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Abstract

In this paper, the notion of (L,M)-fuzzy convex structures is introduced. It is a generalization of L-convex structures and
M-fuzzifying convex structures. In our definition of (L,M)-fuzzy convex structures, each L-fuzzy subset can be regarded as an
L-convex set to some degree. The notion of convexity preserving functions is also generalized to lattice-valued case. Moreover,
under the framework of (L,M)-fuzzy convex structures, the concepts of quotient structures, substructures and products are
presented and their fundamental properties are discussed. Finally, we create a functor ω from MYCS to LMCS and show that
MYCS can be embedded in LMCS as a coreflective subcategory, where MYCS and LMCS denote the category of M-fuzzifying
convex structures and the category of (L,M)-fuzzy convex structures, respectively. c©2017 All rights reserved.
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1. Introduction

Convexity theory has been accepted to be of increasing importance in recent years in the study of
extremum problems in many areas of applied mathematics. The concept of convexity which was mainly
defined and studied in Rn in the pioneering works of Newton, Minkowski, and others as described in [2],
now finds a place in several other mathematical structures such as vector spaces, posets, lattices, metric
spaces, graphs, and median algebras. This development is motivated by not only the need for an abstract
theory of convexity generalizing the classical theorems in Rn due to Helly, Caratheodory, etc.; but also by
the necessity to unify geometric aspects of all these mathematical structures. Abstract convexity theory
is a branch of mathematics dealing with set-theoretic structures satisfying axioms similar to that usual
convex sets fulfill. Here, by “usual convex sets”, we mean convex sets in real linear spaces. In a general
setting, the axioms of abstract convexity are the following:

(1) the empty set and the universe set are convex;
(2) the intersection of a nonempty collection of convex sets is convex;
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(3) the union of a chain of convex sets is convex.

Clearly, usual convex sets have properties (1)-(3), but there are many other collections of sets, coming
from various types of mathematical objects, that satisfy conditions (1)-(3), such as convexities in lattices
and in Boolean algebras [22, 24], convexities in metric spaces and graphs [9, 20]. Also, convex structures
appeared naturally in topology, especially in the theory of supercompact spaces [23].

The notion of a fuzzy subset was introduced by Zadeh [28] and then fuzzy subsets have been applied
to various branches of mathematics. In 1994, Rosa generalized the notion of a convex structure to a
fuzzy convex structure (X,C) in [14, 15] and C was defined as a crisp family of fuzzy subsets of a set X
satisfying certain axioms. For convenience, we call this fuzzy convex structure an I-convex structure. In
2009, Maruyama generalized I-convex structures to L-convex structures in [10], where L is a completely
distributive lattice. Recently, Pang and Shi [12] introduced several types of L-convex structures, including
stratified L-convex structures, convex-generated L-convex structures, weakly induced L-convex structures
and induced L-convex structures and discussed their relations from a categorical aspect. Pang and Zhao
[13] presented several characterizations of L-convex structures. When L is a continuous lattice, in [6], Jin
and Li discussed the relations between the category of stratified L-convex structures and the category of
convex structures.

In 2014, Shi and Xiu [19] introduced a new approach to the fuzzification of convex structures, which
is called an M-fuzzifying convex structure. An M-fuzzifying convex structure is a pair (X, C ), where C is
a mapping from 2X to M satisfying three axioms. Shi and Li [18] generalized the notion of restricted hull
operators in classical convex structures to M-fuzzifying restricted hull operators and used it to charac-
terize M-fuzzifying convex structures. Xiu and Shi [26] introduced the concept of M-fuzzifying interval
operators and established its relations with M-fuzzifying convex structures from a categorical aspect.

In this paper, based on the idea of [8] and [21], combining L-convex structures and M-fuzzifying con-
vex structures and based on complete distributive lattices L and M, we present a more general approach
to the fuzzification of convex structures. More specifically, we define an (L,M)-fuzzy convexity on a
nonempty set X by means of a mapping C : LX → M satisfying three axioms. It is a generalization of
L-convex structures and M-fuzzifying convex structures. Each L-fuzzy subset of X can be regarded as an
L-convex set to some degree.

