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Abstract

In this paper, we introduce two modified hybrid iterative methods (one implicit method and one explicit method) for
finding a common element of the set of solutions of a generalized mixed equilibrium problem, the set of solutions of a variational
inequality problem for a continuous monotone mapping and the set of fixed points of a continuous pseudocontractive mapping
in Hilbert spaces, and show under suitable control conditions that the sequences generated by the proposed iterative methods
converge strongly to a common element of three sets, which solves a certain variational inequality. As a direct consequence, we
obtain the unique minimum-norm common point of three sets. The results in this paper substantially improve upon, develop
and complement the previous well-known results in this area. (©2017 All rights reserved.
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1. Introduction

Let H be a real Hilbert space with inner product (-, ) and induced norm || - |. Let C be a nonempty
closed convex subset of H and let T: C — C be self-mapping on C. We denote by Fix(T) the set of fixed
points of T.

Let B : C — H be a nonlinear mapping, let ¢ : C — IR be a function and let ® be a bifunction of C x C
into R, where R is the set of real numbers.

Then, we consider the following generalized mixed equilibrium problem (for short, GMEP) of finding
x € C such that

Ox,y)+ Bx,y—x)+oly)—e(x) >0, vyeC, (1.1)
which was introduced by Peng and Yao [22] (also see [18, 42]). The set of solutions of the problem (1.1) is
denoted by GMEP(O, ¢, B). Here some special cases of the problem (1.1) are stated as follows:

If ¢ =0, then the problem (1.1) reduces the following generalized equilibrium problem (for short,
GEP) of finding x € C such that

O(x,y)+ (Bx,y—x) >0, YyeC (1.2)
which was studied by Takahashi and Takahashi [29]. The set of solutions of the problem (1.2) is denoted
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by GEP(O, B).
If B = 0, then the problem (1.1) reduces the following mixed equilibrium problem (for short, MEP) of
finding x € C such that
O(xy)+ely)—ex) 20, vyeC, (1.3)

which was studied by Ceng and Yao [5] (see also [39]). The set of solutions of the problem (1.3) is denoted
by MEP(O, ¢).
If ¢ =0and B = 0, then the problem (1.1) reduces the following equilibrium problem (for short, EP)
of finding x € C such that
O(x,y) >0, WeC. (1.4)

The set of solutions of the problem (1.4) is denoted by EP(©®).
If ¢ =0and O(x,y) =0 for all x,y € C, the problem (1.1) reduces the following variational inequality
problem (for short, VIP) of finding x € C such that

(Bx,y—x) >0, VyecC. (1.5)

The set of solutions of the problem (1.5) is denoted by VI(C, B).

The GMEP (1.1) is very general in the sense that it includes, as special cases, fixed point problems,
optimization problems, variational inequality problems, minmax problems, Nash equilibrium problems
in noncooperative games and others, see for example [2, 5, 9, 10].

As we all know, the convex feasibility problem (CFP) is the problem of finding a point in the
(nonempty) intersection C = N™,C; of a finite number of closed convex sets C; (i = 1,---,m). The
split common fixed point problem (SCFP) is a generalization of the split feasibility problem (SFP) and the
problem (CFP). Several iterative methods for solving the problem (SCFP) for nonlinear mappings were
developed; see for example [7, 31, 33, 40] and the references therein.

Recently, many authors considered iterative methods for finding a common point of solution sets of
the problems GMEP (1.1), GEP (1.2), MEP (1.3), EP (1.4) and VIP (1.5) and fixed point sets of nonlinear
mappings as special cases of the problem (CFP). In particular, in order to study the EP (1.4) coupled with
the fixed point problem, many authors have introduced iterative methods for finding a common element
of the set of the solutions of the EP (1.4) and the set of fixed points of a countable family of nonexpansive
mappings; see [6, 8, 13, 23, 24, 27, 28, 32, 37, 38] and the references therein.

In 2008, Su et al. [25] gave an iterative method for the EP (1.4), the VIP (1.5) for an inverse-strongly
monotone mapping F and nonexpansive mapping S and proved strong convergence to a point zin EP(©)N
VI(C,F) N Fix(S). In 2009, Yao et al. [36] considered an iterative method for the MEP (1.3), the VIP (1.5)
for a Lipschitz and relaxed-cocoercive mapping F and a sequence {S,} of nonexpansive mappings, and
proved strong convergence to a point z € NY_;Fix(S,,) " MEP(Q, @) N VI(C, F). In 2008, Peng and Yao
[22] studied an iterative method for the GMEP (1.1) related to an «-inverse-strongly monotone mapping
B, the VIP (1.5) for a monotone and Lipschitz continuous mapping F and a nonexpansive mapping S,
and proved strong convergence to a point z € GMEP(O, ¢, B) N VI(C,F) N Fix(S). In 2010, by using
the method of Yao et al. [39], Jaiboon and Kumam [12] also introduced an iterative method related to
optimization problem for the MEP (1.3), the VIP (1.5) for an x-inverse-strongly monotone mapping F and
a sequence {S,,} of nonexpansive mappings, and showed strong convergence to a point z € N%_;Fix(S») N
MEP(©, o) N VI(C, F).

In 2007, Tada and Takahashi [27] considered an iterative method for the EP (1.4) and nonexpansive
mapping S and proved weak convergence to a point w € EP(©) N Fix(S). In 2008, Moudafi [21] proposed
an iterative method for the GEP (1.2) related to an «-inverse-strongly monotone mapping B and non-
expansive mapping S and showed weak convergence to a point w € GEP(©, B) N Fix(S). In 2009, Ceng
et al. [3] provided an iterative method for the EP (1.4) and k-strictly pseudocontractive mapping T and
proved weak convergence to a point w € EP(@) NFix(T). In 2015, Lv [19] also studied an iterative method
for the GEP (1.2) and k-strictly pseudocontractive mapping T and proved weak convergence to a point
w € GEP(®) N Fix(T).
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In 2003, Takahashi and Toyoda [30] introduced an iterative method for the VIP (1.4) related to an «-
inverse-strongly monotone mapping F and nonexpansive mapping S and established weak convergence
to a point w € Fix(S) N VI(C, F).

In 2012, Jung [16] considered an iterative method for GMEP (1.1) related to a 3-inverse-strongly mono-
tone mapping B, the VIP (1.5) for an x-inverse-strongly monotone mapping and k-strictly pseudocontrac-
tive mapping T and proved weak convergence to a point w € GMEP(Q, ¢, B) N VI(C, F) N Fix(T). In 2015
Jung [17] also proposed an iterative method for GMEP (1.1) related to a continuous monotone mapping
B, the VIP (1.5) for a continuous monotone mapping F and a continuous pseudocontractive mapping T
and proved weak convergence to a point w € GMEP(O, ¢, B) N VI(C, F) N Fix(T).

In 2012, by using Yamada’s hybrid steepest-descent method [35] and Jung’s viscosity iterative method
[14], Jung [15] introduced new implicit and explicit iterative methods for finding a common element of
the set of solutions of the MEP (1.3) and the set of fixed points of a k-strictly pseudocontractive mapping
T and proved strong convergence to a point z € MEP(O, ¢) N Fix(T). In particular, in 2012, by combining
Colao et al.’s hybrid viscosity iterative method [8] and Yamada’s hybrid steepest-descent method [35],
Ceng et al. [4] proposed a hybrid iterative method for finding a common element of the set of solutions of
the GMEP (1.1) related to an x-inverse-strongly monotone mapping B and the set of fixed points of a finite
family of nonexpansive mappings {T;}} ; and showed strong convergence to a point z € NI Fix(T;) N
GMEP(O, ¢, B) which is a unique solution of certain variational inequality related to Lipschitzian and
strongly monotone mapping G.

