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Abstract
In this paper, we propose an epidemic model with age-dependence vaccination, latency and relapse. We derive the positivity

and boundedness of solutions and find the basic reproduction number. Asymptotic smoothness, the existence of global compact
attractor and uniform persistence of the model are investigated. By constructing Lyapunov functionals, we establish global
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1. Introduction

There is growing interest in the dynamics of epidemic model with age structure (see, e.g., [1, 2, 4, 11,
13, 14, 16, 17, 23–26, 28] and references cited therein). In general, the average age at which individuals
become infected is largely determined by the prevalence of infection in the population. Some evidences
can be found in recent studies that the probability of becoming infected is dependent on age of the host
[5, 6]. It becomes more reasonable to study the important consequences of mathematical model with age
structure.

In this paper, we divide the population into five classes: susceptible (those who are capable of contract-
ing the disease); vaccinees (those who are vaccinated to defeat disease); exposed (those who are infected
but not yet infectious); infectious (those who are infected and capable of transmitting the disease); and
recovered (those who are permanently immune). Denoted by S(t) the number of susceptible individuals
at time t. Without infection, S(t) is governed by the equation

dS(t)

dt
= (1 − p)Λ− µS(t),

where a fraction 1−p stands for the vaccination given immediately after birth or in newborn. µ is natural
death rate. Susceptible individuals can come into contacting with infectious individuals and become new
infected individuals at a rate β.
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The vaccinated class is structured by the age of vaccination a (i.e., the newly vaccinated individuals
enter the vaccinated class with vaccine-age is zero), and the density of vaccinated individuals with respect
to the age of vaccination a at time t is assumed to be V(t,a). Then the total number of vaccinated
individuals at time t is given by

∫∞
0 V(t,a)da. In our model, we consider a scenario that the vaccine

is imperfect, which means that the vaccinated individuals still have the possibility to be infected. Let
I(t) denote the density of infectious individuals at time t. Throughout the paper, we always assume
that vaccinated individuals can be infected at a rate I(t)

∫∞
0 h(a)V(t,a)da, after contacting with infectious

ones, where h(a) stands for probability of infection with age-dependence vaccination. Let a fraction p of
vaccinated new-borns enter vaccinated class, which yields a boundary condition V(t, 0) = pΛ.

Let α(a) be the rate at which the vaccine wanes, which is a nonnegative bounded function of vaccine-
age a. Thus vaccinated individuals eventually become susceptible again by a rate

∫∞
0 α(a)V(t,a)da.

Under these assumptions, susceptible and vaccinated individuals are governed by the following equa-
tions: 

dS(t)

dt
= (1 − p)Λ− µS(t) −βS(t)I(t) +

∫∞
0
α(a)V(t,a)da,

V(t, 0) = pΛ,(
∂

∂t
+
∂

∂a

)
V(t,a) = − (µ+α(a))V(t,a) − I(t)h(a)V(t,a).

(1.1)

After infection, susceptible and vaccinated individuals enter into a stage where individuals are infected
with the disease but not yet infective. This stage of the disease is often called latent stage. Waiting time for
individuals in latent class varies from one to one, which may depend on the types of infectious diseases
and individuals’ status. Latent tuberculosis may take months, years or even decades to become infectious,
thus, it would develop into a deadly disease if not treated or incompletely treated. Furthermore, the
risk per unit time of activation appears to be higher in the early stages of latency than in later stages.
McCluskey [16] investigated a model of disease transmission with continuous age-structure SEIR model
for latently infected individuals and for infectious individuals. Liu et al. [11] paid attentions to an SEIR
epidemic model with age dependent latency and relapse and proved that the threshold property can
be preserved by defining the basic reproduction number. Here recurrent phenomenon are formulated
as partial differential equations with age-dependent relapse rate (or varying relapse rate) instead of a
constant relapse period and a general relapse distribution. Therefore, it is necessary to incorporate the
duration age into modeling. In this paper, we structured exposed class as the age of duration (i.e., the
duration time spent in this class). Let the density of exposed individuals with latency-age a at time t be
E(t,a), then the total number of exposed individuals at time t is given by

∫∞
0 E(t,a)da. The removal rate

from latent class is given by the function σ(a). Thus, the total rate at which individuals progress into the
infectious class alive reads

∫∞
0 σ(a)e(t,a)da

E(t, 0) = βS(t)I(t) + I(t)
∫∞

0
h(a)V(t,a)da,(

∂

∂t
+
∂

∂a

)
E(t,a) = −(µ+ σ(a))E(t,a).

(1.2)

In a recent study, van den Driessche et al. [20], van den Driessche and Zou [21] proposed the relapse
takes the form of a constant relapse period and a general relapse distribution, respectively. Individuals
come into the removed class after recovery (that may be natural or due to treatment). Let k be the recovery
rate from the infectious class. The density of individuals in removed class is denoted by R(t,b), where
b is referred as relapse age for short. Thus the total number of removed individuals at time t is given
by
∫∞

0 R(t,b)da. Let γ(b) be the age-dependent relapse rate in removed class. The total rate at which
individuals relapse into the infectious class is given by

∫∞
0 γ(b)R(t,b)db. Thus infectious and recovered

individuals are governed by the following equations:
dI(t)

dt
=

∫∞
0
σ(a)E(t,a)da− (µ+ k)I(t) +

∫∞
0
γ(b)R(t,b)db,

R(t, 0) = kI(t),(
∂

∂t
+
∂

∂a

)
R(t,b) = −(γ(b) + µ)R(t,b).

(1.3)
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In this paper, the model to be studied takes the following form,

dS(t)

dt
= (1 − p)Λ− µS(t) −βS(t)I(t) +

∫∞
0
α(a)V(t,a)da,

V(t, 0) = pΛ,(
∂

∂t
+
∂

∂a

)
V(t,a) = − (µ+α(a))V(t,a) − I(t)h(a)V(t,a),

E(t, 0) = βS(t)I(t) + I(t)
∫∞

0
h(a)v(t,a)da,(

∂

∂t
+
∂

∂a

)
E(t,a) = −(µ+ σ(a))E(t,a),

dI(t)

dt
=

∫∞
0
σ(a)E(t,a)da− (µ+ k)I(t) +

∫∞
0
γ(b)R(t,b)db,

R(t, 0) = kI(t),(
∂

∂t
+
∂

∂a

)
R(t,b) = −(γ(b) + µ)R(t,b).

(1.4)

The initial conditions for model equations (1.4) are assumed to be

S(0) = S0 > 0, V(0,a) = V0(a), E(0,a) = E0(a), I(0) = I0 > 0, R(0,b) = R0(b). (1.5)

To be mathematically tractable, we make the following assumption on functions of (1.1), (1.2), (1.3).

Assumption 1.1.

(i) α(·), h(·), σ(·), γ(·) are non-negative and belong to L∞+ (0,∞) with essential upper bounds ᾱ, h̄, σ̄, γ̄ ∈
(0,∞), respectively;

(ii) h(a) is Lipschitz continuous on R+ with Lipschitz coefficients Mh;

(iii) there exists positive constant µ0 ∈ [0,µ] such that α(a),σ(a),γ(b) > µ0 for a,b > 0.

Denote by
ε(a) = σ(a) + µ, Γ(a) = e−

∫a
0 ε(τ)dτ,

and
η(b) = γ(b) + µ, Υ(b) = e−

∫b
0 η(τ)dτ.

It follows from (iii) of Assumption 1.1 that

0 6 Γ(a) 6 e−(µ0+µ)a 6 1,
dΓ(a)

da
= −ε(a)Γ(a),

and

0 6 Υ(b) 6 e−(µ0+µ)b 6 1,
dΥ(b)

db
= −η(b)Υ(b).

In this paper, we firstly employ the method developed by [10, 12, 18, 27] for age-dependent models, to
reformulate the system as a system of Volterra integral equations. We verify the existence and uniqueness
of solutions. Further we get a continuous solution semiflow {Φ}t>0 on X0+ generated by system (1.4).
Furthermore, according to the similar approach in [9, 15], we shall establish the uniform persistence and
the existence of a compact global attractor of system (1.4), which we can make use of the invariance
principle. On the other hand, the uniform persistence of solutions ensures the each solution bounded
below by some positive constants, which provide the well-posedness of Lyapunov function (defined to
prove the global attractivity of equilibria). Finally, we show the global stability of equilibria by proper
Volterra-type Lyapunov functions in terms of the basic reproduction number.