Throughout this paper, unless otherwise stated, both L and M denote complete distributive lattices,
I = [0, 1], 2 = {0, 1} and X is a nonempty set. LX is the set of all L-fuzzy sets (or L-sets for short) on X. We
often do not distinguish a crisp subset A of X and its characteristic function χA. The smallest element and
the largest element in LX are denoted by χ∅ and χX, respectively. The smallest element and the largest
element in M(L) are denoted by ⊥M(⊥L) and >M(>L), respectively. We also adopt the convention that∧
∅ = >M.

The binary relation ≺ in M is defined as follows: for a,b ∈ M, a ≺ b if and only if for every subset
D ⊆ M, the relation b 6 supD always implies the existence of d ∈ D with a 6 d, [3]. {a ∈ M : a ≺ b}
is called the greatest minimal family of b in the sense of [25], denoted by β(b). Moreover, the binary
relation ≺op in M is defined as follows: for a,b ∈ M, a ≺op b if and only if for every subset D ⊆ M,
the relation ∧D 6 a always implies the existence of d ∈ D with d 6 b. {b ∈ M : a ≺op b} is called the
greatest maximal family of a in the sense of [25], denoted by α(a). In a completely distributive lattice M,
there exist α(b) and β(b) for each b ∈M, and b =

∨
β(b) =

∧
α(b) (see [25]).

For a ∈ L and A ∈ LX, we use the following notations:

(1) A[a] = {x ∈ X : a 6 A(x)};
(2) A[a] = {x ∈ X : a 6∈ α(A(x))};
(3) A(a) = {x ∈ X : a ∈ β(A(x))}.

Some properties of these cut sets can be found in [5, 11, 16, 17].
Let f : X → Y be a mapping. Define f→L : LX → LY and f←L : LY → LX by f→L (A)(y) =

∨
f(x)=y

A(x) for

A ∈ LX and y ∈ Y, and f←L (B) = B ◦ f for B ∈ LY , respectively.
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Definition 1.1 ([16]). Let a ∈M and D ⊆ X, define two M-fuzzy sets a∧D and a∨D as follows:

(a∧D)(x) =

{
a, x ∈ D,
⊥, x 6∈ D, (a∨D)(x) =

{
>, x ∈ D,
a, x 6∈ D.

Theorem 1.2 ([25]). For {ai : i ∈ Ω} ⊆M,

(1) α
( ∧
i∈Ω

ai

)
=
⋃
i∈Ω

α(ai), i.e., α is a
∧
−
⋃

mapping;

(2) β
( ∨
i∈Ω

ai

)
=
⋃
i∈Ω

β(ai), i.e., β is a
∨
−
⋃

mapping.

Theorem 1.3 ([5, 17]). For each L-fuzzy set A in LX, we have:

(1) A =
∨
a∈L

(a∧A[a]) =
∧
a∈L

(a∨A[a]);

(2) ∀a ∈ L, A[a] =
⋂

b∈β(a)
A[b] =

⋂
b∈β(a)

A(b);

(3) ∀a ∈ L, A[a] =
⋂

a∈α(b)
A[b];

(4) ∀a ∈ L, A(a) =
⋃

a∈β(b)
A[b].

Theorem 1.4 ([16]). For a family of L-fuzzy sets {Ai : i ∈ Ω} in LX and a ∈ L, we have:

(1)
( ∧
i∈Ω

Ai

)
[a]

=
⋂
i∈Ω

(Ai)[a];

(2)
( ∨
i∈Ω

Ai

)
(a)

=
⋃
i∈Ω

(Ai)(a);

(3)
( ∧
i∈Ω

Ai

)[a]

=
⋂
i∈Ω

(Ai)
[a].

Definition 1.5 ([22]). A subset C of 2X is called a convexity if it satisfies the following conditions:

(C1) ∅,X ∈ C;
(C2) if {Ai : i ∈ Ω} ⊆ C is nonempty, then

⋂
i∈Ω

Ai ∈ C;

(C3) if {Ai : i ∈ Ω} ⊆ C is nonempty and totally ordered by inclusion, then
⋃
i∈Ω

Ai ∈ C.

The pair (X, C) is called a convex structure and the elements in C are called convex sets.