In this paper, inspired and motivated by above-mentioned results, we introduce two new modified
hybrid iterative methods (one implicit method and one explicit method) for finding a common element
of the solution set GMEP(O, ¢, B) of the GMEP (1.1) related to a continuous monotone mapping B, the
solution set VI(C, F) of the VIF (1.5) for a continuous monotone mapping F and the fixed point set Fix(T)
of a continuous pseudocontractive mapping T in a Hilbert space. We show that under suitable conditions,
the sequences generated by the proposed iterative methods converge strongly to a common element of
Q = GMEP(6, ¢, B) N VI(C, F) N Fix(T), which is a solution of a certain variational inequality. As a direct
consequence, we find the unique solution of the minimization norm problem

|Ix*|| = min{||x]| : x € Q}.

The results in this paper develop, improve upon and complement of the recent results announced by
several authors in this direction.

2. Preliminaries and lemmas

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. In the following, we
write x, — x to indicate that the sequence {x,} converges weakly to x. x, — x implies that {x,,} converges
strongly to x.

We recall ([1, 11]) that a mapping F of C into H is called

(i) Lipschitzian, if there exists a constant k > 0 such that
IFx —Fyll < k[x—yll vx,yeC

(ii) monotone, if (x —y,Fx—Fy) >0, Vx, ye C;
(iii) «-inverse-strongly monotone, if there exists a constant « > 0 such that

(x—y,Fx—Fy) > af[Fx—Fy|®, V¥x, y€C;
(iv) n-strongly monotone, if there exists a positive real number 1 such that

(x —y, Fx — Fy) >on—y|]2, vx, y € C.
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We note that if F is an a-inverse-strongly monotone mapping of C into H, then it is obvious that F
is %-Lipschitz continuous, that is, ||[Fx — Fy|| < éHx —y|| for all x,y € C. Clearly, the class of monotone
mappings includes the class of x-inverse-strongly monotone mappings.

We recall ([1]) that a mapping T : C — H is said to be pseudocontractive, if

T =Tyl? < x —yl? + [[I=Tx— I-TylP?, ¥x, yeC,
and T is said to be k-strictly pseudocontractive, if there exists a constant k € [0,1) such that
ITx = Ty[? < Ix =yl + KT = Thx = (I-Thy|?, vx, y€C,

where I is the identity mapping. The class of k-strictly pseudocontractive mappings includes the class of
nonexpansive mappings as a subclass. That is, T is nonexpansive, (i.e., ||[Tx — Ty|| < ||[x —yl|, Vx, y € C) if
and only if T is O-strictly pseudocontractive.

For solving the GMEP (1.1), the MEP (1.2), and the EP (1.3) for a bifunction ©® : C x C — R, let us
assume that © satisfies the following conditions:
(A1) ©(x,x) =0forall x € C;
(A2) © is monotone, that is, ©(x,y) +O(y,x) <0 forallx, y € C;
(A3) for each x,y,z € C,

limsupO(tz + (1 —t)x,y) < O(x,y);
10

(A4) for each x € C,y — O(x,y) is convex and lower semicontinuous.
We can prove the following lemma by using the same method as in [18, 42], and so we omit its proof.

Lemma 2.1. Let C be a nonempty closed convex subset of H. Let © be a bifunction form C x C to R satisfies
(A1)-(A4) and ¢ : C — R be a proper lower semicontinuous and convex function. Let B : C — H be a continuous
monotone mapping. Then, for r > 0 and x € H, there exists u € C such that

1
O, y) + (Bu,y —w) + ly) —ew) + (y—wu—x) >0, vy eC.

Define a mapping K, : H — C as follows:
1
Kpx = {u € C:0uy)+ Buy—u)+oy) —ew+ Y-—wu—x >0 Vye C}

forall x € Hand v > 0. Then, the following hold:

(1) For each x € H, Kyx # (;
(2) K, is single-valued;
(3) Ky is firmly nonexpansive, that is, for any x, y € H,

[ Kyx — KTU||2 < (Kex =Ky, x —y);

(4) F(Ky) = GMEP(O, ¢, B);
(5) GMEP(O, @, B) is closed and convex.

We need the following lemmas for the proof of our main results.

Lemma 2.2 ([41]). Let C be a closed convex subset of a real Hilbert space H. Let F : C — H be a continuous
monotone mapping. Then, for v > 0 and x € H, there exists z € C such that

1
<Fz,y—z>+;<y—z,z—x> >0, vyeC.
Forr > 0and x € H, define F. : H— C by
1
Fox = {ZE C:(Fz,y—z}—i—;(y—z,z—x) >0, We C}.

Then the following hold:
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(i) Fy is single-valued;
(ii) Fy is firmly nonexpansive, that is,

HFrx—Frsz < (Fox—Fry,x—y), Vx, y € H;

(iii) Fix(Fy) = VI(C,F);
(iv) V(I F) is a closed convex subset of C.

Lemma 2.3 ([41]). Let C be a closed convex subset of a real Hilbert space H. Let T : C — H be a continuous
pseudocontractive mapping. Then, for v > 0 and x € H, there exists z € C such that

1
<Tz,y—z>—;(y—z,(1+r)z—x) <0, WwecC.

Forr > 0and x € H, define T, : H — C by
1
Tx = {ZE C:(Tz,y—z>—;<y—z,(1+r)z—x> <0, Vye C}.

Then the following hold:

(i) T is single-valued;
(ii) T is firmly nonexpansive, that is,

||TrX_TrU||2 < <TrX_Try/X_U>I Vx, y e H;

(iii) Fix(Ty) = Fix(T);
(iv) Fix(T) is a closed convex subset of C.

Lemma 2.4 ([34]). Let {sn} be a sequence of non-negative real numbers satisfying
Sn+l S (1 _}\n)sn + Bn/ Vn =1,

where {An} and {3} satisfy the following conditions:
(1) M} C (0,1 and 35 4 Ay = oo or, equivalently, [ [5_1(1 —An) =0;
(i) limsup, 3= <0or 3% 4 |Bnl < co.

Then limp —yo0 S = 0.

The following lemma is easily proven by property of inner product.

Lemma 2.5. In a Hilbert space, there holds the inequality

I+ yl? < IIxI? +2(y,x+y),  ¥x, yeH.

Lemma 2.6 ([26]). Let {xn} and {yn} be bounded sequences in a Banach space € and {yn} be a sequence in [0, 1]
which satisfies the following condition:

0 < liminfy, <limsupyn < 1.
n—oo

n—oo

Suppose that xn 11 = YnXn + (1 —Yn)Yn, foralln > 1 and

limsup(H‘JnH —Ynll = [[Xn+1 —xnl]) <O0.
n—oo

Then limn 00 ||[yn —xn|| = 0.
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The following lemma can be easily proven, and therefore, we omit the proof.

Lemma 2.7. Let V : C — H be an \-Lipschitzian mapping with constant 1 > 0, and G : C — H be a k-Lipschitzian
and n-strongly monotone mapping with constants x and vy > 0. Then for 0 <yl < un,

(LG —YV)x — (MG —yV)y,x —y) = (un —YV)[lx —y|*>, Vx, y € C.
That is, uG —yV is strongly monotone with constant un —yl.

Finally, we need the following lemma (see [35] for the proof).