This paper is organized as follows. Section 2 is devoted to the well-posedness of the model. In
Section 3, we investigate asymptotic smoothness of the semi-flow generated by the system. Section 4
contributes to the uniform persistence of system. In Section 5, the global stability of equilibria is proved
by constructing candidate Lyapunov functions.
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2. State space and well-posedness

2.1. Integrated semigroup formulation
System (1.4) is a hybrid system of ordinary and partial differential equations. Taking into account the

boundary conditions, we first rewrite is as a semilinear Cauchy problem. Following the method of [18],
we first set the state space,

X = R×R× L1((0,∞), R)×R× L1((0,∞), R)×R×R× L1((0,∞), R),

and
X+ = R+ ×R+ × L1

+((0,∞), R)×R+ × L1
+((0,∞), R)×R+ ×R+ × L1

+((0,∞), R),

endowed with the usual product norm, and set

X0 = R× {0}× L1((0,∞), R)× {0}× L1((0,∞), R)×R× {0}× L1((0,∞), R),

and
X0+ = X0 ∩X+.

We consider the linear operator A : Dom(A) ⊂ X→ X defined by

A



S(
0
V

)
(

0
E

)
I(
0
R

)


=



−µS+
∫∞

0 α(a)V(t,a)da(
−V(0)

−V ′ − (µ+α(a))V

)
(

−E(0)
−E ′ − ε(a)V

)
∫∞

0 σ(a)E(a)da− (µ+ k)I+
∫∞

0 γ(b)R(b)db(
−R(0)

−R ′ − η(b)R

)


,

with
Dom(A) = R× 0× 0×W1,1((0,∞), R2)×R× 0×W1,1((0,∞), R),

where W1,1 is a Sobolev space. Note that Dom(A) = X0 is not dense in X.
Define nonlinear operator F : Dom(A)→ X by

F



S(
0
V

)
(

0
E

)
I(
0
R

)


=



(1 − p)Λ−βSI(
pΛ

−Ih(a)S(a)

)
(
βSI+ I

∫∞
0 h(a)V(a)da

0L1

)
0(
kI

0L1

)


.

Then by identifying u(t) =

(
S(t),

(
0

V(t, ·)

)
,
(

0
E(t, ·)

)
, I(t),

(
0

R(t, ·)

))T

, we can rewrite the system (1.4)

with initial conditions (1.5) as the following abstract Cauchy problem

du(t)

dt
= Au(t) +F(u(t))

for t > 0 and u(0) = u0 ∈ X0+.
We restrict our attention on the state space for system (1.4) to

Y = R+ × L1
+(0,∞)× L1

+(0,∞)×R+ × L1
+(0,∞),
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equipped with the norm

‖(x,ϕ,φ,y,ψ)‖Y = |x|+

∫∞
0

|ϕ(a)|da+

∫∞
0

|φ(a)|da+ |y|+

∫∞
0

|ψ(a)|da.

Biologically, this norm is interpreted as the total population size.
The existence and uniqueness of the semiflow {Φ}t>0 on X0+ generated by system (1.4) can be assured

by the results in [10, 12, 18, 27]. Thus we get a continuous solution semi-flow Φ : R+ × Y→ Y defined by

Φ (t,X0) = Φt(X0) := (S(t),V(t, ·),E(t, ·), I(t),R(t, ·)) , t > 0, X0 ∈ Y. (2.1)

The precise result is the following proposition.

Proposition 2.1. For system (1.4), there exists a unique strongly continuous semiflow Φ : X0+ → X0+t>0 such
that for each x0 ∈ X0+, the operator x ∈ C([0,∞),X0+) defined by x = Φ(t)x0 is a mild solution of (1.4), that is,
it satisfies ∫t

0
x(s)ds ∈ Dom(A), and x(t) = x0 +A

∫t
0
x(s)ds+

∫t
0
F(x(s))ds, ∀t > 0.

2.2. Volterra formulation
For ease of notations, we introduce,

ζ(a) = α(a) + µ, ∆(a) = e−
∫a

0 ζ(r)dr, (2.2)

and
n(t, τ) = h(τ)I(t− a+ τ) + ζ(a), Ω(t,a) = e−

∫a
0 n(t,τ)dτ.

Solving V(t,a),E(t,a),R(t,b) in system (1.4) along the characteristic line t−a = const. and t− b = const.
yields

V(t,a) =

{
pΛΩ(t,a), for t > a > 0,
V0(a− t)

Ω(t,a)
Ω(t,a−t) , for a > t > 0,

E(t,a) =

{
[βS(t− a)I(t− a) +H(t− a)I(t− a)]Γ(a), for t > a > 0,
E0(a− t)

Γ(a)
Γ(a−t) , for a > t > 0,

and

R(t,b) =

{
kI(t− b)Υ(b), for t > b > 0,
R0(b− t)

Υ(b)
Υ(b−t) , for b > t > 0.

Thus system (1.4) can be rewritten as the following Volterra-type equations

dS(t)

dt
= (1 − p)Λ− µS(t) −βS(t)I(t) +

∫∞
0
α(a)V(t,a)da,

V(t,a) =

{
pΛΩ(t,a), for t > a > 0,
V0(a− t)

Ω(t,a)
Ω(t,a−t) , for a > t > 0,

E(t,a) =

{
[βS(t− a)I(t− a) +H(t− a)I(t− a)]Γ(a), for t > a > 0,
E0(a− t)

Γ(a)
Γ(a−t) , for a > t > 0,

dI(t)

dt
=

∫∞
0
σ(a)E(t,a)da− (µ+ k)I(t) +

∫∞
0
γ(b)R(t,b)db,

R(t,b) =

{
kI(t− b)Υ(b), for t > b > 0,
R0(b− t)

Υ(b)
Υ(b−t) , for b > t > 0.
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2.3. Boundness of semiflow
The semiflow Φ(t,X0) defined by (2.1) enjoys the nice properties as follows.

Proposition 2.2. Define

Ξ :=

{
X0 = (S0,V0(·),E0(·), I0,R0(·)) ∈ Y

∣∣∣ S0 + ‖V0(a)‖L1 + ‖E0(a)‖L1 + I0 + ‖R0(a)‖L1 6
Λ

µ

}
. (2.3)

Then, the following results hold.

(i) Ξ is positively invariant for Φ; i.e., Φ(t, x0) ∈ Ξ, for all t > 0, x0 ∈ Ξ.

(ii) Ξ is point dissipative and Ξ attracts all points in Y.

(iii) There exist ε1, ε2 > 0 such that lim inft→∞ S(t) > ε1, lim inft→∞ ∫∞0 V(t,a) > ε2, respectively.

Proof. Let

N(t) = S(t) +

∫∞
0
V(t,a)da+

∫∞
0
E(t,a)da+ I(t) +

∫∞
0
R(t,b)db.

Adding the equations in (1.4) yields

dN(t)

dt
=
dS(t)

dt
+
d

dt

∫∞
0
V(t,a)da+

d

dt

∫∞
0
E(t,a)da+

dI(t)

dt
+
d

dt

∫∞
0
R(t,b)db

= Λ− µ

(
S(t) +

∫∞
0
V(t,a)da+

∫∞
0
E(t,a)da+ I(t) +

∫∞
0
R(t,b)db

)
= Λ− µN(t).

We integrate this differential inequality and obtain the a priori estimate,

N(t) =
Λ

µ
− e−µt

(
Λ

µ
−N(0)

)
6
Λ

µ
.

It follows that
S(t) +

∫∞
0
V(t,a)da+

∫∞
0
E(t,a)da+ I(t) +

∫∞
0
R(t,b)db 6

Λ

µ
.

This implies that

lim sup
t→∞ ||Φt(x0)||Y = lim sup

t→∞N(t) 6
Λ

µ
,

that is, Ξ is positively invariant for Φ, and further attracts each point in Y. Thus (ii) directly follows. Next,
we prove (iii). Since I(t) 6 Λ

µ , it is easy to see from the first equation (1.1) that

dS(t)

dt
> (1 − p)Λ−

(
µ+

βΛ

µ

)
S(t).

