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Abstract
Suppose that G and H are two given closed subintervals of R, and that q : G→ H and p : H→ G are continuous maps. Let

Γ(s, t) = (p(t),q(s)) be a Cournot map over the space G×H. In this paper, we study spatio-temporal chaos of such a Cournot
map. In particular, it is shown that if p and q are onto maps, then the following are equivalent:

1) Γ is spatio-temporally chaotic;
2) Γ2|Λ1 is spatio-temporally chaotic;
3) Γ2|Λ2 is spatio-temporally chaotic;
4) Γ |Λ1∪Λ2 is spatio-temporally chaotic.

Moreover, it is proved that if p and q are onto maps, then p ◦ q is spatio-temporally chaotic if and only if so is q ◦ p. Also, we
give two examples which show that for the above results, it is necessary to assume that p and q are onto maps. c©2017 All rights
reserved.
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1. Introduction

Let G and H be closed subintervals of R, and let p : H→ G and q : G→ H be continuous. In the whole
paper, we always let Γ : G×G → G×H be defined as Γ(s, t) = (p(t),q(s)) for any (s, t) ∈ G×H. Such
a map has been investigated to give a mathematical analysis of Cournot duopoly (see [17]). Probably the
first notion of chaos in a mathematically rigorous way was posed by Li and Yorke [12]. Since then, a lot
of different notions of chaos have been posed. Akin and Kolyada gave the concept of Li-Yorke sensitivity
for the first time and the concept of spatio-temporal chaos [1]. Schweizer and Smı́tal [20] gave the concept
of distributional chaos. We know that distributional chaos is equivalent to positive topological entropy
and some other chaotic properties for some particular spaces (see [14, 20, 31]), and that this equivalence
relationship will become invalid for some higher dimensional spaces [21] and some zero-dimensional
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spaces [15]. Wang et al. [22] gave the definition of distributional chaos with respect to a sequence and
got that this kind of chaos is equivalent to Li-Yorke chaos for continuous maps over a closed subinterval.
For many related notions and dynamics from dynamical system, we refer the reader to [10, 23, 25, 26, 28–
33]. Over the past few decades, people have been paying very close attention to the chaotic properties of
Cournot maps (see [3–6, 13, 17, 24]). From [6, 17] one can see that there exist Markov perfect equilibria
processes. That is, two fixed players move alternatively and ensure that such that any of them chooses
the best reply to the previous action of another player. Put Λ1 = {(p(t), t) : t ∈ H}, Λ2 = {(s,q(s)) : s ∈ G},
and Λ12 = Λ1 ∪Λ2. Clearly, Γ(Λ12) ⊂ Λ12. The set Λ12 is said to be an MPE-set for Γ (see [4]). Moreover,
in [4] the authors studied several kinds of chaos for Cournot maps, and obtained that for any definition
they considered in [4] it does not satisfy the condition that Γ is chaotic if and only if so is Γ |Λ12 . It is
well-known that some chaotic properties of Cournot maps have been explored (see [2, 6, 8, 13, 16–18]).
Recently, Lu and Zhu further studied some chaotic properties of Cournot maps and showed that some
chaotic properties of Γ |Λ12 , Γ 2|Λ1 , and Γ 2|Λ2 are same. Then, Wu [24] proved that Λ is Li-Yorke chaotic if
and only if h∞(p ◦q) = h∞(q ◦ p) ∈ {ln 2,+∞}, where h∞(Λ) is the supremum of all topological sequence
entropies of Λ. In [11], it is proven that for any Cournot map Γ(s, t) = (p(t),q(s)) over the product space
G×H, the following properties are satisfied:
(1) if Γ is Kato chaotic then so is Γ 2|Λ1 or Γ 2|Λ2 , where Λ1 = {(p(t), t) : t ∈ H} and Λ2 = {(s,q(s)) : s ∈ G}.
(2) it is assumed that Γ 2|Λ1 and Γ 2|Λ2 are Kato chaotic, and that the maps p and q satisfy that for any

u > 0, if
| (q ◦ p)n(t1) − (q ◦ p)n(t2) |< u and | (p ◦ q)m(s1) − (p ◦ q)m(s2) |< u

for some integers n,m > 0, then there is an integer l(n,m,u) > 0 with

| (q ◦ p)l(n,m,u)(t1) − (q ◦ p)l(n,m,u)(t2) |< u and | (p ◦ q)l(n,m,u)(s1) − (p ◦ q)l(n,m,u)(s2) |< u.