Lemma 2.8. Let C be a nonempty closed subspace of a Hilbert space H. Let G : C — C be a k-Lipschitzian and
n-strongly monotone mapping with constants k > 0 and n > 0. Let 0 < p < i—‘} and 0 < t < p < 1. Then

S:=pl—tuG : C — C is a contraction with contractive constant p —tt, where t=1— \/1 —u(2n — uk?).

3. Main results

Throughout the rest of this paper, we always assume the following:

e His a real Hilbert space;

e Cis a nonempty closed subspace of H;

O is a bifunction from C x C — R satisfying (A1)-(A4);
B : C — His a continuous monotone mapping;

F: C — His a continuous monotone mapping;

VI(C, F) is the set of the variational inequality problem (1.1) for F;
T:C — Cis a continuous pseudocontractive mapping with Fix(T) # (;
Ky, : H — C is a mapping defined by

1
Ky x = {u € C:0(wy)+ Bu,y—u)+o(y) —@(u) +T—<y —u,u—x) =0, Vy € C}
t

for all x € H and for ry € (0,00), t € (0,1), and liminf;_,or¢ > 0;
e I, : H— Cis a mapping defined by

1
Frox = {ze C:(y—z,FzH—T—(y—z,z—x) >0, VWe C}
t

forry € (0,00), t € (0,1), and liminf;_,gT¢ > 0;
e T, :H — Cis a mapping defined by

1
T x = {ze C:(y—z,Tz>—r—(y—z,(1+rt)z—x> <0, vye C}
t

forry € (0,00),t € (0,1), and liminf;_,g1¢ > 0;
e K, :H— Cisamapping defined by

1
Ky, x = {u €eC:0uwy)+Buy—uw+oly)—euw+—y—uwu—x) >0, Yy e C}

Tn

for all x € H and for r, € (0,00) and liminf, o, v > 0;
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e I :H — Cis a mapping defined by

1
Frox = {z eC:(y—zFz) +T—<y —z,z—x) >0, Wye€ C}
n
for r, € (0,00) and liminf,, oo 11 > 0;
e T, :H — Cis amapping defined by

T x = {z €eC:{y—zTz)— %<y —z,(1+1my)z—x) <0, VyE&€ C}
n

for v, € (0,00) and liminfy oo T > 0;

V: C — Cis l-Lipschitzian with constant 1 € [0, c0);

G : C — Cis a p-Lipschitzian and n-strongly monotone mapping with constants p > 0 and n > 0;

constants u, 1, T, and y satisfy 0 < pu < i—*; and 0 < yl < 1, where T = 1 — /1 — pn(2n — pp?);

GMEP(O, @, B) is the set of solutions of the GMEP (1.1);

VI(C, F) is the set of the variational inequality problem (1.5) for F;

e O :=GMEP(O, ¢,B)NVI(C,F) NFix(T) # 0.

By Lemmas 2.1,2.2 and 2.3, K,., Fy, Ty, K;, F,, and T, are nonexpansive and Fix(K;,) = GMEP(O, ¢, B)
= Fix(K;,), VI(C, F) = Fix(F,,) = Fix(Fy,), and Fix(T) = Fix(T,,) = Fix(T,,).

In this section, first we introduce the following modified hybrid iterative method that generates a net
{Xt}te(0,1) in an implicit way:

(3.1)

O(ut,y) + (Bu, y —ue) + o(y) — @(ue) + rl—t<y —u,uy—x¢) =0, YyeC,
xt = tyVxe + (I =tuG)(Oexe + (1 —0¢)Tp Fr Ky xt), VYVt € (0,1),

where vy > 0 for t € (0,1), liminf,_or¢y > 0, 6y € (0,1) for t € (0,1), and 0 < liminf;_,00; <
limsup, ,,0¢ <1.
Consider the following mapping Q. on C defined by

Qix =tyVx+ (I —tuG)(0tx + (1 — 0¢) T Fr Ky, X).
Let Rix = 0¢x + (1 — 0¢) Ty Fr Ky x. Since T, Fy,, and K, are nonexpansive, we have for x, z € C,
IRex —Rez|| < Ofx —z[| + (1 =0¢)[x —z[| = []x—z|.
So, from Lemma 2.8, we derive

[Qex — Qezl| < ty|[Vx = Vz| + [[(I - tpuG)Rex — (I — thG)Rez]|

<
<tylx—zf + (1 —t1)[lx — z||
= (1—tlt—y)|x—z].

Since 0 < 1—t(t—vl) < 1, Q¢ is a contraction. Therefore, by the Banach contraction principle, Q. has a
unique fixed point x¢ € C, which uniquely solves the fixed point equation

xt = tyVxe + (I —tuG)(Oexe + (1 — 0¢) Tr Fr Ky Xt).

Now, we establish the strong convergence of the net {x.} generated by (3.1) and show the existence of
the q € O, which solves the variational inequality (3.2) below.

Theorem 3.1. The nets {x} and {u} defined via (3.1) converge strongly, as t — 0, to a point q € Q, which is the
unique solution of the following variational inequality:

(MG=YV)q,p—q) 20, VpeQ. (3.2)
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Proof. First, we can show easily the uniqueness of a solution of the variational inequality (3.2). In fact,
noting that 0 <yl < Tand un > v & p > 7, it follows from Lemma 2.7 that

(G —yV)x— (G —yV)y,x —y) = (un —y1)x —y|*

That is, uG — vV is strongly monotone for 0 < yl < T < un. So the variational inequality (3.2) has only
one solution. Below we use q € () to denote the unique solution of the variational inequality (3.2).

By Lemma 2.1, we know that uy = K; x¢. From now, we put z; := Fr uy, wy := Ty z¢ and y¢ =
Gtxt + (1 - et)TT‘tFTtKTtXt (: Otxt + (1 - Gt)tht) fort e (0, 1)

We divide the proof into several steps.

Step 1. We show that {x} is bounded. To this end, take p € Q. Then, from Lemma 2.1 (4), Lemma 2.2 (iii)
and Lemma 2.3 (iii), it follows that T,,p = p, Fr,p = p and p = K, p. Since K,, is nonexpansive, we have

lwe =pl? = [Kexe = Keypl? < e =P,

that is, ||u¢ — p|| < |[x¢ —p]|- Also

zi — Pl < ||[Fryug — Fry
Iz = pll < [[Frue — Fropl] (3.3)
< Jue—pll < [ixe =l
It follows from (3.3) that
lye =PIl < Oellxe =Pl + (1= 0)[[Tr Fr Keyxe — p|
<Ot —pll + (1 =0¢)[xt — Pl (3.4)
< xe—pl-

Therefore it follows from (3.4) and Lemma 2.8 that

[x¢ =Pl = [tyVxe + (I —tuG)ye —p||
= [[t(yVxe = yVp) + (I = tuG)yr — (I—tuG)p +t(yVp — uGp)||

< tylflxe —pll + (1 = t1) [yt —pl| + t[yVp — nGp||
< tylfjxe —pll + (1 —tO)|Ix¢ — || + t(v[| VPl + 1[|Gp|).
So, we derive
YIIVell + ulGpll
e —pll < TEEEE

Thus, {x{} is bounded, and {u}, {y+}, {Gyt}, {z+}, {Vxt} and {Fu.} are also bounded.