Recall that h̄, ᾱ are the essential upper bounds of h(a),α(a) for a > 0, respectively, from (i) of Assumption
1.1. We integrate this differential inequality and obtain the a priori estimate,

lim inf
t→∞S(t) > (1 − p)Λ

µ+ βΛ
µ

:= ε1.

Further, we have

d

dt

∫∞
0
V(t,a)da = −

∫∞
0

[
∂V(t,a)
∂a

+ (h(a)I(t) +α(a) + µ)V(t,a)
]
da
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> − V(t,a)
∣∣∣∣a=∞
a=0

−

(
h̄
Λ

µ
+ ᾱ+ µ

) ∫∞
0
V(t,a)da

= pΛ−

(
h̄
Λ

µ
+ ᾱ+ µ

) ∫∞
0
V(t,a)da,

where we use V(t,a)|a=∞ = 0. Thus we have

lim inf
t→∞

∫∞
0
V(t,a)da >

pΛ

h̄Λµ + ᾱ+ µ
:= ε2.

This completes the proof.

The following proposition directly follows from Proposition 2.2.

Proposition 2.3. If x0 ∈ Y and ||x0||Y 6 A for some constant A > Λ
µ , then the following hold true for t > 0,

(i) 0 6 S(t),
∫∞

0 V(t,a)da,
∫∞

0 E(t,a)da, I(t),
∫∞

0 R(t,b)db 6 A;

(ii) H(t) 6 h̄A;

(iii) E(t, 0) 6 (β+ h̄)A2, R(t, 0) 6 kA.

Using a similar argument as in [26, Proposition 4.1], we claim that the following proposition holds.

Proposition 2.4. Let H(t) =
∫∞

0 h(a)V(t,a)da. Then H(t) is Lipschitz continuous on R+ with Lipschitz con-
stant,

LH = h̄(µ+ ᾱ+ h̄A)A+ pΛh̄+MhA.

2.4. The basic reproductive number and equilibria
There always exists the disease-free equilibrium E0 = (S0,V0(a), 0, 0, 0) satisfies

S0 =
Λ

µ
[(1 − p) + pK] , V0(a) = pΛΩ(a), E0(a) = 0, I0 = 0, R0(b) = 0, (2.4)

where K =
∫∞

0 α(a)∆(a)da and ∆(·) is defined in (2.2).
Define the basic reproduction number as,

<0 =
(βS0 +

∫∞
0 h(a)V

0(a)da)θ1

(µ+ k) − kθ2
, (2.5)

where θ1 =
∫∞

0 σ(a)Γ(a)da, θ2 =
∫∞

0 γ(b)Υ(b)db. Note that 1/(µ+ k) is the average time in infectious
class on the first pass, k/(µ+ k) and θ2 are the probability of surviving the infectious class and entering
the removed class alive, respectively. Thus the total average time in the infectious class not in the removed
class (on multiple passes) is

1
µ+ k

[
1 +

δθ2

µ+ k
+

(
δθ2

µ+ k

)2

+ · · ·

]
=

1
µ+ k(1 − θ2)

. (2.6)

Multiplying (2.6) by (βS0 +
∫∞

0 h(a)V
0(a)da)θ1 gives <0, which is the average number of new infections

generated by a single newly infectious individual during the full infectious period. In what follows, we
shall prove that <0 serves as a threshold parameter for global stability of (1.4).

Denote
n∗(a) = h(a)I∗ + ζ(a), Ω∗(a) = e−

∫a
0 n
∗(r)dr.
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The equations for an equilibrium are obtained from (1.4) by setting the time derivatives equal to 0 with
boundary conditions, that is, endemic equilibrium (S∗,V∗(a),E∗(a), I∗,R∗(b)) ∈ Y of (1.4) satisfies

0 = (1 − p)Λ− µS∗ −βS∗I∗ +

∫∞
0
α(a)V∗(a)da,

dV∗(a)

da
= −n∗(a)V∗(a),

dE∗(a)

da
= −ε(a)E∗(a),

0 =

∫∞
0
σ(a)E∗(a)da− (µ+ k)I∗ +

∫∞
0
γ(b)R∗(b)db,

dR∗(b)

db
= −η(b)R∗(b),

E∗(0) = βS∗I∗ +
∫∞

0
h(a)V∗(a)daI∗,

R∗(0) = kI∗, V∗(0) = pΛ.

(2.7)

From the second, third and fifth equations of (2.7), we obtain

V∗(a) = V∗(0)Ω∗(a) = pΛΩ∗(a), (2.8)

E∗(a) = E∗(0)Γ(a) =
(
βS∗I∗ +

∫∞
0
h(a)V∗(a)daI∗

)
Γ(a), (2.9)

and
R∗(b) = R∗(0)Υ(b) = kI∗Υ(b). (2.10)

One substitutes (2.8) into the first equation of (2.7), yields

S∗ =
Λ

µ+βI∗

(
(1 − p) + p

∫∞
0
α(a)Ω∗(a)da

)
=

Λ

µ+βI∗
[(1 − p) + pK∗] ,

where K∗ =
∫∞

0 α(a)Ω
∗(a)da. Recall that 0 < K∗ 6 K 6

∫∞
0 α(a)e

−
∫a

0 α(s)dsda = 1. Substituting (2.8),
(2.9), (2.10) and S0 into the fourth equation of (2.7) yields

0 = βS0θ1
µ [(1 − p) + pK∗]

(µ+βI∗) [(1 − p) + pK]
+ pΛθ1

∫∞
0
h(a)Ω∗(a)da+ kθ2 − (µ+ k). (2.11)

Denote the right-hand side of (2.11) by Σ(I∗). Some calculations yield

Σ ′(I∗) = βS0θ1
µ

[(1 − p) + pK]

−p(µ+βI∗)
∫∞

0 α(a)Ω
∗(a)da

∫a
0 h(r)dr−β [(1 − p) + pK∗]

(µ+βI∗)2

− pΛθ1

∫∞
0
h(a)Ω∗(a)da

∫a
0
h(r)dr < 0.

This implies that Σ(I∗) monotonically decreases. Since

Σ(0) = βS0θ1 + θ1

∫∞
0
h(a)V0(a)da− (µ+ k) + kθ2 = (µ+ k− kθ2)(<0 − 1),

if <0 6 1, then Σ(0) 6 0. So (2.11) has no positive real root. If <0 > 1, then Σ(0) > 0. This suggests
that (2.11) admits a unique positive real root, denoted by I∗. Thus a unique endemic equilibrium E∗ =
(S∗(a),V∗(a),E∗(a), I∗,R∗(a)) exists under the condition <0 > 1.

Theorem 2.5. Let <0 be defined by (2.5), we have the following results.

(i) System (1.4) always admits a disease-free equilibrium E0 = (S0,V0(a), 0, 0, 0), which is defined by (2.4).

(ii) System (1.4) has a unique endemic equilibrium E∗ when <0 > 1.
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3. Asymptotic smoothness of {Φ(t)}t≥0

By Proposition 2.2, the semiflow is point-dissipative and Φ(R+ × B) is bounded for every bounded
subset B of Y. By [7, Theorem 3.4.6], the semiflow has a compact attractor of bounded sets if it is
asymptotically smooth. To give the existence of compact attractor, we follow the approach in [22, Theorem
4.2 of Chapter IV].

Definition 3.1 ([19]). A set A0 in Y is called a compact attractor of a set B ⊆ X if A0 is compact, invariant,
and non-empty and Φt(B) → A0 as t → ∞. The last means that, for every open subset U of Y with
A0 ⊆ U, there is some r > 0 such that Φt(B) ⊆ U for all t > r (i.e., Φ([r,∞)×B) ⊆ U).