Definition 1.6 ([10]). For a nonempty set X and a subset C of LX, C is called an L-convexity if it satisfies
the following conditions:

(LC1) χ∅,χX ∈ C;
(LC2) if {Ai : i ∈ Ω} ⊆ C is nonempty, then

∧
i∈Ω

Ai ∈ C;

(LC3) if {Ai : i ∈ Ω} ⊆ C is nonempty and totally ordered by inclusion, then
∨
i∈Ω

Ai ∈ C.

If C is an L-convexity on X, then the pair (X,C) is called an L-convex structure. When L = I, an L-convexity
is exactly a fuzzy convex structure in [14, 15].

Definition 1.7 ([19]). A mapping C : 2X → M is called an M-fuzzifying convexity on X if it satisfies the
following conditions:

(MYC1) C (∅) = C (X) = >M;
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(MYC2) if {Ai : i ∈ Ω} ⊆ 2X is nonempty, then C (
⋂
i∈Ω

Ai) >
∧
i∈Ω

C (Ai);

(MYC3) if {Ai : i ∈ Ω} ⊆ 2X is nonempty and totally ordered by inclusion, then C (
⋃
i∈Ω

Ai) >
∧
i∈Ω

C (Ai).

If C is an M-fuzzifying convexity on X, then the pair (X, C ) is called an M-fuzzifying convex structure.

Theorem 1.8 ([19]). A mapping C : 2X →M is an M-fuzzifying convexity if and only if for each a ∈M\{⊥M},
C[a] is a convexity.

Definition 1.9 ([19]). Let ϕ : 2X →M be a mapping. The M-fuzzifying convex structure (X, C ) generated
by ϕ is given by

∀A ∈ 2X, Cϕ(A) =
∧

{D(A) : ϕ 6 D ∈ G},

where G denotes all the M-fuzzifying convexities on X. Then ϕ is called a subbase of the M-fuzzifying
convexity C . Alternatively, we say that ϕ generates the convexity Cϕ.

Definition 1.10 ([1]). Let L be a lattice and A a fuzzy subset of L. Then A is called a fuzzy sublattice of L
if for all x,y ∈ L,
(i) A(x∧ y) > A(x)∧A(y),
(ii) A(x∨ y) > A(x)∧A(y).

A fuzzy sublattice A is said to be convex if for every interval [a,b] ⊆ L and for all x ∈ [a,b], A(x) >
A(a)∧A(b).

Definition 1.11 ([2]). Let G be a group. A fuzzy subset λ of G is said to be a fuzzy subgroup if
(1) λ(xy) > λ(x)∧ λ(y),
(2) λ(x−1) > λ(x).

Let G be an ordered group. A fuzzy subgroup λ of G is said to be a fuzzy convex subgroup if for
every interval [a,b] ⊆ G and for all x ∈ [a,b], we have λ(x) > λ(a)∧ λ(b).

2. (L,M)-fuzzy convex structures

In this section, combining the concepts of L-convex structures and M-fuzzifying convex structures, we
introduce a general approach to the fuzzification of convex structures as follows.

Definition 2.1. A mapping C : LX →M is called an (L,M)-fuzzy convexity on X if it satisfies the following
three conditions:

(LMC1) C(χ∅) = C(χX) = >M;

(LMC2) if {Ai : i ∈ Ω} ⊆ LX is nonempty, then C

( ∧
i∈Ω

Ai

)
>
∧
i∈Ω

C(Ai);

(LMC3) if {Ai : i ∈ Ω} ⊆ LX is nonempty and totally ordered by inclusion, then C

( ∨
i∈Ω

Ai

)
>
∧
i∈Ω

C(Ai).

If C is an (L,M)-fuzzy convexity, then (X,C) is called an (L,M)-fuzzy convex structure.
An (L, 2)-fuzzy convex structure is an L-convex structure. An (I, 2)-fuzzy convex structure can be

viewed as an I-convex structure. A (2,M)-fuzzy convex structure is an M-fuzzifying convex structure. A
crisp convex structure in [22] can be regarded as a (2, 2)-fuzzy convex structure.

If C is an (L,M)-fuzzy convexity, then C(A) can be regarded as the degree to which A is an L-convex
set.

Next we give some examples of (L,M)-fuzzy convex structures, L-convex structures, andM-fuzzifying
convex structures, respectively.