Step 2. We show that lim¢_,¢ ||x¢ —w¢|| = lim¢_ ||x¢ — Tr,z¢|| = 0. In fact, observing

th - TTtZ’tH = ||tYVXt + (I - tHG)‘Jt - TTtZtH
< tyVxe — nGye|l + [lye — Troze |
= t”’YVXt — HGytH + HetXt + (1 — Gt)Ttht — TTtZtH

= t|lyVxt — uGy¢|| + Ot |lxe — Tr 2t [,
we have ¢
th _TTtZ‘tH < ﬁHYVXt — uGytH —0 ast—0.
—0¢
Step 3. We show that lim¢_,o |[x¢ —u¢|| = 0. To this end, let p € Q. Since K, is firmly nonexpansive and
uy = Ky, x¢, we have

lue=pI? = [Keoxe = Ke,pl?
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< (Keyxt — Kiyp, Xe = X¢ — )
1 1
= S = I+ e = pIP) — 5 (xe —p — (we — p)I)
1
= 5w —pI* + lxe —plI> = e —we?),
and hence
[we =Pl < Ilxe — P> = e —ue|. (3.5)
Moreover, from z; = F; u, we get
lze —plI* = IFroue —Frpl® < fue—p|* (3.6)
By (3.5) and (3.6), we obtain
[xe —pI? = [t(yVxe — nGye) + (ye —p)|?
= [[t(yVx¢ — uGy¢) + O (x¢ — Tryze) + (Try2e —P)HZ
< [ty Vxe — nGye)|| + [|lze — pII) + O fxe — Tryze |12
= [y Vxe — uGye|* + 2ty Vxe — uGyel|l|ze — pll + lze — p|? 3.7)

where

+ 0tllxe — Trze [ R2(t[[yVxe — uGye|| + [lze — ) + Ot lxe — Tr 2t ][]
tlyVxe — nGye > + [Jue — pl|* + My
tlyVxe — nGye||* + (|[xe — pII* — [Ixe — uel|*) + My,

My = 0¢[[xe — Tr ze || 2(t][yVxe — uGye|[ + [|ze = Pl) + Ollxe — Tryze[[] + 2t [y Vxe — uGyell[ze — pll. (3.8)

Now, from (3.7), we derive

xe —ue]* <ty Ve — nGyel|* + M.

Since M — 0 by Step 2, we have

lim — =0.
lim Xt — el

Step 4. We show that lim_,g ||[uy —z¢|| = 0. To this end, let p € Q. Using z; = F,,u; and p = F,, p, we

obtain

that is,

lze = pl* = IFr, e — Frp?

< <FTtut - FT‘tpl Ut — p>
= (zt —p,ut —P)

1
< Slllze =PI+ Jue = p* = e =2,

Izt = PII* <Jlwe — pI* — e — z¢|?

<lxe = p* = flwe — z¢ |

Thus, from (3.7) and (3.9), we deduce

which implies that

Ixe —pll?

< tlyVxe — uGye|* + [lze — P> + My
<

lue —z¢|* < tlyVxe — uGye|* + My,

tlyVxe — nGye||* + [[xe — p* — lue — z¢||* + My,

(3.9)
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where My is of in (3.8). From lim¢_,o M = 0, it follows that

lim ||luy —z¢|| = 0.

t—0
Step 5. We show that limy_,¢ ||zt —w¢|| = lim¢_y0 ||zt — Ty, z¢|| = 0. In fact, since |[wi —z¢|| = || Tr 2¢ —2¢]| <
| Tzt — Xt || + Xt —ue|| + [[ue — z¢||, by Step 2, Step 3 and Step 4, we conclude that

lim ||[w¢ —z¢]| = 0.
t—0

Step 6. We show that lim¢_,q ||x¢ —z¢|| = 0. In fact, from Step 2 and Step 4, it follows that
Ixe —z¢|| < |Ix¢ = Trozel| + [| Treze —2z¢]] = 0 as t — 0.

Step 7. We show that {x.} is relatively norm compact as t — 0. To this end, let {t,} C (0,1) be a sequence
such that t, — 0 asn — oo. Put Xy '=X¢,, Un = Uy, , Zn = Zt,,, Wn = Wy, and 1, = 1y,. First of all, by
(3.1), we deduce

Ixe = plI* =lltyVxe + (I—tuG)ye —p?

= [[(I—tuGlyt — (I—tuG)p ft(quvV)Pthv(VthVpJHz

= (1= tuG)yt — (I—tuG)p|* — 2t[((1G —YV)p, Yyt — ) — t{(1LG —YV)p, uGy — nGp)]
+2ty[(Vxe — Vp,yt —p) — t{(Vxy — Vp, nGyt — uGp)]
— 262y ((uG —yV)p, Vxi — Vp) + t2[|(uG — yV)p||2 + 22| Vx — Vp|?
< (1= t1)?lye =l = 2t((1G —YVIp,yt — p) + 2tyL]xe — plll[ye — Pl
+ 28| (uG —yV)p|l(||uGyt|| + | uGpl))
+ 282U [xe — Il (|uGye |l + [InGp]) + 26U} (G —yV)pll[xt —p]|
+ ([ (0G = V)l +v*P[xe —pl?)

= (1 —2tt+ ) |lye — pl|* = 2t((1G —¥V)p, Y —p)
+2tyLxe — pllllye — pll + 262 (1G —y V)l ([ (LG)ye [ + [|nGpl|)
+ 281 xe — Pl ([uGy¢l| + [uGp|)) + 2%U|(1G —¥V)pll[Ixt — P
+ ([ (0G = VI[P +v*P[xe —pl?)

< (1=2t7)lye —plI* +2t{(1G —yV)p, p —yt) + tyllxe — pII* + lye —p[*) + M,

where 5 5
M = sup{T°||ye — p[|* +2(|(LG —yV)p|| + ylullxe — I ([|Gy¢l| + |Gpl])

+ 2L (G =yV)pllIxe — pll + (MG —yVIpI* +v?*V[lxe —pI*}-
Hence, for small enough t, by (3.4), we obtain

1—2tt+tyl 2t t2
— 2<— —pl? + G—-vV —_
[x¢ — Pl T [yt —pl°+ Yl<(LL YV)p,p yt>+1_wl 5.10)
1—2tt+tyl ) 2t t2 '
< ——— T Ix¢ — —yV)p,p—
Tp—ey] [x¢ =Pl +1_m<(uG YVip,p yt>+1_m

Observe that
UG —yV)p,p — (Otxe + (1 —0¢)Tr zt))

((

(LG =yV)p,p — Ty zt) + 0 (LG —YV)p, Tr 2t —Xt)

(MG =yV)p,p—zt) + (LG —YV)p, zt — Tr 2¢)

+ 0t (LG —yV)p, Ty zt —xt)

= (LG —=yV)p,p —z¢) + (LG —VYV)p, z¢ — Tryzt) (3.11)
+ 0t (LG —YV)p, Tr 2zt — xt)

< (UG =yV)p,p —z¢) + [ (LG = ¥YV)pllllzt — Tr 2t
+ 0/l (hG =y V)Pl Trize — x|

<A{(WG—=vV)p,p—zt) + Ly,

(LG =YV)p,p—yt) =
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where Ly = sup{||(LG —yV)p|lllzt — Tr.zt|| + 0] (LG — ¥V)p|||| Tr, 2t — x¢||}. Then, from (3.10) and (3.11),
we derive that

tM L
—pl? < G—vyV)p,p— .
||X't pH T_Yl«ll Y )p/p Zt>+2(T_,yL) +T_,Yl
In particular,

n (3.12)

1
n =pI? < —= + :
T— T—vl) T—7v1

vl
Since {xn} is bounded, without loss of generality, we may assume that {x,,} converges weakly to a point
q € C. Then, by the same argument as in Step 6 in the proof of [15, Theorem 3.1], we can show that
q € Q. For the sake of completeness, we include its proof.
First, we show that ¢ € GMEP(O, ¢, B). Indeed, by u,, = K, xn, we know that

(WG —=yV)p,p—zn) + 3

1
O(un,y)+ Bun,y—un) +oy) —oun)+ —{y —un,un —x») >0, Yy e C.

Th

It follows from (A2) that

1
(Bun,y—un) +@(y) —@(un) + 7<y —Un,Un —Xn) = Oy, u,), Wy e C.
n

Hence 1
<Bun/y _uTL> + (P(U) - (p(uﬂ) + T7<y —Unp,Un _XTL> 2 Q(U/un)/ VU S C (313)

n

Fortwith0<t<landwe C,letvy =tv+ (1 —1t)q. Sincev € C and q € C, we have wy € C. So, from
(3.13), we have

M) +O(ve,un)

(Bve, vi —un) = (Bvg, vi —Un) — @(vi) + @(un) — (Bup, vi —un) — (Vi —Un, .
mn

M> +O(ve, Un ).