To this end, we first divide {Φ(t)}t>0 into two parts,

Φ1(t)x0 := (0, ϕ̃(t, ·), φ̃(t, ·), 0, ψ̃(t, ·))T , (3.1)

and
Φ2(t)x0 := (S(t), Ṽ(t, ·), Ẽ(t, ·), I(t), R̃(t, ·))T , (3.2)

That is to say, Φ(t)x0 = Φ1(t)x0 +Φ2(t)x0. Each component is defined by

ϕ̃(t, ·) =
{

0, for t > a > 0,
V(t,a), for a > t > 0, Ṽ(t, ·) =

{
V(t,a), for t > a > 0,
0, for a > t > 0,

φ̃(t, ·) =
{

0, for t > a > 0,
E(t,a), for a > t > 0, Ẽ(t, ·) =

{
E(t,a) for t > a > 0,
0, for a > t > 0,

and

ψ̃(t, ·) =
{

0, for t > b > 0,
R(t,b), for b > t > 0, R̃(t, ·) =

{
R(t,b), for t > b > 0,
0, for b > t > 0.

Theorem 3.2 ([7, 8]). The semi-flow Φ : Y→ Y is asymptotically smooth if there are maps Φ1,Φ2 : R+ × Y→ Y

s.t. Φ(t,Y) = Φ1(t,Y) +Φ2(t,Y), and the following hold for any bounded closed set Ξ that is forward invariant
under Φ:

(i) limt→∞ diamΦ1(t,Ξ) = 0;

(ii) there exists tΞ > 0 such that Φ2(t,Ξ) has compact closure for each t > tΞ.

The rest of this section is spent on proving Theorem 3.2.
Recall that Φ1 (t) and Ξ are defined by (3.1) and (2.3), respectively. It is sufficient to verify that there

exists a function z(·, ·) : R+ ×R+ → R+ such that for any r > 0,

lim
t→+∞ z (t, r) = 0, (3.3)

and
‖Φ1 (t) x0‖Y 6 h (t, r) , ∀x0 ∈ Ξ, ‖x0‖Y 6 r, t > 0. (3.4)

To this end, we rely on the Volterra formulations in (3.1) and (3.2). It is easy to see that for x0 ∈ Ξ
satisfying ‖x0‖Y 6 r,

‖Φ1 (t, x0)‖Y = ‖0‖+ ‖ϕ̃ (t, ·)‖Y +
∥∥φ̃ (t, ·)

∥∥
Y
+ ‖0‖+

∥∥ψ̃(t, ·)∥∥
Y

=

∫+∞
t

V0(a− t)e
−
∫t

0 [h(a−t+τ)I(τ)+α(a−t+τ)+µ]dτda

+

∫+∞
t

E0(a− t)e
−
∫t

0 [σ(a−t+τ)I(τ)+µ]dτda+

∫+∞
t

R0(b− t)e
−
∫t

0 [γ(b−t+τ)+µ]dτdb
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6 e−µ0t

(
|0|+

∫∞
0

|V0(τ)|dτ+

∫∞
0

|E0(τ)|dτ+ |0|+
∫∞

0
|R0(τ)|dτ

)
6 e−µ0t‖x0‖Y,

and this implies that (3.3) and (3.4) hold with z(t, r) = re−µ0t.
To verify condition (ii) of Theorem 3.2 holds true, it is sufficient to prove that for all t > 0, Φ2 (t) maps

any bounded subsets of Ξ into sets with compact closure in Y. Recall that for x0 in any bounded subset of
Ξ, I (t) remains in the compact set {

ψ ∈ Rn+ : 0 6 ψ 6
Λ

µ

}
for all t > 0. Therefore, in what follows, we shall show that Ṽ(t, ·) , Ẽ(t, ·) and R̃(t, ·) remain in a pre-
compact subset of Y which is independent of x0. By the Fréchet-Kolmogorov theorem, it is sufficient to
show that

Ṽ (t,a) :=
{
pΛe−

∫a
0 {h(τ)I(t−a+τ)+α(τ)+µ}dτ, t− a > 0,

0, a− t > 0,
(3.5)

Ẽ (t,a) :=
{

[βS(t− a)I(t− a) +H(t− a)I(t− a)] e−
∫a

0 {σ(τ)+µ}dτ, t− a > 0,
0, a− t > 0,

(3.6)

and

R̃ (t,b) :=

{
kI(t− b)e−

∫b
0 {γ(τ)+µ}dτ, t− b > 0,

0, b− t > 0,
(3.7)

satisfy the following conditions:

(i) The supremum of
∫+∞

0
Θ̃ (t,a)da for all initial data x0 ∈ Ξ is finite.

(ii) lim
h→+∞

∫+∞
h

Θ̃ (t,a)da = 0 uniformly in x0 ∈ Ξ.

(iii) lim
h→+0

∫+∞
0

∣∣Θ̃ (t,a+ h) − Θ̃ (t,a)
∣∣da = 0 uniformly in x0 ∈ Ξ.

(iv) lim
h→+0

∫h
0
Θ̃ (t,a)da = 0 uniformly in x0 ∈ Ξ.

Recall that Ṽ (t,a), Ẽ (t,a) and R̃ (t,b) are bounded from Propositions 2.2 and 2.3, and hence, (i), (ii)
and (iv) immediately follow. We only need to verify Ṽ (t,a), Ẽ (t,a) and R̃ (t,b) satisfy (iii), respectively.
Since we shall consider h→ +0, we can assume that h ∈ (0, t) without loss of generality. Then, from (3.5),
we have ∫+∞

0

∣∣Ṽ (t,a+ h) − Ṽ (t,a)
∣∣da

=

∫t
t−h

∣∣0 − Ṽ (t,a)
∣∣da+ ∫t−h

0

∣∣Ṽ (t,a+ h) − Ṽ (t,a)
∣∣da

6 pΛh+ pΛ

∫t−h
0

∣∣∣e− ∫a+h0 {h(τ)I(t−a−h+τ)+α(τ)+µ}dτ − e−
∫a

0 {h(τ)I(t−a+τ)+α(τ)+µ}dτ
∣∣∣da

6 pΛh+ pΛ

∫t−h
0

∣∣∣∣∣
∫a+h

0
{h (τ) I (t− a− h+ τ) +α(τ) + µ}dτ

−

∫a
0
{h (τ) I (t− a+ τ) +α(τ) + µ}dτ

∣∣∣∣da,

where we use the relation
∣∣e−L1(a) − e−L2(a)

∣∣ 6 |L1(a) − L2(a)|. Thus, by a zero-trick, we have∫+∞
0

∣∣Ṽ (t,a+ h) − Ṽ (t,a)
∣∣da 6 pΛh+A1 +B1, (3.8)
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where

A1 : = pΛ

∫t−h
0

∣∣∣∣∣
∫a+h

0
{h (τ) I (t− a− h+ τ) +α(τ) + µ}dτ

−

∫a+h
0

{h (τ) I (t− a+ τ) +α(τ) + µ}dτ

∣∣∣∣∣da
6 pΛh̄

∫t−h
0

∫a+h
0

|I (t− a− h+ τ) − I (t− a+ τ)|dτda,

and

B1 :=pΛ

∫t−h
0

∣∣∣∣∣
∫a+h

0
{h (τ) I(t− a+ τ) +α(τ) + µ}dτ

−

∫a
0
{h (τ) I(t− a+ τ) +α(τ) + µ}dτ

∣∣∣∣da
6pΛ(ᾱ+ µ)h(t− h) + pΛh̄

∫t−h
0

∫a+h
a

|I (t− a+ τ)|dτda,

where σ̄, γ̄, h̄ are positive constants defined as in Assumption 1.1.
Since ∥∥∥∥ d

dt
I (t)

∥∥∥∥ 6 {σ̄A+ (µ+ k)A+ γ̄A} =: MI,

it follows that I (t) is Lipschitz continuous on R+ with Lipschitz coefficient MI. Hence,

A1 6 pΛh̄MIh

∫t−h
0

(a+ h)da = pΛh̄MIh

{
1
2
(t− h)2 + h (t− h)

}
. (3.9)

Since ‖I (t)‖ 6 A for all t > 0 from Proposition 2.3, we have

B1 6 pΛ(ᾱ+ µ)h(t− h) + pΛh̄Ah (t− h) . (3.10)

Consequently, it follows from (3.8), (3.9) and (3.10) that∫+∞
0

∣∣Ṽ (t,a+ h) − Ṽ (t,a)
∣∣da 6pΛh+ pΛh̄MIh

{
1
2
(t− h)2 + h (t− h)

}
+ pΛ(ᾱ+ µ)h(t− h) + pΛh̄Ah (t− h) ,

which approaches 0 as h→ +0 in x0 ∈ Ξ.
Similarly, from (3.6), we have∫+∞

0

∣∣Ẽ (t,a+ h) − Ẽ (t,a)∣∣da =

∫t
0
|E (t,a+ h) − E (t,a)|db

=

∫t−h
0

|E (t− a− h, 0) Γ(a+ h) − E (t− a, 0) Γ(a)|da

+

∫t
t−h

|E(t− a, 0)Γ(b)|da

6 (β+ h̄)A2h+A2 +B2,

where

A2 =

∫t−h
0

E (t− a− h, 0) |Γ(a+ h) − Γ(a)|da,
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and

B2 =

∫t−h
0

Γ(a)|E (t− a− h, 0) − E(t− a, 0)|da.