F.-G. Shi, Z.-Y. Xiu, J. Nonlinear Sci. Appl., 10 (2017), 3655–3669 3659

Example 2.2. Let a mapping T : LX →M be an (L,M)-fuzzy topology in [8, 21]. If it satisfies the following
conditions:

(S) ∀{Aj}j∈J ⊆ LX, T(
∧
j∈JAj) >

∧
j∈J T(Aj),

then T is called a saturated (L,M)-fuzzy topology, and (X,T) is called an Alexandroff (L,M)-fuzzy topo-
logical space.

We can see that an Alexandroff (L,M)-fuzzy topological space (X,T) is an (L,M)-fuzzy convex struc-
ture.

When L = 2 and M = I, an Alexandroff (L,M)-fuzzy topological space (X,T) is an Alexandroff
fuzzifying topological space in [4, 27] and it is an example of M-fuzzifying convex structures.

Example 2.3 ([7]). An I-fuzzified set of all upper sets of a fuzzy preordered set (X,R) is a map ∇(R) :
IX → I defined by

∀U ∈ IX, ∇(R)(U) =
∧

(x,y)∈X×X

R(x,y)→ (U(x)→ U(x)).

For a given fuzzy preorder R on X, ∇(R), the I-fuzzified set of all upper sets of (X,R) has the following
properties: for all F ⊆ IX, U,V ∈ IX, and λ ∈ [0, 1],

(i) ∇(R)(λ) = 1 for every constant mapping λ from X to [0, 1];
(ii)

∧
∇(R)(F) 6 ∇(R)(

∧
F) where ∇(R)(F) = {∇(R)(U)|U ∈ F};

(iii)
∧
∇(R)(F) 6 ∇(R)(

∨
F).

We can see that ∇(R) satisfies (LMC1)-(LMC3) and then (X,∇(R)) is an (L,M)-fuzzy convex structure,
where M = L = I.

Example 2.4. Define a mapping C : LRn →M by

∀A ∈ LRn , C(A) =
∧

λ∈[0,1]

∧
(x,y)∈Rn×Rn

(A(x)∧A(y))→ A(λx+ (1 − λ)y),

where the binary function → is defined as follows: for a,b, c ∈ L, a → b =
∨
{c ∈ L : a∧ c 6 b}. Then

(X,C) is an (L,M)-fuzzy convex structure. Next we show that C satisfies (LMC1)-(LMC3).

(LMC1) Clearly, C(χ∅) = C(χRn) = >M.

(LMC2) For any nonempty set {Ai : i ∈ Ω} ⊆ LRn , we have

C(
∧
i∈Ω

Ai) =
∧

λ∈[0,1]

∧
(x,y)∈Rn×Rn

((
∧
i∈Ω

Ai)(x)∧ (
∧
i∈Ω

Ai)(y))→ (
∧
i∈Ω

Ai)(λx+ (1 − λ)y)

=
∧

λ∈[0,1]

∧
(x,y)∈Rn×Rn

(
∧
i∈Ω

Ai(x)∧
∧
i∈Ω

Ai(y))→
∧
i∈Ω

Ai(λx+ (1 − λ)y)

=
∧

λ∈[0,1]

∧
(x,y)∈Rn×Rn

∧
i∈Ω

((
∧
i∈Ω

Ai(x)∧
∧
i∈Ω

Ai(y))→ Ai(λx+ (1 − λ)y))

>
∧

λ∈[0,1]

∧
(x,y)∈Rn×Rn

∧
i∈Ω

(Ai(x)∧Ai(y))→ Ai(λx+ (1 − λ)y)

=
∧
i∈Ω

∧
λ∈[0,1]

∧
(x,y)∈Rn×Rn

((Ai(x)∧Ai(y))→ Ai(λx+ (1 − λ)y))

=
∧
i∈Ω

C(Ai).

The proof of (LMC3) is similar to that of (LMC2) and is omitted.
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When M = 2, we obtain the following example.

Example 2.5 ([10]). An L-fuzzy set µ on Rn is an L-fuzzy convex set on Rn iff µ(rx+ (1 − r)y) > µ(x)∧
µ(y) for any x, y ∈ Rn and for any r ∈ [0, 1]. CL denotes the set of all L-fuzzy convex sets on Rn. Then
(Rn,CL) is an L-convex structure.