= (Bvi — Bun, vi —un) — @(vi) + @(un) — (vi —un, .
n

Since |[un, —xn|| — 0 by Step 3, ““ri;x“ — 0 and un, — g. Moreover, from the monotonicity of B, we have
(Bvy —Bun,yt —un) = 0. So, from (A4) and the weak lower semicontinuity of ¢, if follows that

(Bvt,vi —q) = —0(vi) + ©(q) + O(vy,q) asi— oo. (3.14)
By (A1), (A4) and (3.14), we also obtain
0 =0(ve,vi) + @(vi) — @(vt)
StO(ve,v) + (1-1)B(ve, q) +to(v) + (1 —t)o(q) — @(vi)

<tO(ve,v) + @(v) — @(vi)] + (1 —1)(Bve, v — q)
=tO(v,v) + o(v) —o(vi)] + (1 = t)t(Bv,v—q),

and hence
0 <O, v) + @(v) —@(vi) + (1 —t)(Bv,v—q). (3.15)

Letting t — 0 in (3.15), we have for each v € C

O(q,v) +(Bq,v—q)+¢@(v) —¢(q) > 0.

This implies that ¢ € GMEP(O, ¢, B).
Second, we show that q € VI(C, F). In fact, from the definition of z,, = F; un, we have
ImTny 50, wec. (3.16)

n

(Y—zn,Fzn) +{y —zn,
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Setvy =tv+ (1—1t)q, forall t € (0,1] and v € C. Then, v € C. From (3.16), it follows that

Zn —u
(Vi —zn, Fup) = (vi — zn, Fuy) — (¢ — zn, Fzn) — (Ve — 2, =)

n (3.17)
).

Zn —Un

= (Vt —2Zn, Fvy — FZTL> - <Vt — Zn,
Tn

By Step 4, we have *»—*~ — (0 as n — oco. Moreover, since x, — ¢, by Step 6, we have z, — g asn — oo.
Since F is monotone, we also have that (v —z, Fvy —Fz,) > 0. Thus, from (3.17), it follows that

0 < lim <Vt —Zn, FVt> = <Vt - q/FVt>/

n—oo

and hence
(v—q,Fvt) 20, WeC.

If t — 0, the continuity of F yields that
(v—q,Fq) >0, WwecC.

This implies that q € VI(C, F).
Third, we show that q € Fix(T). In fact, from the definition of w,, = T, z, we have

1
(Yy—wn, Twy) — r—(y —wn, (1+1h)wn —2zn) <0, YyeC. (3.18)

n

Putvi =tv+(1—t)qforallt € (0,1] and v € C. Then v € C and from (3.18) and pseudocontractivity of
T, it follows that

1
(Wn —ve, Tve) = (Wn — v, Tvg) + (v —wn, Twy) — T(Vt —Wn, (14 Tmh)wn —zn)
mn
1
= — (vt —Wn, Tvi = Twp) — — (V¢ —Un, Wn —Zn) — (Vi —Wn, Wp)
™ (3.19)
2 1
z — Hvt _WTLH - T(vt —Wn,Wn _ZTL> - <\)t _Wnrwn>

).

Wn —Zn
= = (Ve —Wn, Vi) — (Vi =W, ———
TTL
By Step 5, we get W“ Zn — 0 as n — oo. Moreover, since x, — q, by Step 2, we have w,, — q as n — oo.

Therefore, from (3. 19) as n — oo, it follows that
(q—ve, Tve) = (@ —ve, W),

and hence
—(v—q,Tv) > —(v—q,v), YWeC.

Letting t — 0 and using the fact that T is continuous, we get
—(v—q,Tq) > —(v—gq,q), VveC.
Now, let v =Tq. Then we obtain q = Tq and hence q € Fix(T). Therefore, q € Q.
Now, we substitute q for p in (3.12) to obtain

thM L¢
r_ 3.20
Z(T—y1)+’t—yl (3:20)

Note that z, — g by Step 5 and lim{_,o Ly = 0 by Step 2 and Step 4. This fact and the inequality (3.20)
imply that x,, — q strongly. This has proved the relative norm compactness of the net {x¢} as t — 0.

[xn —ql* < (UG —YV)q,q—zn) +

T—vl



J. S. Jung, J. Nonlinear Sci. Appl., 10 (2017), 3732-3754 3744

Step 8. We show that q solves the variational inequality (3.2). In fact, taking the limit in (3.12) as n — oo,
we get

(WG —=vV)p,p—q), VpeQ.

In particular, g solves the following variational inequality

2
—pl* <
lq—pll —]

qeQ, (MG—yVp,p—q) >0, peQ,
or the equivalent dual variational inequality (see [20])

qeQ, ((G—vyV)q,p—q) =0, peQ. (3.21)

Step 9. We show that the entire net {x} converges strongly to q. To this end, let {x,,} be another
subsequence of {x,,} and assume x,,, — §. By the same as the proof above, we have q € Q. Moreover, it
follows from (3.21) that

(hG—VV)q, 4 —q) > 0. (3.22)

Interchanging q and g, we obtain
(hG—=YV)4,q—q) > 0. (3.23)
Lemma 2.7 and adding these two inequalities (3.22) and (3.23) yields
(=Yg —al* < (kG —¥V)q— (kG —¥V)4, 4 — §) <O.

Hence q = §. Therefore we conclude that x; — q as t — 0. Moreover, by Step 3, we obtain that uy — q as
t—0. O

From Theorem 3.1, we can deduce the following result.
Corollary 3.2. Let {x{} and {u} be nets generated by
O(u,y) + (Bug, y —ue) + @(y) — @(u) + T%QJ —ug,u—x¢) 20, YyeC,
xt = (1 —=1)(O¢x¢ + (1= 0¢)Tp Fr Ky xt), YVt e (0,1).

Then {x} and {u.} converge strongly, as t — 0, to a point q € Q, which solves the following minimum norm
problem: find x* € Q such that
x|l = min [x]. (3.24)
xeQ

Proof. In (3.12) withG =L, u=1,t=1,V=0,and l =0, letting t — 0 yields

la=pl* < (p,p—a), VpeQ.
Equivalently,
(p—q) =20, YpeQ.
This obviously implies that

lal* < (p,q) < lplllall, ¥peQ.
It turns out that ||q|| < ||p|| for all p € Q. Therefore, q is the minimum-norm point of Q. 0

Now, we propose the following modified hybrid iterative method which generates a sequence in an
explicit way:

O(un, y) + (Bun, Y —un) + 0(y) — @(un) + 1-(y —un, un —xn) 20, Vy € C,
Yn = Bnxn + (1= Bn)Te Fr Ki X, (3.25)
Xnt+1 = nYVxn + (I—aquGlyn, Vn>1,

where {an}, {fn} C (0,1); {rn} C (0,00); and x; € C is an arbitrary initial guess.
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Theorem 3.3. Let {xn} and {un} be sequences generated by the explicit method (3.25). Let {&n}, {Bn} and {rn}
satisfy the conditions:

(C1) limp 00 n =0;

(C2) 2 W1 on =00

(C3) 0 < liminfy, o Brn <limsup,, | Bn <1,

(C4) limp 00 Tny1—Tn| =0.