Since ∫t−h
0

|Γ(a+ h) − Γ(a)|da =

∫t−h
0

Γ(a)da−

∫t−h
0

Γ(a+ h)da

=

∫t−h
0

Γ(a)da−

∫t
h

Γ(a)da

=

∫t−h
0

Γ(a)da−

∫t−h
h

Γ(a)da−

∫t
t−h

Γ(a)da

=

∫h
0
Γ(a)da−

∫t
t−h

Γ(a)da 6 h,

it follows from (iii) of Proposition 2.3, we have A2 6 (β+ h̄)A2h. We rewrite B2 as

B2 =

∫t−h
0

|[βS(t− a− h)I(t− a− h) +H(t− a− h)I(t− a− h)]

− [βS(t− a)I(t− a) +H(t− a)I(t− a)]| Γ(a)da

6
∫t−h

0
|[βS(t− a− h)I(t− a− h) −βS(t− a)I(t− a)]| Γ(a)da

+

∫t−h
0

|[H(t− a− h)I(t− a− h) −H(t− a)I(t− a)]| Γ(a)da.

Since S(t) and I(t) are Lipschitz continuous on R+ with Lipschitz constants MS = (1 − p)Λ+ (µ+ ᾱ)A+
βA2 andMI = (σ̄+µ+k+ γ̄)A, respectively. Recall that from Proposition 2.4, H(t) is Lipschitz continuous
on R+ with Lipschitz constant LH, thus S(t)I(t) and H(t)I(t) are Lipschitz continuous with Lipschitz
constants MSI = AMI +AMS and MHI = p̄AMI +ALH, respectively. Then taking M = βMSI +MHI,
we get,

B2 6Mh
∫t−h

0
e−(µ0+µ)ada 6

Mh

µ0 + µ
.

Consequently, ∫+∞
0

∣∣Ẽ (t,a+ h) − Ẽ (t,a)∣∣da 6 2(β+ h̄)A2h+
Mh

µ0 + µ
,

which approaches 0 as h→ +0 in x0 ∈ Ξ.
Lastly, from (3.7), we have∫+∞
0

∣∣R̃ (t,b+ h) − R̃ (t,b)∣∣db =

∫t
0
|R (t,b+ h) − R (t,b)|db

=

∫t−h
0

|R (t− b− h, 0)Υ(b+ h) − R (t− b, 0)Υ(b)|db

+

∫t
t−h

|0 − R(t− b, 0)Υ(b)|db

6 k

∫t−h
0

I(t− b− h) |Υ(b+ h) −Υ(b)|db

+ k

∫t−h
0

Υ(b) |I(t− b− h) − I(t− b)|db+

∫t
t−h

|R(t− b, 0)Υ(b)|db.
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Similarly as above estimations, though in a different context, we get∫+∞
0

∣∣R̃ (t,b+ h) − R̃ (t,b)∣∣db 6

(
2kA+

kMI

µ0 + µ

)
h,

which converges uniformly to 0 as h→ 0. This completes to verify that Ṽ (t,a), Ẽ (t,a) and R̃ (t,b) satisfy
(iii), respectively.

4. Uniform persistence for <0 > 1

This section is devoted to prove the uniform persistence of system (1.4) when <0 > 1, which implies
that there always exist infectious individuals if the infectivity initially presents.

We introduce the following notations to define the invariant sets of uniform persistence. Define

ā := inf
{
a :

∫∞
a

σ(a)da = 0
}

, b̄ := inf
{
b :

∫∞
b

γ(b)db = 0
}

.

Obviously, ā, b̄ > 0 due to σ(a),γ(b) ∈ L1
+. Further we define

X̂ := L1
+ ×R+ × L1

+,

Ŷ :=

{
(E(t, ·), I(t),R(t, ·))T ∈ X̂ :

∫ ā
0
E(t,a)da > 0 or I(t) > 0 or

∫ b̄
0
R(t,b)db > 0

}
,

and
Y := R+ × L1

+ × Ŷ, ∂Y := X \ Y, ∂Ŷ := X̂ \ Ŷ.

Using the similar arguments in [11, Proposition 5.1], we get the following result.

Theorem 4.1. For the semi-flow Φ(t)t>0 generated by system (1.4), the set ∂Y is positively invariant, that is,
Φ(t,∂Y) ⊂ ∂Y for t > 0.

Proof. Suppose that (S0,V0(·),E0(·), I0,R0(·)) ∈ ∂Y , then we have (E0(·), I0,R0(·)) ∈ ∂Ŷ. We consider the
following system, 

(
∂

∂t
+
∂

∂a

)
E(t,a) = −σ(a)E(t,a) − µE(t,a),

dI(t)

dt
=

∫∞
0
σ(a)E(t,a)da− (µ+ k)I(t) +

∫∞
0
γ(b)R(t,b)db,(

∂

∂t
+
∂

∂a

)
R(t,b) = −γ(b)R(t,b) − µR(t,b),

E(t, 0) = βS(t)I(t) +
∫∞

0
h(a)V(t,a)daI(t),

R(t, 0) = kI(t),
E(0,a) = E0(a), I(0) = I0, R(0,b) = R0(b).

Since S(t) 6 Λ
µ ,
∫∞

0 V(t,a)da 6 Λ
µ as t tend to the infinity, it follows that

E(t,a) 6 Ĕ(t,a), I(t) 6 Ĭ(t), R(t,b) 6 R̆(t,b), (4.1)

where Ĕ(t,a), Ĭ(t), R̆(t,b) satisfy,

(
∂

∂t
+
∂

∂a

)
Ĕ(t,a) = −σ(a)Ĕ(t,a) − µĔ(t,a),

dĬ(t)

dt
=

∫∞
0
σ(a)Ĕ(t,a)da− (µ+ k)Ĭ(t) +

∫∞
0
γ(b)R̆(t,b)db,(

∂

∂t
+
∂

∂a

)
Ř(t,b) = −γ(b)R̆(t,b) − µR̆(t,b),

Ĕ(t, 0) = (β+ h̄)
Λ

µ
Ĭ(t),R(t, 0) = kĬ(t),

Ĕ(0,a) = E0(a), Ĭ(0) = I0, R̆(0,b) = R0(b).

(4.2)
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Solving Ě(t,a), Ř(t,b) of (4.2) yields

Ĕ (t,a) :=

{
Ĕ(t− a, 0)e−

∫a
0 {σ(τ)+µ}dτ = (β+ h̄)Λµ Ĭ(t− a)Γ(a), t > a > 0,

Ĕ0(a− t)e−
∫a
a−t{σ(τ)+µ}dτ = E0(a− t)

Γ(a)
Γ(a−t) , a > t > 0,

(4.3)

and

R̆ (t,b) :=

{
R̆(t− b, 0)e−

∫b
0 {γ(τ)+µ}dτ = kĬ(t− b)Υ(b), t > b > 0,

R̆0(b− t)e−
∫b
b−t{γ(τ)+µ}dτ = R0(b− t)

Υ(b)
Υ(b−t) , b > t > 0.

(4.4)

Substituting (4.3) and (4.4) into the second equation of (4.2) gives,

d

dt
Ĭ(t) = (β+ h̄)

Λ

µ

∫t
0
σ(a)Γ(a)Ĭ(t− a)da− (µ+ k)Ĭ(t) + k

∫t
0
γ(b)Υ(b)Ĭ(t− b)db+Q(t),

where

Q(t) =

∫∞
t

σ(a)E0(a− t)
Γ(a)

Γ(a− t)
da+

∫∞
t

γ(b)R0(b− t)
Υ(b)

Υ(b− t)
db.