Example 2.6. Let C denote the set of all fuzzy convex sublattices on L. It is easy to show that C is an
I-convexity and (L,C) is an I-convex structure.

Example 2.7. Let G be an ordered group, and let C denote the set of all fuzzy convex subgroup on G.
Then we can see that C is an I-convexity and (G,C) is an I-convex structure.

The next two theorems give characterizations of an (L,M)-fuzzy convexity.

Theorem 2.8. A mapping C : LX →M is an (L,M)-fuzzy convexity if and only if for each a ∈M\{⊥M}, C[a] is
an L-convexity.

Proof. The proof is obvious and is omitted.

Theorem 2.9. A mapping C : LX →M is an (L,M)-fuzzy convexity if and only if for each a ∈ α(⊥M), C[a] is an
L-convexity.

Proof.

(LMC1) For each a ∈ α(⊥M), χ∅,χX ∈ C[a]. We have C(χ∅) = C(χX) = >M.

(LMC2) Let {Ai|i ∈ Ω} ⊆ LX be nonempty, and for a ∈ α(⊥M), a /∈ α(
∧
i∈Ω

C(Ai)). Thus a /∈
⋃
i∈Ω

α(C(Ai)).

We know that a /∈ α(C(Ai)) and then Ai ∈ C[a] for each i ∈ Ω. Since for each a ∈ α(⊥M), C[a] is an
L-convexity,

∧
i∈Ω

Ai ∈ C[a], that is, a /∈ α(C(
∧
i∈Ω

Ai)). Therefore C(
∧
i∈Ω

Ai) >
∧
i∈Ω

C(Ai).

(LMC3) Let {Ai|i ∈ Ω} ⊆ LX be nonempty and totally ordered by inclusion, and let a /∈ α(
∧
i∈Ω

C(Ai)) for

a ∈ α(⊥M). Thus a /∈
⋃
i∈Ω

α(C(Ai)). We know that a /∈ α(C(Ai)) and then Ai ∈ C[a] for each i ∈ Ω.

Since for each a ∈ α(⊥M), C[a] is an L-convexity,
∨
i∈Ω

Ai ∈ C[a], that is, a /∈ α(C(
∨
i∈Ω

Ai)). Therefore

C(
∨
i∈Ω

Ai) >
∧
i∈Ω

C(Ai).

Conversely, suppose that C : LX → M is an (L,M)-fuzzy convexity and a ∈ α(⊥M). Now we prove
that C[a] is an L-convexity.

(LC1) By C(χ∅) = C(χX) = >M and α(>M) = ∅, we know that a 6∈ α(C(χ∅)) and a 6∈ α(C(χX)). This
implies χ∅,χX ∈ C[a].

(LC2) If {Ai : i ∈ Ω} ⊆ C[a], then for each i ∈ Ω, a 6∈ α(C(Ai)). Hence a 6∈
⋃
i∈Ω

α(C(Ai)). By

C(
∧
i∈Ω

Ai) >
∧
i∈Ω

C(Ai), we know that α
(
C

( ∧
i∈Ω

Ai

))
⊆ α

( ∧
i∈Ω

C(Ai)

)
=

⋃
i∈Ω

α(C(Ai)). This shows

a 6∈ α
(
C

( ∧
i∈Ω

Ai

))
. Therefore

∧
i∈Ω

Ai ∈ C[a].

(LC3) If {Ai : i ∈ Ω} ⊆ C[a] is nonempty and totally ordered by inclusion, then for each i ∈ Ω,

a 6∈ α(C(Ai)). Hence a 6∈
⋃
i∈Ω

α(C(Ai)). By C(
∨
i∈Ω

Ai) >
∧
i∈Ω

C(Ai), we know that α
(
C

( ∨
i∈Ω

Ai

))
⊆

α

( ∧
i∈Ω

C(Ai)

)
=
⋃
i∈Ω

α(C(Ai)). This shows a 6∈ α
(
C

( ∨
i∈Ω

Ai

))
. Therefore

∨
i∈Ω

Ai ∈ C[a]. The proof is

completed.
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Now we consider the conditions that a family of L-convexities forms an (L,M)-fuzzy convexity. By
Theorem 1.3, we can obtain the following result.