Then the map Γ is Kato chaotic.

In this paper, we continue to explore the spatio-temporally chaotic property of such a Cournot map. In
particular, it is proven that if p and q are onto maps, then the following four statements are equivalent:
1) Γ is spatio-temporally chaotic;
2) Γ 2|Λ1 is spatio-temporally chaotic;
3) Γ 2|Λ2 is spatio-temporally chaotic;
4) Γ |Λ1∪Λ2 is spatio-temporally chaotic.

It is noted that it is proved that the above equivalences also hold for sensitivity, multisensitivity, cofinite
sensitivity, and Li-Yorke sensitivity (see [24, Corollary 0.1]). Also, we prove that if p and q are onto maps,
then p ◦q is spatio-temporally chaotic if and only if so is q ◦p. Moreover, we present two examples which
show that for the above results it is necessary to assume that p and q are surjective maps.

2. Preliminaries

For the definition of Ruelle-Takens chaos, we refer the reader to [19]. For the notion of Kato chaos, we
refer the reader to [7]. We know that topological mixing implies Kato’s chaos [7, 27]. Moreover, Wu and
Wang [27] proved that dense δ-chaos, generic δ-chaos, and Kato’s chaos are equivalent.

Let (Y,ν) be a metric space and Γ : Y → Y be a continuous map. For any given y1,y2 ∈ Y and any
given s > 0, (y1,y2) is said to be a Li-Yorke pair with modulus s for Γ if

lim inf
m→∞ ν(Γm(y1), Γm(y2)) = 0 and lim sup

m→∞ ν(Γm(y1), Γm(y2)) > s.

(y1,y2) is a Li-Yorke pair for Γ if it is a Li-Yorke pair with modulus s for Γ for some s > 0. A continuous
map Γ : Y → Y is said to be spatio-temporally chaotic if for any y ∈ Y and any α > 0, there is some
x ∈ Y with ν(x,y) < α such that (x,y) is a Li-Yorke pair for Γ . For the concept of Li-Yorke sensitivity, we
refer the reader to [1, 33]. Clearly, by the definitions we can see that Li-Yorke sensitivity is different from
spatio-temporal chaos, and that Li-Yorke sensitivity implies spatio-temporal chaos.
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3. Main results

Lemma 3.1. Let Γ(s, t) = (p(t),q(s)) be a Cournot map over G×H. Then the following hold:

1) if q is onto map and p ◦ q is spatio-temporally chaotic, then so is q ◦ p;
2) if p is onto map and q ◦ p is spatio-temporally chaotic, then so is p ◦ q.

Proof. Suppose that p ◦ q is spatio-temporally chaotic. Let t ∈ H and Ut ⊂ H be a neighborhood of t ∈ H.
Since q is onto, one can pick s ∈ q−1({t}). Clearly, q−1(Ut) is a neighborhood of s ∈ G. By hypothesis and
the definition, there is s ′ ∈ q−1(Us) such that

lim inf
j→∞ |(p ◦ q)j(s) − (p ◦ q)j(s ′)| = 0 and lim sup

j→∞ |(p ◦ q)j(s) − (p ◦ q)j(s ′)| > c

for some c > 0. As p is uniformly continuous, there is c ′ > 0 such that if | s1 − s2 |< c ′ and s1, s2∈ H, then
| p(s1) − p(s2) |< c. So, we have that if

lim inf
j→∞ |(p ◦ q)j(s) − (p ◦ q)j(s ′)| = 0,

then
lim inf
j→∞ |q ◦ (p ◦ q)j(s) − q ◦ (p ◦ q)j(s ′)| = 0,

and that if
lim sup
j→∞ |(p ◦ q)j(s) − (p ◦ q)j(s ′)| > c,

then
lim sup
j→∞ |q ◦ (p ◦ q)j(s) − q ◦ (p ◦ q)j(s ′)| > c ′.

In fact, if
lim sup
j→∞ |q ◦ (p ◦ q)j(s) − q ◦ (p ◦ q)j(s ′)| < c ′,

then
lim sup
j→∞ |p ◦ (q ◦ (p ◦ q)j)(s) − p ◦ (q ◦ (p ◦ q)j)(s ′)| < c,

which implies
lim sup
j→∞ |(p ◦ q)j(s) − (p ◦ q)j(s ′)| < c.