It follows from (E0(·), I0,R0(·)) ∈ ∂Ŷ that Q(t) ≡ 0 holds true for t > 0. Further we have
d

dt
Ĭ(t) = (β+ h̄)

Λ

µ

∫t
0
σ(a)Γ(a)Ĭ(t− a)da− (µ+ k)Ĭ(t) + k

∫t
0
γ(b)Υ(b)Ĭ(t− b)db,

Ĭ(0) = 0,

has a unique solution Ĭ(t) = 0. By (4.3) and (4.4), we have Ĕ(t,a) = 0, R̆(t,b) = 0 for 0 6 a,b 6 t.
Moreover, for a,b > t, it is easy to see that

‖ Ĕ(t,a) ‖L1=‖ E0(a− t)
Γ(a)

Γ(a− t)
‖L16‖ E0 ‖L1 e−(µ0+µ)t,

and

‖ R̆(t,b) ‖L1=‖ R0(b− t)
Υ(b)

Υ(b− t)
‖L16‖ R0 ‖L1 e−(µ0+µ)t.

It follows that limt→∞ Ĕ(t,a) = 0, limt→∞ R̆(t,b) = 0. Thus, from (4.1), limt→∞ E(t,a) = 0, limt→∞ I(t) =
0, and limt→∞ R(t,b) = 0. This completes the proof.

To proceed, we adopted the method in Hale and Waltman [9] to prove the uniform persistence of
system (1.4). We introduce the following lemma.

Lemma 4.2 ([1]). Consider the following scalar Volterra integro-differential equations:

dJ(t)

dt
=

∫∞
0
q(τ)J(t− τ)dτ− κJ(t), for

∫∞
0
q(τ)dτ > κ > 0,

where q(·) ∈ L1
+, J(0) > 0. Then there is a unique solution J(t) that is unbounded.

According to [9, Theorem 5.2], one only needs to verify that there are T > 0 and ε > 0, such that

lim
t→∞ inf ‖ Φ(t) ‖X> ε, for t > T , x ∈ Y.

To this end, we define Ws(E0) = {x ∈ Y : limt→∞Φ(t, x) = E0}. It suffices to examine that

Ws(E0)∩ Y = ∅.

By using the same method as in [11, Theorem 5.4], we are able to show the following theorem about the
uniform persistence of (1.4).
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Theorem 4.3. Suppose that <0 > 1. The semi-flow Φ(t)t>0 is uniformly persistent with respect to (Y,∂Y), that
is, there exists a constant ε > 0 which does not depend on initial data, such that lim inft→∞ ‖ Φ(t) ‖Y> ε.

Uniform persistence and existence of global attractor A0 for Φ(t)t>0 now follows immediately from
[3, Theorem 3.7].

Theorem 4.4. The semi-flow Φ(t)t>0 admits a global attractor A0 in Y, which attracts any bounded subset of Y.

5. Stability analysis

5.1. Global stability of the disease-free equilibrium
In fact, we have established the global asymptotic stability of disease-free equilibrium of system (1.4)

in Theorem 4.1 when <0 > 1. To highlight the role of Lyapunov function techniques in establishing the
stability of equilibria, we give the proof again by Lyapunov function techniques. Before going into details,
denote

G(z) = z− 1 − ln z, ∀z > 0.

Obviously, G : R+ → R+ attains its strict global minimum at z = 1 and G(z) > G(1) = 0.
Define two key functions as

ω1(a) =

∫+∞
a

σ(s)e−
∫s
a ε(τ)dτds, ω2(b) =

∫+∞
a

γ(s)e−
∫s
b η(τ)dτds,

it follows that ω1(a),ω2(b) > 0 for a,b > 0 and ωi(0) = θi for i = 1, 2. The derivative of ω1(a),ω2(b)
satisfy

d

da
ω1(a) = ω1(a)ε(a) − σ(a),

d

da
ω2(b) = ω2(b)η(b) − γ(b).

Theorem 5.1. Consider system (1.4) with <0 defined by (2.5). The disease-free equilibrium of system (1.4) is
globally asymptotically stable if <0 6 1 and it is unstable if <0 > 1.

Proof. Consider a Lyapunov functional

LDFE(t) = L1(t) + L2(t) + L3(t) + I(t) + L4(t),

where 

L1(t) = θ1S
0G

(
S

S0

)
,

L2(t) = θ1

∫∞
0
V0(a)G

(
V(t,a)
V0(a)

)
da,

L3(t) =

∫∞
0
ω1(a)E(t,a)da,

L4(t) =

∫∞
0
ω2(b)R(t,b)db.

Note that µS0 = (1 − p)Λ+
∫∞

0 α(a)V
0(a)da. Calculating the derivative of L1(t) along with the solu-

tions of system (1.4) gives

dL1(t)

dt
= θ1

(
1 −

S0

S(t)

)[
(1 − p)Λ

(
1 −

S(t)

S0

)
−βS(t)I(t) +

∫∞
0
α(a)V0(a)

(
V(t,a)
V0(a)

−
S(t)

S0

)
da

]
= θ1(1 − p)Λ

(
2 −

S0

S(t)
−
S(t)

S0

)
+ θ1

∫∞
0
α(a)V0(a)

(
V(t,a)
V0(a)

−
S(t)

S0 −
S0V(t,a)
SV0(a)

+ 1
)
da (5.1)

+ θ1βS
0I(t) − θ1βS(t)I(t).
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The derivative of L2(t) satisfies,

dL2(t)

dt
= θ1

∫∞
0
V0(a)

∂

∂t
G

(
V(t,a)
V0(a)

)
da

= − θ1

∫∞
0
V0(a)

(
1

V0(a)
−

1
V(t,a)

)(
(µ+α(a) + h(a)I(t))V(t,a) +

∂V(t,a)
∂a

)
da

= − θ1

∫∞
0
V0(a)

(
V(t,a)
V0(a)

− 1
)(

Va(t,a)
V(t,a)

+ µ+α(a) + h(a)I(t)

)
da,

where Va(t,a) denotes ∂V(t,a)
∂a . Recall that dV

0(a)
da = −(µ+α(a))V0(a), it follows that

∂

∂a
G

(
V(t,a)
V0(a)

)
=

(
V(t,a)
V0(a)

− 1
)(

Va(t,a)
V(t,a)

+ µ+α(a)

)
.

Using integration by parts, and V0(0) = pΛ,V(t, 0) = pΛ, we have

dL2(t)

dt
= − θ1

∫∞
0
V0(a)

∂

∂a
G

(
V(t,a)
V0(a)

)
da− θ1

∫∞
0
V0(a)

(
V(t,a)
V0(a)

− 1
)
h(a)daI(t)

= − θ1V
0(a)G

(
V(t,a)
V0(a)

)∣∣∣∣
a=∞ − θ1

∫∞
0
V0(a)(µ+α(a))G

(
V(t,a)
V0(a)

)
da (5.2)

− θ1

∫∞
0
h(a)V(t,a)daI(t) + θ1

∫∞
0
h(a)V0(a)daI(t).

The derivative of L3(t) satisfies

dL3(t)

dt
= ω1(0)E(t, 0) −

∫∞
0
σ(a)E(t,a)da

= θ1

(
βS(t)I(t) +

∫∞
0
h(a)V(t,a)daI(t)

)
−

∫∞
0
σ(a)E(t,a)da.