Corollary 2.10. If C is an (L,M)-fuzzy convexity, then

(1) C[b] ⊆ C[a] for any a,b ∈M\{⊥M} with a ∈ β(b).
(2) C[b] ⊆ C[a] for any a,b ∈ α(⊥M) with b ∈ α(a).

Theorem 2.11. Let {Ca : a ∈ α(⊥M)} be a family of L-convexities. If Ca =
⋂
{Cb : a ∈ α(b)} for all a ∈ α(⊥M),

then there exists an (L,M)-fuzzy convexity C such that C[a] = Ca.

Proof. The proof is straightforward and is omitted.

Theorem 2.12. Let {Ca : a ∈M\{⊥M}} be a family of L-convexities. If Ca =
⋂
{Cb : b ∈ β(a)} for all a ∈

M\{⊥M}, then there exists an (L,M)-fuzzy convexity C such that C[a] = Ca.

Proof. The proof is straightforward.

Definition 2.13. Let C,D be (L,M)-fuzzy convexities on X. If C(A) 6 D(A) for all A ∈ LX, i.e., C 6 D,
then C is coarser than D and D is finer than C.

Theorem 2.14. Let {Ct : t ∈ T } be a family of (L,M)-fuzzy convexities on X. Then
∧
t∈T

Ct is an (L,M)-fuzzy

convexity on X, where
∧
t∈T

Ct : L
X → M is defined by

( ∧
t∈T

Ct

)
(A) =

∧
t∈T

Ct(A) for each A ∈ LX. Obviously,∧
t∈T

Ct is coarser than Ct for all t ∈ T .

Proof. The proof is straightforward.

3. (L,M)-fuzzy convexity preserving functions

In this section, we shall generalize the notion of convexity preserving functions to lattice-valued set-
ting. We obtain the concept of (L,M)-fuzzy convexity preserving functions and give some of its charac-
terizations.

Definition 3.1. Let (X,C) and (Y,D) be (L,M)-fuzzy convex structures. A function f : X → Y is called an
(L,M)-fuzzy convexity preserving function if C

(
f←L (B)

)
> D(B) for all B ∈ LY .

A (2,M)-fuzzy convexity preserving function is anM-fuzzifying convexity preserving function in [19].

Theorem 3.2. Let (Y,D) be an (L,M)-fuzzy convex structure and f : X → Y a surjective function. Define a
mapping f←L (D) : LX →M by

∀A ∈ LX, f←L (D)(A) =
∨

{D(B) : f←L (B) = A} .

Then (X, f←L (D)) is an (L,M)-fuzzy convex structure.

Proof.

(LMC1) holds from the following equalities:

f←L (D)(χ∅) =
∨

{D(B) : f←L (B) = χ∅} = D(χ∅) = >M,

and
f←L (D)(χX) =

∨
{D(B) : f←L (B) = χX} = D(χY) = >M.



F.-G. Shi, Z.-Y. Xiu, J. Nonlinear Sci. Appl., 10 (2017), 3655–3669 3662

(LMC2) For any nonempty set {Ai : i ∈ Ω} ⊆ LX, let a be any element in M with the property of∧
i∈Ω

f←L (D)(Ai) � a. For each i ∈ Ω,
∨{

D(B) : f←L (B) = Ai
}
= f←L (D)(Ai) � a. Then for each i ∈ Ω,

there exists Bi ∈ LX such that f←L (Bi) = Ai and D(Bi) > a. Note that f←L

( ∧
i∈Ω

Bi

)
=
∧
i∈Ω

f←L (Bi) =
∧
i∈Ω

Ai

and D

( ∧
i∈Ω

Bi

)
>
∧
i∈Ω

D(Bi) > a. Finally we have

f←L (D)

(∧
i∈Ω

Ai

)
=
∨{

D(B) : f←L (B) =
∧
i∈Ω

Ai

}
> D

(∧
i∈Ω

Bi

)
> a.

This implies f←L (D)

( ∧
i∈Ω

Ai

)
>
∧
i∈Ω

f←L (D)(Ai).