Then {xn} and {un} converge strongly to q € Q, which is the unique solution of the variational inequality (3.2).

Proof. Note that from the condition (C1), without loss of generality, we assume that o, (T —7yl) < 1 for
n > 1. From now, we put un = Ky Xn, zn = Fr un and wy =T; 2z, forn > 1.
Now, we divide the proof into several steps.

Step 1. We show that {x,,} is bounded. To this end, let p € Q. Then, by Lemma 2.1 (iv), Lemma 2.2
(iii) and Lemma 2.3 (iii), p = Ky, p, p = Fr,p and p = T, p. From z, = F; un, and the fact that F, is
nonexpansive, it follows that

lzn =Pl < [[Froun —Fr,pll < [[un —7p]-
Also, by un = Ky Xn,

[un =Pl = [Krxn = Ke Pl < [xn = pll,

and so
[zn =PIl < [Ixn —pl|- (3.26)

Now, by (3.26), we obtain that

[yn =Pl = IBnxn + (I—Bn)Tr zn — Pl
< Bulxn =Pl + 11— Bn)Trpzn — (I—=Bn) T, Pl

< Bnlxn =Pl + (1= Bn)llzn —pl (3.27)
< Bnlxn =Pl 4+ (1= Bn)lxn —pll
= [xn —pll.

Thus, noting Lemma 2.8 and (3.27), we have

< anl|(YVxn) =YV + (1= cntG)yn — (I — ot uG)p|| + atn[[¥V(p) — uGp||
< oYl xn =Pl + (1 — onT)[yn — pll + an [YV(p) — nGp||

< oYU xn —pll + (1 — onT)[[xn =Pl + ot [[yV(p) — uGp|

= (1= (t=vDan]|xn —p| + &n[lyV(p) — uGp]l.

[Xn+1— Pl

(3.28)

By induction, it follows from (3.28) that

[vV(p) — uGp||
1*p||r T
—v1

|xn —p|| < max{Hx }, Vn > 1.

Therefore {xn} is bounded, and so {un}, {zn}, {yn}, {V(xn)}, {Fun}, {Gyn}, and {GT; zn} are bounded.
Moreover, since || Thzn —p|| < ||[xn — ||, {Tr,,zn} is also bounded.

Step 2. We show that limn ;o [[Xn4+1 — Xn|| = 0 and limp o0 [[Un1 —un|| = 0. Indeed, since z,, = F un,
and zn,—1 = Fr_,un_1, we get

1
(y—2zn,Fzn) + T—(y —Zn,Zn—Uun) =0, YyeC, (3.29)

n
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and ,
<y —Zn—1, FZTL*l) + 7(13 —Zn—1,Zn—-1 _un71> = 0/ Vy e C.

Th—1

Putting y = z,_1 in (3.29) and y = z,, in (3.30), we obtain

1
(Zn—1—2zn,Fzn) + T<Zn71 —Zn,Zn —Un) >0,
n

and

1
(zn —zZn—1,Fzn_1) + i<zn —Zn—1,Zn—1 —Un—1) = 0.
e

Adding up (3.31) and (3.32), we derive

Zn —Un _Zn—1— un71>

_<Zn —Zn—1, FZTL - Fanl> + <Zn71 — Zn,
Tn Th—1

Since F is monotone, we have

Zn —Un Zn—1—Un—1
<ZTL—1 —Zn, - > > 0/
Th Th—1
and hence
Th—1

(Zn —Zn—-1,Zn-1—2Zn+2Zn —Un_1 — (zn —un)) = 0.

Tn

>

(3.30)

(3.31)

(3.32)

(3.33)

Without loss of generality, let us assume that there exists a real number 1, > b > 0 for n > 1. Then, from

(3.33), we get

Th—1
Tn

||Zn _anle <<Zn —Zn—1,Zn —Un +Up —Up_1 — (Zn _un)>

Tn—1
= <Zn_anlrun_unfl+ <1_ : >(Zn_un)>
n

1
< lzn = zntl[ ftm = st + 2 = Pl ]
n

This implies that
1
Hzn - anlu § Hu-n _unflu + Bh‘n - T‘n,1|M1,

where M; = sup{||zn —un|/:n > 1}
On the other hand, from u,,_1 = K, xn—1 and u, = K, xp, it follows that

(3.34)

1
Oun—1,Y)+ Bun_1,y—un—1)+oy) —@un_1) + — (Y —un_1,un_1—xn—1) =20, YyeC, (3.35)

Th—1

and

1
®(un/y) + <Bunry *un> +(P(1J) *(p(un) + T‘7<y *unrunfxn> > 0/ Vy € C

n

Substituting y = u,, into (3.35) and y = u,,_; into (3.36), we obtain
1

Th—1

O(un—_1,un) + <Bun,1, Un _un71> +@(un) —@(un_1) +

and
1

G(unz unfl) + <Bun/ Un—1 _un> + (p(unfl) - (p(un) + Ti<un71 —Un,Un — Xn> = 0.

n

<U-n —Un—1,Upn—1— Xn71> = 0/

(3.36)
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By (A2), we have

Un—1 —Xn—-1 Un —Xn
<un —Un—1, Bunfl - Bun + - > 20,
Th—1 Th

and then

<un —Un—1,Th—1 (Bunfl - Bun) + Un—1 —Xn—-1—
So, it follows that

(Un —Un—1,Un—1 —Un) +Tn_1(Un —Un_1, Bun_1 —Buy,)

Th (3.37)
+ <un —Un—1,Xn — Xn—1> + <1 - : 1) <un —Un—1,Un _Xn> = 0.
n
Then, from (3.37), rn > b > 0 for n > 1, and the fact that (u,, —u,_1,Bu,_1 —Buy,) <0, we have
Hun *un71”2 < <un —Un—1,%Xn — Xnfl> + (1 - T:il ) <un —Un—1,Un — Xn>
< un =l I = 5l + 1= 22 =l
which implies that
1
Hun _unflu < Hxn — anlu + Th‘n _T‘nflwun _XnH
n (3.38)
1
< HXTL - anlu + Ehn _T‘n71|M2/
where My = sup{||un —xn|| : 1 > 1}. Substituting (3.38) into (3.34), we have
1
||Zn - Zn—lH < ”Xn *Xn—ln + E‘Tn - T'71—1|(]vll + MZ)- (339)
On another hand, let w, =T,z and w1 =T, zn—1. Then we get
<y —Wn—1, TWn,1> - T 1 <1J —Wn—1, (1 + Th—1 )anl - Znfl> < 0/ Vy S C/ (340)
S
and .
(y—wn, Twy) — r—(y —wn, (1+1h)Wwn —2zn) <0, YyeC. (3.41)
n
Putting y = wy, in (3.40) and y = w1 in (3.41), we obtain
1
<Wn —Wn—1, TWn—1> — T 1 <Wn —Wn—1, (1 + T'n—l)vv'n.—l - Zn—1> < 0/ (3-42)
S
and 1
(Wn—1—wn, Twy) — T—(wn_l —wn, (1+10)wn —2z) <O0. (3.43)
n
Adding up (3.42) and (3.43), we have
_ 11— Zn— 1 n—
<Wn — w1, Twy g — TWn> . <Wn W1, (1 +Tn 1)Wn 17 Zn-1 ( + Tn)w Zn> <0,

Th—-1 Th
which implies that

Wn—1—Zn-1 o Wn —Zn

(Wn —Wn_1, (Wn —Twyn) — (Wn—1 —Twp 1)) — (Wn —wn g, ) <0.