(5.3)

Here we use the fact that ω1(0) = θ1 and E(t, 0) = βSI+
∫∞

0 h(a)V(t,a)daI(t).
Similarly, by using ω2(0) = θ2 and R(t, 0) = kI(t), the derivative of L4(t) becomes

dL4(t)

dt
= θ2kI(t) −

∫∞
0
γ(b)R(t,b)db. (5.4)

It follows from (5.1), (5.2), (5.3), (5.4) that

dLDFE(t)

dt
= − θ1V

0(a)G

(
V(t,a)
V0(a)

)∣∣∣∣
a=∞ − θ1µ

∫∞
0
V0(a)G

(
V(t,a)
V0(a)

)
da+

⊕
1

+
⊕

2

+
⊕

3

,

where ⊕
1

= θ1(1 − p)Λ

(
2 −

S0

S(t)
−
S(t)

S0

)
= − θ1(1 − p)Λ

[
G

(
S0

S(t)

)
+ G

(
S(t)

S0

)]
,

⊕
2

= θ1

∫∞
0
α(a)V0(a)

(
−
S(t)

S0 −
S0V(t,a)
S(t)V0(a)

+ 2 + ln
V(t,a)
V0(a)

)
da
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= θ1

∫∞
0
α(a)V0(a)

(
−
S(t)

S0 −
S0V(t,a)
S(t)V0(a)

+ 2 + ln
S(t)

S0 + ln
S0V(t,a)
S(t)V0(a)

)
da

= − θ1

∫∞
0
α(a)V0(a)

[
G

(
S(t)

S0

)
+ G

(
S0V(t,a)
S(t)V0(a)

)]
da,

and ⊕
3

= θ1βS
0I(t) + θ1

∫∞
0
h(a)V0(a)I(t)da+ θ2kI(t) − (µ+ k)I(t)

= [(µ+ k) − kθ2](<0 − 1)I(t).

Consequently, we have that

dLDFE(t)

dt
= − θ1V

0(a)G

(
V(t,a)
V0(a)

)∣∣∣∣
a=∞ − θ1µ

∫∞
0
V0(a)G

(
V(t,a)
V0(a)

)
da

− θ1(1 − p)Λ

[
G

(
S0

S(t)

)
+ G

(
S(t)

S0

)]
− θ1

∫∞
0
α(a)V0(a)

[
G

(
S(t)

S0

)
+ G

(
S0V(t,a)
S(t)V0(a)

)]
da+ [(µ+ k) − kθ2](<0 − 1)I(t).

Therefore, <0 6 1 ensures that dLDFE(t)dt 6 0 holds. Furthermore, the strict equality holds only if S(t) = S0,
V(t,a) = V0(a) and I(t) = 0, simultaneously. By the Lyapunov-Lasalle invariance principle, the disease-
free equilibrium E0 is globally asymptotically stable when <0 6 1.

5.2. Global stability of endemic equilibrium
In this subsection, a sharp criterion for the global asymptotic stability of the endemic equilibrium of

(1.4) is established. When <0 > 1, we know that E0 becomes unstable and (1.4) also has an endemic
equilibrium E∗ in addition to E0. In the section, we discuss the stability of this endemic equilibrium.

Theorem 5.2. Consider system (1.4). If <0 > 1, endemic equilibrium E∗ is globally asymptotically stable.

Proof. Define a Lyapunov functional as

LEE(t) =W1(t) +W2(t) +W3(t) +W4(t) +W5(t),

where 

W1(t) = θ1S
∗G

(
S(t)

S∗

)
,

W2(t) = θ1

∫∞
0
V∗(a)G

(
V(t,a)
V∗(a)

)
da,

W3(t) =

∫∞
0
ω1(a)E

∗(a)G

(
E(t,a)
E∗(a)

)
da,

W4(t) = I
∗G

(
I(t)

I∗

)
,

W5(t) =

∫∞
0
ω2(b)R

∗(b)G

(
R(t,b)
R∗(b)

)
db.

Calculating the derivative of W1(t) by µS∗ = (1 − p)Λ−βS∗I∗ +
∫∞

0 α(a)V
∗(a)da gives

dW1(t)

dt
= θ1

(
1 −

S∗

S(t)

)(
(1 − p)Λ− µS(t) −βS(t)I(t) +

∫∞
0
α(a)V(t,a)da

)
= θ1(1 − p)Λ

(
2 −

S∗

S(t)
−
S(t)

S∗

)
+ θ1βS

∗I∗
(
S(t)

S∗
−
S(t)I(t)

S∗I∗
− 1 +

I(t)

I∗

)
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+ θ1

∫∞
0
α(a)V∗(a)

(
V(t,a)
V∗(a)

−
S(t)

S∗
−
S∗V(t,a)
S(t)V∗(a)

+ 1
)
da. (5.5)

The derivative of W2(t) along with the solutions of system (1.4) satisfies

dW2(t)

dt
= θ1

∫∞
0
V∗(a)

(
1

V∗(a)
−

1
V(t,a)

)
∂

∂t
V(t,a)da

= − θ1

∫∞
0
V∗(a)

(
V(t,a)
V∗(a)

− 1
)[
Va(t,a)
V(t,a)

+n∗(a) + h(a)I∗
(
I(t)

I∗
− 1
)]
da. (5.6)

Note that dV
∗(a)
da = −n∗(a)V∗(a), it follows that

∂

∂a
G

(
V(t,a)
V∗(a)

)
=

(
V(t,a)
V∗(a)

− 1
)(

Va(t,a)
V(t,a)

+n∗(a)

)
,

and

G

(
V(t, 0)
V∗(0)

)
= G(1) = 0.

Thus, (5.6) becomes

dW2(t)

dt
= − θ1

∫∞
0
V∗(a)

∂

∂a
G

(
V(t,a)
V∗(a)

)
da− θ1

∫∞
0
V∗(a)h(a)I∗

(
V(t,a)
V∗(a)

− 1
)(

I(t)

I∗
− 1
)
da

= − θ1V
∗(a)G

(
V(t,a)
V∗(a)

) ∣∣∣∣
a=∞ − θ1

∫∞
0
V∗(a) [h(a)I∗ +α(a) + µ]G

(
V(t,a)
V∗(a)

)
da

− θ1

∫∞
0
V∗(a)h(a)I∗

(
V(t,a)I(t)
V∗(a)I∗

−
V(t,a)
V∗(a)

−
I(t)

I∗
+ 1
)
da (5.7)

= − θ1V
∗(a)G

(
V(t,a)
V∗(a)

) ∣∣∣∣
a=∞ − θ1

∫∞
0
V∗(a) [α(a) + µ]G

(
V(t,a)
V∗(a)

)
da

− θ1

∫∞
0
V∗(a)h(a)I∗

(
V(t,a)I(t)
V∗(a)I∗

−
I(t)

I∗
− ln

V(t,a)
V∗(a)

)
da.

Similarly, the derivative of W3(t) satisfies

dW3(t)

dt
= −

∫∞
0
ω1(a)

(
1 −

E∗(a)

E(t,a)

)(
∂

∂a
E(t,a) + ε(a)E(t,a)

)
da

= −

∫∞
0
ω1(a)E

∗(a)

(
E(t,a)
E∗(a)

− 1
)(

Ea(t,a)
E(t,a)

+ ε(a)

)
da,

(5.8)

where Ea(t,a) denotes ∂E(t,a)∂a . Recall that

∂

∂a
G

(
E(t,a)
E∗(a)

)
=

(
E(t,a)
E∗(a)

− 1
)(

Ea(t,a)
E(t,a)

+ ε(a)

)
,

and
dω1(a)

da
= ω1(a)ε(a) − σ(a),

dE∗(a)

da
= −ε(a)E∗(a).

Thus, (5.8) becomes

dW3(t)

dt
= −

∫∞
0
ω1(a)E

∗(a)
∂

∂a
G

(
E(t,a)
E∗(a)

)
da
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= −ω1(a)E
∗(a)G

(
E(t,a)
E∗(a)

)∣∣∣∣a=∞
a=0

+

∫∞
0
E∗(a)G

(
E(t,a)
E∗(a)

)
dω1(a)

da
da

+

∫∞
0
ω1(a)G

(
E(t,a)
E∗(a)

)
dE∗(a)

da
da

= θ1E
∗(0)G

(
E(t, 0)
E∗(0)

)
−

∫∞
0
σ(a)E∗(a)G

(
E(t,a)
E∗(a)

)
da (5.9)

= θ1E(t, 0) − θ1E
∗(0)

(
1 + ln

E(t, 0)
E∗(0)

)
−

∫∞
0
σ(a)E∗(a)G

(
E(t,a)
E∗(a)

)
da.