(LMC3) For any nonempty set {Ai : i ∈ Ω} ⊆ LX, which is totally ordered by inclusion, let a be any
element in M with the property of

∧
i∈Ω

f←L (D)(Ai) � a, that is,
∧
i∈Ω

∨{
D(B) : f←L (B) = Ai

}
� a. Then

for all i ∈ Ω,
∨{

D(B) : f←L (B) = Ai
}
= f←L (D)(Ai) � a. For each i ∈ Ω, there exists Bi ∈ LX such that

f←L (Bi) = Ai and D(Bi) > a. Since f is surjective and {Ai : i ∈ Ω} is totally ordered by inclusion, we

have {Bi : i ∈ Ω} is totally ordered by inclusion. Note that f←L

( ∨
i∈Ω

Bi

)
=

∨
i∈Ω

f←L (Bi) =
∨
i∈Ω

Ai and

D

( ∨
i∈Ω

Bi

)
>
∧
i∈Ω

D(Bi) > a. Finally we have

f←L (D)

(∨
i∈Ω

Ai

)
=
∨{

D(B) : f←L (B) =
∨
i∈Ω

Ai

}
> D

(∨
i∈Ω

Bi

)
> a.

This implies f←L (D)

( ∨
i∈Ω

Ai

)
>
∧
i∈Ω

f←L (D)(Ai).

The following theorem gives a characterization of (L,M)-fuzzy convexity preserving functions.

Theorem 3.3. Let (X,C) and (Y,D) be two (L,M)-fuzzy convex structures. A surjective function f : X→ Y is an
(L,M)-fuzzy convexity preserving function if and only if f←L (D)(A) 6 C(A) for all A ∈ LX.

Proof. If f : X→ Y is an (L,M)-fuzzy convexity preserving function, then C
(
f←L (B)

)
> D(B) for all B ∈ LY .

Hence for all A ∈ LX, we have

f←L (D)(A) =
∨

{D(B) : f←L (B) = A} 6
∨

{C (f←L (B)) : f←L (B) = A} = C(A).

Conversely, if f←L (D)(A) 6 C(A) for all A ∈ LX, then

D(B) 6
∨

{D(G) : f←L (G) = f←L (B)} = f←L (D)(f←L (B)) 6 C(f←L (B))

for all B ∈ LY . This shows that f : X→ Y is an (L,M)-fuzzy convexity preserving function.

The following theorems are trivial.

Theorem 3.4. If f : (X,C) → (Y,D) and g : (Y,D) → (Z,H) are (L,M)-fuzzy convexity preserving functions,
then g ◦ f : (X,C)→ (Z,H) is an (L,M)-fuzzy convexity preserving function.

Theorem 3.5. Let (X,C) and (Y,D) be (L,M)-fuzzy convex structures. Then a function f : (X,C) → (Y,D) is
an (L,M)-fuzzy convexity preserving function if and only if f : (X,C[a])→ (Y,D[a]) is an L-convexity preserving
function for any a ∈M\{⊥M}.

Theorem 3.6. Let (X,C) and (Y,D) be (L,M)-fuzzy convex structures. Then a function f : (X,C) → (Y,D) is
an (L,M)-fuzzy convexity preserving function if and only if f : (X,C[a])→ (Y,D[a]) is an L-convexity preserving
function for any a ∈ α(⊥M).
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4. Quotient (L,M)-fuzzy convex structures

In this section, the notions of quotient structures and quotient functions are generalized to lattice-
valued setting. We obtain the concepts of quotient (L,M)-fuzzy convex structures, (L,M)-fuzzy quotient
functions, and (L,M)-fuzzy convex-to-convex functions and give some of their properties.

Theorem 4.1. Let (X,C) be an (L,M)-fuzzy convex structure and f : X → Y a surjective function. Define a
mapping C/f : L

Y →M by
∀B ∈ LY , C/f(B) = C(f←L (B)).

Then (Y,C/f) is an (L,M)-fuzzy convex structure and we call C/f a quotient (L,M)-fuzzy convexity on Y with
respect to f and C. Moreover, it is easy to see that f is an (L,M)-fuzzy convexity preserving function from (X,C) to
(Y,C/f).

Proof.

(LMC1) holds from the following equalities:

C/f(χ∅) = C(f←L (χ∅)) = C(χ∅) = >M and C/f(χY) = C(f←L (χY)) = C(χX) = >M.