It is a contradiction. Thus, we have

lim inf
j→∞ |(q ◦ p)j(t) − (q ◦ p)j(t ′)| = 0 and lim sup

j→∞ |(q ◦ p)j(t) − (q ◦ p)j(t ′)| > c ′,

where t ′ = q(s ′) ∈ Ut. By the definition, q ◦ p is spatio-temporally chaotic. Similarly, by hypothesis and
the definition one can easily obtain that if q ◦p is spatio-temporally chaotic, then p ◦q is spatio-temporally
chaotic.

Theorem 3.2. Let Γ(s, t) = (p(t),q(s)) be a Cournot map over G×H. If p and q are onto maps, then p ◦ q is
spatio-temporally chaotic if and only if so is q ◦ p.

Proof. By Lemma 3.1, the result of Theorem 3.2 is true.

We need the following lemmas to prove Theorem 3.6.

Lemma 3.3. If p : G→ G is a continuous selfmap over a compact metric space (G,D), then p is spatio-temporally
chaotic if and only if so is p2.
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Proof. By the definition, it is clear that if p2 is spatio-temporally chaotic then so is p.
Now we assume that p is spatio-temporally chaotic. By the definition, for any given s ∈ G and any

given e > 0, there is t ∈ G with D(s, t) < e satisfying that

lim inf
j→∞ D(pj(s),pj(t)) = 0 and lim sup

j→∞ D(pj(s),pj(t)) > c

for some c > 0. As (G,D) is a compact metric space and D is a continuous function, there is an increasing
sequence {ji}

∞
i=1 of positive integers such that

lim
i→∞D(p2ji(s),p2ji(t)) = 0 or lim

i→∞D(p2ji+1(s),p2ji+1(t)) = 0.

By the uniform continuity of p, if

lim
i→∞D(p2ji(s),p2ji(t)) = 0 or lim

i→∞D(p2ji+1(s),p2ji+1(t)) = 0,

then
lim
i→∞D(p2ji+2(s),p2ji+2(t)) = 0.

This implies that
lim inf
j→∞ D(p2j(s),p2j(t)) = 0.

By the uniform continuity of p, for the above c > 0 there is c ′ > 0 with c > c ′ such that D(s1, s2) < c
′

with s1, s2 ∈ G implies D(pj(s1),pj(s1)) < c
′ for each j ∈ {1, 2}. As (G,D) is a compact metric space and

D is a continuous function, there is an increasing sequence {ki}
∞
i=1 of positive integers such that

lim
i→∞D(p2ki(s),p2ki(t)) > c or lim

i→∞D(p2ki+1(s),p2ki+1(t)) > c.

So, if
lim
i→∞D(p2ki+1(s),p2ki+1(t)) > c,

then
lim
i→∞D(p2ki(s),p2ki(t)) > c ′.

Consequently,
lim sup
j→∞ D(p2j(s),p2j(t)) > c ′.

Remark 3.4. By the proof of Lemma 3.3, one can similarly prove that if p : G→ G is a continuous selfmap
over a compact metric space (G,D), then p is spatio-temporally chaotic if and only if pm for some integer
m > 1 is spatio-temporally chaotic if and only if so is pm for any integer m > 1.

Lemma 3.5. If p : G → G (resp. q : H → H) is a continuous selfmap over a compact metric space (G,D1) (resp.
(H,D2)), then p× q is spatio-temporally chaotic if and only if the following conditions hold:

1) p is spatio-temporally chaotic;
2) q is spatio-temporally chaotic.

Proof. By the definition, it is easy to show that if p (resp. q) is spatio-temporally chaotic, then so is p× q.
Now we assume that p× q is spatio-temporally chaotic. Let s ∈ G and t ∈ H, and let A ⊂ G (resp.

B ⊂ H) be a neighborhood of s (resp. t). Then, by the definition, there are s ′ ∈ A and t ′ ∈ B with

lim inf
j→∞ D((p ◦ q)j((s, t)), (p ◦ q)j((s ′, t ′))) = 0 and lim sup

j→∞ D((p ◦ q)j((s, t)), (p ◦ q)j((s ′, t ′))) > c
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for some c > 0. As (G×H,D) is a compact metric space and D is a continuous function, there is an
increasing sequence {ji}

∞
i=1 of positive integers such that

lim
i→∞D((p ◦ q)ji((s, t)), (p ◦ q)ji((s ′, t ′))) = 0.