Note that ω1(0) = θ1, E∗(0) = βS∗I∗ +
∫∞

0 h(a)E
∗(a)daI∗, E(t, 0) = βS(t)I(t) +

∫∞
0 h(a)V(t,a)daI(t). By

a zero trick, we calculate the derivative of W4(t) and W5(t) as follows,

dW4(t)

dt
=

(
1 −

I∗

I(t)

)(∫∞
0
σ(a)E(t,a)da+

∫∞
0
γ(b)R(t,b)db− (µ+ δi + k)I(t)

)
=

(
1 −

I∗

I(t)

)[∫∞
0
σ(a)E∗(a)

(
E(t,a)
E∗(a)

−
I(t)

I∗

)
da+

∫∞
0
γ(b)R∗(b)

(
R(t,b)
R∗(b)

−
I(t)

I∗

)
db

]
=

∫∞
0
σ(a)E∗(a)

(
1 −

I(t)

I∗
−
I∗E(t,a)
IE∗(a)

+
E(t,a)
E∗(a)

)
da

+

∫∞
0
γ(b)R∗(b)

(
1 −

I(t)

I∗
−
I∗R(t,b)
IR∗(b)

+
R(t,b)
R∗(b)

)
db,

(5.10)

and
dW5(t)

dt
= ω2(0)R∗(0)G

(
R(t, 0)
R∗(0)

)
−

∫∞
0
γ(b)R∗(b)G

(
R(t,b)
R∗(b)

)
db. (5.11)

Note that ω2(0) = θ2,R∗(0) = kI∗,R(t, 0) = kI, Thus, (5.11) becomes

dW5(t)

dt
= θ2kI

∗G

(
I(t)

I∗

)
+

∫∞
0
γ(b)R∗(b)

(
1 −

R(t,b)
R∗(b)

+ ln
R(t,b)
R∗(b)

)
db. (5.12)

Recall that E(t, 0) = βSI+
∫∞

0 h(a)V(t,a)daI, E
∗(0) = βS∗I∗ +

∫∞
0 h(a)V

∗(a)daI∗. It follows from (5.5),
(5.6), (5.7), (5.8), (5.9), (5.10), (5.11), (5.12), we can get that

dLEE(t)

dt
= − θ1V

∗(a)G

(
V(t,a)
V∗(a)

) ∣∣∣∣
a=∞ − θ1µ

∫∞
0
V∗(a)G

(
V(t,a)
V∗(a)

)
da+

6∑
i=1

⊗
i

, (5.13)

where

⊗
1

= −θ1(1 − p)Λ

(
S(t)

S∗
+
S∗

S(t)
− 2
)

,⊗
2

= θ1βS
∗I∗
(
S(t)

S∗
+
I(t)

I∗
− 2 − ln

E(t, 0)
E∗(0)

)
,⊗

3

= θ1

∫∞
0
α(a)V∗(a)

(
−
S(t)

S∗
−
S∗V(t,a)
S(t)V∗(a)

+ 2 + ln
V(t,a)
V∗(a)

)
da,⊗

4

= θ1

∫∞
0
h(a)V∗(a)I∗

(
I(t)

I∗
+ ln

V(t,a)
V∗(a)

− 1 − ln
E(t, 0)
E∗(0)

)
da,⊗

5

= −

∫∞
0
σ(a)E∗(a)G

(
E(t,a)
E∗(a)

)
da+

∫∞
0
σ(a)E∗(a)

(
1 −

I(t)

I∗
−
I∗E(t,a)
IE∗(a)

+
E(t,a)
E∗(a)

)
da,⊗

6

=

∫∞
0
γ(b)R∗(b)

(
−
I(t)

I∗
−
I∗R(t,b)
I(t)R∗(b)

+ 2 + ln
R(t,b)
R∗(b)

)
db+ θ2kI

∗G

(
I(t)

I∗

)
.
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Obviously,
⊗

1 and
⊗

3 can be rewritten as⊗
1

= −θ1(1 − p)Λ

[
G

(
S(t)

S∗

)
+ G

(
S∗

S(t)

)]
,

and ⊗
3

= −θ1

∫∞
0
α(a)V∗(a)

[
G

(
S(t)

S∗

)
+ G

(
S∗V(t,a)
S(t)V∗(a)

)]
da.

By using E∗(a) =
(
βS∗I∗ +

∫∞
0 h(a)V

∗(a)daI∗
)
Γ(a), we have

⊗
5

=

∫∞
0
σ(a)E∗(a)

(
−
I(t)

I∗
−
I∗E(t,a)
I(t)E∗(a)

+ 2 + ln
E(t,a)
E∗(a)

)
da

= −

∫∞
0
σ(a)E∗(a)

[
G

(
I(t)

I∗

)
+ G

(
I∗E(t,a)
I(t)E∗(a)

)]
da.

By using θ2kI
∗ =
∫∞

0 γ(b)Υ(b)kI
∗db =

∫∞
0 γ(b)R

∗(b)db, we have⊗
6

= −

∫∞
0
γ(b)R∗(b)G

(
I(t)

I∗

)
db−

∫∞
0
γ(b)R∗(b)G

(
I∗R(t,b)
I(t)R∗(b)

)
db+ θ2kI

∗G

(
I(t)

I∗

)
= −

∫∞
0
γ(b)R∗(b)G

(
I∗R(t,b)
I(t)R∗(b)

)
db.

By using the fact that − ln E(t,0)E∗(0) = − ln S(t)S∗ − ln I(t)I∗ + ln S(t)I(t)E
∗(0)

S∗I∗E(t,0) , and

ln
V(t,a)
V∗(a)

− ln
E(t, 0)
E∗(0)

= ln
V(t,a)I(t)E∗(0)
V∗(a)I∗E(t, 0)

− ln
I(t)

I∗
,

which lead to⊗
2

= θ1βS
∗I∗
[
G

(
S

S∗

)
+ G

(
I(t)

I∗

)
− G

(
S(t)I(t)E∗(0)
S∗I∗E(t, 0)

)
− 1 +

S(t)I(t)E∗(0)
S∗I∗E(t, 0)

]
,

and ⊗
4

= θ1

∫∞
0
h(a)V∗(a)I∗

[
G

(
I(t)

I∗

)
− G

(
V(t,a)I(t)E∗(0)
V∗(a)I∗E(t, 0)

)
− 1 +

V(t,a)I(t)E∗(0)
V∗(a)I∗E(t, 0)

]
da.

Further, it is easy to check that

βS∗I∗
(
−1 +

S(t)I(t)E∗(0)
S∗I∗E(t, 0)

)
+

∫∞
0
h(a)V∗(a)I∗

(
−1 +

V(t,a)I(t)E∗(0)
V∗(a)I∗E(t, 0)

)
da = 0.

Consequently, we simplify (5.13) as follows

dLEE(t)

dt
= − θ1(1 − p)ΛG

(
S∗

S(t)

)
− θ1µS

∗G

(
S(t)

S∗

)
− θ1V

∗(a)G

(
V(t,a)
V∗(a)

) ∣∣∣∣
a=∞

− θ1µ

∫∞
0
V∗(a)G

(
V(t,a)
V∗(a)

)
da− θ1

∫∞
0
α(a)V∗(a)G

(
S∗V(t,a)
S(t)V∗(a)

)
da

−

∫∞
0
σ(a)E∗(a)G

(
I∗E(t,a)
I(t)E∗(a)

)
da−

∫∞
0
γ(b)R∗(b)G

(
I∗R(t,b)
I(t)R∗(t,b)

)
db
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− θ1βS
∗I∗G

(
S(t)I(t)E∗(0)
S∗I∗E(t, 0)

)
− θ1

∫∞
0
h(a)V∗(a)I∗G

(
V(t,a)I(t)E∗(0)
V∗(a)I∗E(t, 0)

)
da.

Therefore, dLEE(t)dt 6 0 holds. Furthermore, the strict equality holds only if S∗ = S(t), V∗(a) = V(t,a),
E∗(a) = E(t,a), R∗(b) = R(t,b) , R(t,b)I∗ = R∗(b)I(t), E(t,a)I∗ = E∗(a)I(t), V(t,a)S∗ = V∗(a)S(t),
S(t)I(t)E∗(0) = S∗I∗E(t, 0) and V(t,a)I(t)E∗(0) = V∗(a)I∗E(t, 0) simultaneously. Thus, {E∗} ⊂ Ω is the
largest invariant subset of {dLEE(t)dt = 0}, and by the Lyapunov-LaSalle invariance principle, the endemic
equilibrium E∗ is globally asymptotically stable when <0 > 1.
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