Ty) 6 λ[d(x, Tx) + d(y, Ty)] for all x,y ∈ X. (4.3)

Then T has a unique fixed point.

Proof. Put in Theorem 3.1 k = 1. Let x,y ∈ X be arbitrary taken. We have to discuss three possible cases,
but due to the symmetry of M1,T (x,y), it suffices to consider only two of them.

1. M1,T (x,y) = d(x,y). Then d(x, Tx) 6 d(x,y) and d(y, Ty) 6 d(x,y), hence from condition (4.3) we
obtain

λ[d(x, Tx) + d(y, Ty)] 6 2λM1,T (x,y).

Then conditions (2.1) and (2.2) are obviously satisfied (with θ = 2λ and L = 0).

2. M1,T (x,y) = d(x, Tx). Then d(y, Ty) 6 d(x, Tx), so from condition (4.3) we have

λ[d(x, Tx) + d(y, Ty)] 6 2λM1,T (x,y).

Then condition (2.1) holds for θ = 2λ and L = 0. So (2.2) also holds.
Therefore both (2.1) and (2.2) hold with θ = 2λ and L = 0. Now, from Theorem 3.1 we conclude that

the mapping T has a fixed point x∗ if 2λs < 1 (condition (iii) in Theorem 3.1). Let y∗ be a fixed point of
the mapping T. Then, from condition (4.3) we obtain

d(x∗,y∗) 6 H(Tx∗,y∗) 6 λ[d(x∗, Tx∗) + d(y∗, Ty∗)] = 0,

so x∗ = y∗.

Corollary 4.7 (Version of fixed point theorem by Chatterjea [6] in b-metric spaces). Let (X,d, s) be a complete
b-metric space and T : X→ CB(X) a mapping for which there exists λ ∈ (0, 1

s+s2 ) such that

H(Tx, Ty) 6 λ[d(x, Ty) + d(y, Tx)] for all x,y ∈ X. (4.4)

Then T has a unique fixed point.

Proof. By (4.4) and triangle rule we have

H(Tx, Ty) 6 λs[d(x,y) + s(d(y, Tx) +H(Tx, Ty))] + λd(y, Tx)

6 λsd(x,y) + λ(s2 + 1)d(y, Tx) + λs2H(Tx, Ty).

After simple computations, we get

H(Tx, T ,y) 6
λs

1 − λs2d(x,y) +
λ(s2 + 1)
1 − λs2 d(y, Tx),
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which is (4.2), with θ = λs
1−λs2 (since λ < 1

s+s2 ) and L =
λ(s2+1)
1−λs2 > 0. So, from Corollary 4.4 we obtain that

T has a fixed point x∗. If y∗ is also a fixed point of T , from condition (4.4) we obtain

d(x∗,y∗) 6 H(Tx∗,y∗) 6 λ[d(x∗, Ty∗) + d(y∗, Tx∗)] 6 λ[d(x∗,y∗) + d(y∗, x∗)] < 2λd(x∗,y∗) < d(x∗,y∗).

It is a contradiction if x∗ 6= y∗.

Corollary 4.8 (Generalizations of fixed point theorem by Reich in b-metric spaces, [22]). Let (X,d, s) be a
complete b-metric space and T : X→ CB(X) a mapping satisfying

H(Tx, Ty) 6 θmax{d(x,y),d(x, Tx),d(y, Ty)}

for all x,y ∈ X, where θ ∈ (0, 1
s). Then T has a fixed point.

Proof. Put k = 1,L = 0 in Theorem 3.1.

Corollary 4.9 (Version of fixed point theorem by Ćirić [7, 8]). Let (X,d, s) be a complete b-metric space and
T : X→ CB(X) a mapping satisfying

H(Tx, Ty) 6 αM(x,y), (4.5)

where α ∈ (0, 1
2s). Then T has a fixed point.

Proof. Let x,y ∈ X be arbitrary taken. We will use Theorem 3.1. We have to discuss five possible cases,
but due to the symmetry of M(x,y), it suffices to consider only three of them.

1. M(x,y) = d(x,y). Then M(x,y) = M1,T (x,y), so condition (2.1) and its dual condition (2.2) are obvi-
ously satisfied with θ = α and L = 0.

2. M(x,y) = d(x, Tx). And in this case we have M(x,y) =M1,T (x,y), so θ = α and L = 0.

3. M(x,y) = d(y, Tx). From (4.5) we get

H(Tx, Ty) 6 αd(y, Tx) 6 θM1,T (x,y) +αd(y, Tx),

so (2.1) holds with θ ∈ (0, 1) and L = α. Since,

H(Tx, Ty) 6 αM(x,y) = αd(y, Tx) 6 αs[d(y, Ty) +H(Ty, Tx)] 6 αs[M1,T (x,y) +H(Tx, Ty)],

we get
H(Tx, Ty) 6

αs

1 −αs
M1,T (x,y).

So, dual (2.2) also holds for all θ = αs
1−αs and L = 0. Therefore both (2.1) and its dual (2.2) hold with

θ = max{α, 0,
αs

1 −αs
} =

αs

1 −αs
, L = max{0,α} = α.

Since α ∈ (0, 1
2s), we obtain that θs < 1 and L > 0. Therefore, from Theorem 3.1, it follows that T has a

fixed point.

Remark 4.10.

(i) Note that (0, 1
s+s2 ) ⊆ (0, 1

2s) implies that Corollary 4.9 implies the main result in [3, Theorem 2.2].

(ii) In [2, Theorem 2.2] Amini-Harandi proved the following result in metric spaces.

Theorem 4.11. Let (X,d) be a complete metric space and T : X→ CB(X) be a mapping satisfying

H(Tx, Ty) 6 αM(x,y),

where α ∈ (0, 1
2). Then T has a fixed point.

Note that from Corollary 4.9 we obtain Theorem 4.11.

Problem 4.12. Does the conclusion of Corollary 4.9 remain true for any α ∈ [ 1
2s , 1)?
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