This implies that

lim inf
j→∞ D1(p

j(s) − pj(s ′)) = 0 and lim inf
j→∞ D2(q

j(t) − qj(t ′)) = 0.

By the uniform continuity of p and q, for the above c > 0 there is c ′ > 0 with c > c ′ such that
D1(s1, s2) < c ′ with s1, s2 ∈ G implies D1(p(s1),p(s1)) < c ′, and that D1(s1, s2) < c ′ with s1, s2 ∈ G
implies D2(q(t1),q(t1)) < c ′. As (G×H,D) is a compact metric space and D is a continuous function,
there is an increasing sequence {ki}

∞
i=1 of positive integers such that

lim
i→∞D((p× q)ki((s, t)), (p× q)ki((s ′, t ′))) > c.

Consequently, by the argument we get that

lim sup
j→∞ D1(p

j(s),pj(s ′)) > c ′ and lim sup
j→∞ D2(q

2j(t),q2j(t ′)) > c ′.

Theorem 3.6. Let Γ(s, t) = (p(t),q(s)) be a Cournot map over G×H. If p and q are onto maps, then the following
are equivalent:

(1) Γ is spatio-temporally chaotic;
(2) Γ 2|Λ1 is spatio-temporally chaotic;
(3) Γ 2|Λ2 is spatio-temporally chaotic;
(4) Γ |Λ12 is spatio-temporally chaotic.

Proof. Suppose that Γ is spatio-temporally chaotic. By Lemma 3.3, Γ 2 is spatio-temporally chaotic. Since
Γ 2 = (p ◦ q)× (q ◦ p), by Lemma 3.5 we obtain that p ◦ q and q ◦ p are spatio-temporally chaotic.

Suppose that p ◦q is spatio-temporally chaotic, and let t ∈ H and Ut ⊂ H be a neighborhood of t ∈ H.
Since q is onto, one can pick s ∈ q−1({t}). Clearly, q−1(Ut) is a neighborhood of s ∈ G. Then, q−1(Ut)×Ut
is a nonempty and open subset of Λ2. As p ◦q is spatio-temporally chaotic, by the definition, for the above
s ∈ q−1({t}) and the neighborhood q−1(Ut) ⊂ G of s, there is s ′ ∈ q−1(Ut) with

lim inf
j→∞ |(p ◦ q)j(s) − (p ◦ q)j(s ′)| = 0 and lim sup

j→∞ |(p ◦ q)j(s) − (p ◦ q)j(s ′)| > c

for some c > 0. Clearly, there is an increasing sequence {ji}
∞
i=1 of positive integers such that

lim
i→∞ |(p ◦ q)ji(s) − (p ◦ q)ji(s ′)| = 0.

As q is uniformly continuous,

lim
i→∞ |q ◦ (p ◦ q)ji(s) − q ◦ (p ◦ q)ji(s ′)| = 0.

That is,
lim
i→∞ |(q ◦ p)ji(t) − (q ◦ p)ji(t ′)| = 0,

where t ′ = q(s ′). Since
lim sup
j→∞ |(p ◦ q)j(s) − (p ◦ q)j(s ′)| > c,
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there is an increasing sequence {ki}
∞
i=1 of positive integers such that

lim
i→∞ |(p ◦ q)ki(s) − (p ◦ q)ki(s ′)| > c.

By the uniform continuity of p, for the above c > 0 there is c ′ > 0 with c > c ′ such that |s1 − s2| < c
′ with

s1, s2 ∈ H implies |p(s1) − p(s1)| < c
′. So,

lim
i→∞ |q ◦ (p ◦ q)ki(s) − q ◦ (p ◦ q)ki(s ′)| > c ′.

That is,
lim
i→∞ |(q ◦ p)ki(t) − (q ◦ p)ki(t ′)| > c ′.

Consequently, by the argument we get that

lim inf
j→∞ D(Γ 2j((s, t)), Γ 2j((s ′, t ′))) = 0 and lim sup

j→∞ D(Γ 2j((s, t)), Γ 2j((s ′, t ′))) > c ′.

By the definition, Γ 2|Λ2 is spatio-temporally chaotic. Similarly, we can show that if q ◦ p is spatio-
temporally chaotic, then so is Γ 2|Λ1 .