Th—1 Tn
Now, using the fact that T is pseudocontractive, we induce

Wn—-1—Zn-1 . Wn —Zn

<Wn —Wn—1, > =0,

Th—1 Thn

and hence
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Th—1
Tn

<Wn —Wn 1, Wn 1 —Wn+Wy —Zn 11— (Wn — Zn)> = 0.

Since 1, > b > 0 for n > 1, by (3.44), we have

Th—1
HWTL_WTL71||2 < <Wn_Wn71/Zn_Zn71 + <1_ : )(Wn_zn)>
n

1
L e

mn
which implies
1
”Wn _Wn—1|| < Hzn - Zn—l” + *|rn - Tn—1|M3/
b

where M3 = sup{||wn — zn|| : 1 > 1}. From (3.39) and (3.45), it follows that

1
HTrnZn - TTn,]anl” g HXTL _anlu + *|rn _rn71|(M1 + MZ + MS)-

b

Now, define
Xni1 = Pnxn+(1—PBnlkn, ¥n>1

Then, from the definition of k,,, we obtain

K _ Xn42— Brnt+1Xn41 _ Xn41— BrXn
n=

(3.44)

(3.45)

(3.46)

— Bnxn

kn+l 1- Bn+1 1- ﬁn
_ 1YV (Xng1) + (I = ot 110G )Ynt1 — Brt1Xn+1 . onYV(xn) + (I = onGlyn
B 1—Bnt1 1—Bn
. 1Y V(xni1) o oanYV(xn) . (I—otnuG)(Brnxn + (1= PBn)Tr zn) — Bnxn
B 1—PBnt1 1—Bn 1—PBnxn

N (I— ot 1uG) (Brg1Xnt1 + (1= Brs) T Zns1) — BrtiXnt1
1—Brny1ixnyt

_ 1YV (Xn41) . onYV(xn) . Brxn+(1— Bn)TrnZn —Bnxn | anuGyn

1_Bn+1 1_‘3'& 1_f-)’n 1—Bn

Bn—b—lxn—b—l +(1- Bn+l)Trn+1Xn+1 - Bn+1xn+1 _ %n+1 HG)9n+1
1—Bns1 1—Bns1

Kn+1 Xn
1— Bn (YV(xn+1) — uGyny1) — Bn

_|_

o
= — 2 (YW(xnt1) — uGYn1) — (YV(xn) — uGyn)
1-— Bn+l Bn
+Trn+lz'n+1 _TTnJrlz'n (TrnJrl Trnz’n)
So, it follows from (3.46) that
[knt1 = knll[—lxn+1 —xnl
X 1 Xn
< — = IV ne1) |+ 1l Gynaa ) + Y[V + 1l[Gynl])
1—Brit 1—PBn
+ 1 Tns1zne1 — Tngrznll + I Tr 20 — TTn.Zn”
o o
< (Vx| + 1l Gy ) + = (VVxn) | + 1| Gyn )
1—Bni1 I=PBn
1
+[1zne1 —znll + Bh'n —Th-1IM3
X1 On 1
+ My+ ||z —Zn||+ =Itn —Th_1IM
(122 2 Mt s — 2l + gl — My

Kn+1 n 1
< + My + |xn —Xn—1|| + =|
(122 b 50 Myt e =+ 4

(YV(xn) —rGyn) + T 1 Zns1 —

Tn —Tn—1/(M1 + Mz +Ms),

(3.47)
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where My = sup{y||V(xn)|| + 1/|Gyn|| : n > 1}. Thus, by conditions (C1), (C3) and (C4), from (3.47) we
have

limsup(||kn+1 —kn|| = [[Xn+1 —xn|) <O0.
n—oo

Hence, by Lemma 2.5,
lim |kn —xnl| =0.
n—oo
Consequently,
lim [[xn+1—xn| = lim (1—Bn)|kn —xn|| =0.
n—,oo n—,oo

Also from (3.38) and (3.39), it follows that

m |[uns1—unl|=0 and Lim ||zny1—2zn| = 0.
ntooco n—o0o

Step 3. We show that limn_, ||[Xn —Wn || = limn o0 ||Xn — Ty, zn || = 0. Noting that X, 11 = xnyV(xn) +
(I— otntG)yn, we have

[Xn = Trpznll < [xn —Xnpall + [[Xne1 — Tryznll
[Xn —Xnt1l| + o [YV(xn) = 0GYn || + [[yn — T, zn||
= Hxn - Xn+1|| + oanyV(xn) - HGUnH + ||ann +(1— Bn)TrnZn - TrnZnH

= HXTL _Xn+1|| + (XnHVV(Xn) - HGUnH + BnHXn - TrnZnH/

<
<

that is,
1 Xn
n HXTL _Xn+1H + 1 _ Bn

1-p
From the conditions (C1), (C3) and Step 2, it follows that

[Xn = Tr znl| <

HYV(XH) - HGynH'

lim |[xn —wn| = lim ||xn — Ty zn|| = 0.
n—oo n—oo

Step 4. We show that limp_,« |[[Xn —un|| = 0. To this end, let p € Q. Since K, is firmly nonexpansive
and un = K; xn, we have
[un _P”2 = Ky xn — KrnPHZ
< <Krnxn - Krnp/ Xn—Xn — P>

1
[un =PI+ [Pen = PI") = 5 (lxn =P = (un =)

1
=2
1 2 2 2
= 5 Uun = plI" + lxn = pl" = [xn —un %),
and hence
[un —PlI* < [Ixn —PII> = [xn —un|*. (3.48)
From z,, = Fy un, we also get
lzn =PI = [Frytn —Fr,pl> < [un —pl*. (3.49)
By (3.48) and (3.49), we obtain

%1 =PI = llon (YV(xn) — 1Gyn) + (yn —p)|1?
= [lon (YV(xn) = 1Gyn) + B (xn — Trazn) + (Tryzn — )
< loan (yVxn) = 8Gyn) [ + llzn =PI + Brlxn — Trzn [I1?
= o4 [[YV(xn) = uGyn|* + 20tn [[YV(xn) — uGYn || zn — Pl + llzn — PII? (3.50)
+ Bnllxn = Tazn[[R(an[[YV(xn) — uGyn | + [Izn —PII) + BrllXn — Tr znl]
otn |[YV(xn) — HGUnHZ + [lun *pHZ +Mn
on |[YV(xn) — HGUnHZ + (Ilxn *pHZ — [Ixn *unHZ) +Mn,
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where

My = Bn”xn _WnH[z(“nHVV(Xn) - HGUTLH + Hln —P”) + Bn”xn _WnH] (3.51)
+ 200 [ YV (xn) — 1Gyn |20 —Pl- '

Now, from (3.50), we derive

Al V() — 4Gy 2+ My + [xn — P =[x 1 — P12
nlYV(xn) = 0Gyn 1> + Mn + [[xn —Xn 1l (%0 — Pl + X1 =PI
Since &, — 0 by the condition (C1), ||xn,+1 —Xn|| = 0 by Step 2 and M,, — 0 by Step 3 and the condition

(C1), we have

lim ||xn —unl|| =0.

n—oo
Step 5. We show that limp o [[un —2zn|| = 0. To this end, let p € Q. Using z,, = Fr un and p = F;, p,
and firmly nonexpansivity of F, , we observe that

Izn = pII* = [Fr un — Fr,pl?

< (Fryun —Fr pun —p)
= (zZn =P, Un—p)

1
< S (lzn =PI+ fun =PI = un = 2znl?),

that is,
lzn = PI* < llun =PI = lun = zall? < fxn —PlI* = un —zn|* (3.52)

Now, from (3.50) and (3.52), we compute

nl[YV(xn) = uGyn | + llzn — pI* + Mn
nlYV(xn) — HGUTLHZ + Hxn —P||2 - Hun _Zn”2 + My,

g1 —pl* < «
<
where M,, is of in (3.51). So, we get

[un — ZnHZ < on|lyVixn) — HGUHHZ +Mn + [[xn _pH2 — |1 _P”z
< (XTL”YV(XTL) - HGUnHZ + Mn + HXnJrl _XnH(HXn _pH + HXnJrl —P”)
From the condition (C1), Step 2 and limy_,,c My, = 0, it follows that

lim |jup —zn|| =0.
n—oo

Step 6. We show that limn o ||zZn —Wn|| = limn oo ||2n — Tr, zn || = 0. Since ||[wn —zn|| < ||[Wn — x| +
|Xn —un|| + [|[un —zn||, by Step 3, Step 4 and Step 5, we conclude that

lim |[[wn —zn| = lim [[Thzn —2zn|| =0.
n—o0o n—oo

Step 7. We show that lim,,_, ||[Xn —zn | = 0. Indeed, from Step 3 and Step 6, we have
Ixn — zn|| < ||[xXn —Wn ||+ ||[Wn —zn|| = 0 asn — oo.

Step 8. We show that limsup__, ((YV —uG)q,xn —q) < 0, where q is a solution of the variational
inequality (3.2). To this end, first we prove that

limsup((yV — uG)q, wn — q) = limsup((yV —uG)q, T, zn — q) < 0.

n—oo n—oo
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Since {z,} is bounded, we can choose a subsequence {z,} of {z,,} such that

limsup((yV —uG)q,wn —q) = lim ((yV —puG)q, wn, — q). (3.53)
n—oo 1—00
Without loss of generality, we may assume that {z,,} converges weakly to z € C. From |[wn, —zn|| — 0 by
Step 6, it follows that wy,, — z. Moreover, from Step 3 and Step 4, it follows that x,,, — z and u,, — z.
Thus, by the same argument as in Step 7 of the proof of Theorem 3.1 together with Step 4, Step 5 and Step
6, we obtain z € Q. So, from (3.53), we obtain

limsup((yV —uG)q, wn — q) = lim ((yV — uG)q, wn, —q)
n—oco teo (3.54)
= ((yV—uG)q,z—q) <0.

Since limn_, ||[Xn —Wn || = 0 by Step 3, from (3.54), we conclude that

lim sup((yV—uG)q, xn — q)

n—o0
< limsup((yV — uG)q, xn —wn) +limsup((yV — uG)q, wn — q)
n—oo n—oo
< limsup || (YV — uG)q]|[[xn —wn || + limsup((yV —pG)q, wn — q) < 0.
n—oo n—o0
Step 9. We show that limp_, ||Xn — q|| = 0 and limn_, [[un — q|| = 0, where q is a solution of the

variational inequality (3.2). Indeed, from (3.3), Lemma 2.5 and Lemma 2.8, we have

%ns1— 4l = lonyV(xn) + (I — 6nuGlyn —p|?
= [lon (YV(xn) =¥V(q)) + (I — an uG)yn — (I — xnuG)q + xn (YV(q) — nGq)|?
[oen YU xn — gl + (1 — axnT)[[yn — 9|l >+ 200 ((YV — uG)q, Xn+1—q)
loanyUxn = qll 4+ (1= o) (Bnllxn — gl + (1 = Bn) | Truzn — q[)1?
+ 20 ((YV = 1G)q,xn11—q) (3.55)
< lanylxn — g + (
)

NN

1—on®) (Brnlxn — gl + (1= Bn)llzn — q|)?

+ 20 ((YV = 1G)q, Xn 11— q)

lonyUxn — gl + (1 = om0 [[xn — q[[1* + 20 ((YV = 1G)q, Xn 11— q)
(1= (t—=vDon)|[xn — qHZ + 200 ((YV — uG)q, Xn+1 —q)

= (1=o)|xn —ql* + Bn,

<
<

where &, = (T— vyl o, and B = 2(t— v an {(YV —1G)q, Xn+1 — q). From the conditions (C1) and (C2),
and Step 8, it is easily seen that &, — 0, }__; &n = oo, and limsup,, . __ = < 0. Hence, by applying
Lemma 2.4 to (3.55), we conclude x, — q as n — oo. Moreover, by Step 4, we obtain that u,, — q as
n — oo. This completes the proof. O

From Theorem 3.3, we deduce immediately the following result.

Corollary 3.4. Let {xn} and {un} be sequences generated by

O(un, y) + (Bun, Yy —un) + 9(y) — @(un) + 7 (y —un,un —xn) >0, Yy € C,
Yn = Brnxn + (1 - Bn)TrnFrnKran/
Xn41 = (I—an)yn, Vn=>1

Let {otn}, {Bn), and {rn} be sequences satisfying conditions (C1), (C2), (C3), and (C4) in Theorem 3.3. Then {xn}
and {un} converge strongly to a point q € Q, which solves the minimum norm problem (3.24).
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Proof. Take G =1, p=11=1,V =0, and 1l = 0 in Theorem 3.3. Then the variational inequality (3.2) is
reduced to the inequality
(,p—q) =20, VYpeQ.

This is equivalent to ||q||> < (p, q) < |[p|/||q|| for all p € Q. It turns out that | q| < ||p| for all p € Q and q
is the minimum-norm point of Q. O

Remark 3.5.

(1) For finding a common element of GMEP(O, ¢, B) N VI(C,F) N Fix(T), where B is a continuous
monotone mapping, F is a continuous monotone mapping, and T is a continuous pseudocontractive
mapping, Theorem 3.1 and Theorem 3.3 are new ones different from previous those introduced
by several authors. Consequently, in the sense that our convergence is for the more general class
of continuous monotone mappings and the more general class of continuous pseudocontractive
mappings, our results improve, develop and complement the corresponding results, which were
obtained recently by several authors in references; for example, see [5, 6, 8, 12, 13, 15, 16, 19, 24, 25,
27-29, 32, 36-39] and the references therein.

(2) We point out that Corollary 3.2 and Corollary 3.4 for finding the minimum-norm point of
GMEP(®,@,B)n VI(C,F) N Fix(T) are also new ones different from previous those introduced
by several authors.

(3) We recall some special cases of the generalized mixed equilibrium problem (1.1) as follows:

(i) If O(x,y) = 0 for all x,y € C, the GMEP (1.1) reduces the following generalized variational
inequality problem (for short, GVI) of finding x € C such that

(Bx,y—x)+oy)—o(x) >0, vyeC. (3.56)

(ii) If B =0 and ©(x,y) = 0 for all x,y € C, the GMEP (1.1) reduces the following minimization
problem (for short, MP) finding x € C such that

e(y)—e(x) >0, VyeC. (3.57)

Applying Theorem 3.1, Theorem 3.3, Corollary 3.2, and Corollary 3.4, we can also establish the new
corresponding results for the GEP (1.2), the MEP (1.3), the EP (1.4), the GVI (3.56) and the MP (3.57).
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