Assume that Γ 2|Λ1 (resp. Γ 2|Λ2) is spatio-temporally chaotic. By the definition, Γ 2 is spatio-temporally
chaotic. By Lemma 3.3, Γ is spatio-temporally chaotic. As Γ(Λ12) ⊂ Λ12, ΓΛ12 is spatio-temporally chaotic.

Suppose that ΓΛ12 is spatio-temporally chaotic. By the definition, Γ is spatio-temporally chaotic. So,
by the above argument, Γ 2|Λ1 (resp. Γ 2|Λ2) is spatio-temporally chaotic.

Remark 3.7. By Remark 3.4, Lemma 3.5, and Theorems 3.2 and 3.6, one can similarly prove that for a
Cournot map Γ(s, t) = (p(t),q(s)) over G×H, if p and q are onto maps, then the following are equivalent:

(1) Γ is spatio-temporally chaotic;
(2) Γ 2|Λ1 is spatio-temporally chaotic;
(3) Γ 2|Λ2 is spatio-temporally chaotic;
(4) Γ |Λ12 is spatio-temporally chaotic;
(5) Γm is spatio-temporally chaotic for some integer m > 1;
(6) Γ 2m|Λ1 is spatio-temporally chaotic for some integer m > 1;
(7) Γ 2m|Λ2 is spatio-temporally chaotic for some integer m > 1;
(8) Γm|Λ12 is spatio-temporally chaotic for some integer m > 1;
(9) Γm is spatio-temporally chaotic;

(10) Γ 2m|Λ1 is spatio-temporally chaotic for any integer m > 1;
(11) Γ 2m|Λ2 is spatio-temporally chaotic for any integer m > 1;
(12) Γm|Λ12 is spatio-temporally chaotic for any integer m > 1.

Example 3.8. Let X = [0, 1] and Y = [0, 2]. Define p : X → Y and q : Y → X by p(x) = 1 − |1 − 2x| for any
x ∈ X, q(y) = 1 − |1 − 2y| for any y ∈ X, and q(y) = 1 − |1 − 2(y− 1)| for any y ∈ Y with y /∈ X. Then, the
following hold:

(1) q ◦ p is spatio-temporally chaotic;
(2) p ◦ q is spatio-temporally chaotic.

Proof. As (p ◦ q)|X is the tent map which is topologically exact, the map (p ◦ q)|X satisfies the condition
of Theorem 1 in [9] which implies (p ◦ q) satisfies the condition of Theorem 1 in [9]. By the definition
and Theorem 1 in [9], p ◦ q is spatio-temporally chaotic. As q is surjective, by Lemma 3.1, q ◦ p is spatio-
temporally chaotic.
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Example 3.9. Let X = [0, 1] and Y = [0, 2]. Define p : X → Y and q : Y → X by p(x) = 1 − |1 − 2x| for any
x ∈ X, q(y) = 1 − |1 − 2y| for any y ∈ X, and q(y) = 0 for any y ∈ Y with y /∈ X (see [13]). Then, the
following hold:

(1) q ◦ p is spatio-temporally chaotic;
(2) p ◦ q is not spatio-temporally chaotic.

Proof. As q ◦ p is the tent map, by the proof of Example 3.8 we know that q ◦ p is spatio-temporally
chaotic. By definition one can easily see that p ◦ q is not spatio-temporally chaotic.

Remark 3.10. Example 3.9 shows that for the main results in this paper, it is necessary to assume that p
and q are onto maps.
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social systems, Umeå, (1995), Chaos Solitons Fractals, 7 (1996), 2031–2048. 1
[9] R.-S. Li, A note on distributional chaos of periodically adsorbing systems, (Chinese) J. Systems Sci. Math. Sci., 32 (2012),

237–243. 3
[10] R.-S. Li, A note on stronger forms of sensitivity for dynamical systems, Chaos Solitons Fractals, 45 (2012), 753–758. 1
[11] R.-S. Li, H.-Q. Wang, Y. Zhao, Kato’s chaos in duopoly games, Chaos Solitons Fractals, 84 (2016), 69–72. 1
[12] T. Y. Li, J. A. Yorke, Period three implies chaos, Amer. Math. Monthly, 82 (1975), 985–992. 1
[13] T.-X. Lu, P.-Y. Zhu, Further discussion on chaos in duopoly games, Chaos Solitons Fractals, 52 (2013), 45–48. 1, 3.9
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