(LMC2) can be shown from the following fact: for any nonempty set {Bi : i ∈ Ω} ⊆ LY ,

C/f

(∧
i∈Ω

Bi

)
= C(f←L (

∧
i∈Ω

Bi)) = C(
∧
i∈Ω

f←L (Bi)) >
∧
i∈Ω

C(f←L (Bi)) =
∧
i∈Ω

C/f(Bi).

(LMC3) If {Bi : i ∈ Ω} ⊆ LY is nonempty and totally ordered by inclusion, then

C/f

(∨
i∈Ω

Bi

)
= C(f←L (

∨
i∈Ω

Bi)) = C(
∨
i∈Ω

f←L (Bi)) >
∧
i∈Ω

C(f←L (Bi)) =
∧
i∈Ω

C/f(Bi).

Theorem 4.2. Let (X,C) be an (L,M)-fuzzy convex structure and f : X→ Y a surjective function. Then C/f is the
finest convexity on Y such that f is an (L,M)-fuzzy convexity preserving function.

Proof. Let D be an (L,M)-fuzzy convexity on Y such that f is an (L,M)-fuzzy convexity preserving func-
tion from (X,C) to (Y,D). Then we have for all B ∈ LY , C(f←L (B)) > D(B) and thus C/f(B) = C(f←L (B)) >
D(B). Therefore C/f > D.

Definition 4.3. Let (X,C) and (Y,D) be (L,M)-fuzzy convex structures. A function f : X → Y is called an
(L,M)-fuzzy quotient function if f is surjective and D is a quotient (L,M)-fuzzy convexity with respect to
f and C.

Theorem 4.4. If f : (X,C)→ (Y,D) is an (L,M)-fuzzy quotient function, then g : (Y,D)→ (Z,H) is an (L,M)-
fuzzy convexity preserving function if and only if g ◦ f : (X,C) → (Z,H) is an (L,M)-fuzzy convexity preserving
function.

Proof. Since f : (X,C) → (Y,D) is an (L,M)-fuzzy quotient function, we know that f is surjective and for
all B ∈ LY , D(B) = C(f←L (B)).

Since g : (Y,D)→ (Z,H) is an (L,M)-fuzzy convexity preserving function, for all A ∈ LZ, D(g←L (A)) >
H(A). Thus for all A ∈ LZ, C((g ◦ f)←L (A)) = C(f←L (g←L (A))) = D(g←L (A)) > H(A).

Conversely, since g ◦ f : (X,C) → (Z,H) is an (L,M)-fuzzy convexity preserving function, then for all
A ∈ LZ, D(g←L (A)) = C(f←L (g←L (A))) = C((g ◦ f)←L (A)) > H(A).
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Definition 4.5. Let (X,C) and (Y,D) be (L,M)-fuzzy convex structures. A function f : X → Y is called an
(L,M)-fuzzy convex-to-convex function if D

(
f→L (A)

)
> C(A) for all A ∈ LX.

Theorem 4.6. If f : (X,C) → (Y,D) is a surjective (L,M)-fuzzy convexity preserving function and an (L,M)-
fuzzy convex-to-convex function, then D is a quotient (L,M)-fuzzy convexity. Moreover, f is an (L,M)-fuzzy
quotient function with respect to f and C.

Proof. Since f : (X,C) → (Y,D) is a surjective (L,M)-fuzzy convexity preserving function and an (L,M)-
fuzzy convex-to-convex function, we have for all B ∈ LY , C(f←L (B)) > D(B) and for allA ∈ LX, D(f→L (A)) >
C(A). Since f is surjective, we know for all B ∈ LY , f→L (f←L (B)) = B. Hence

D(B) = D(f→L (f←L (B))) > C(f←L (B)) > D(B).

So C(f←L (B)) = D(B) for each B ∈ LY and then D is a quotient (L,M)-fuzzy convexity with respect to f
and C.

The following corollary is a straight consequence of Theorem 4.1.

Corollary 4.7. Let (X,C) be an (L,M)-fuzzy convex structure and R be an equivalence relation defined on X. Let
X/R be the usual quotient set and let π : X −→ X/R be the projection map.

(1) Define D : L(X/R) →M by
∀B ∈ L(X/R), D(B) = C(π←L (B)).

Then D is an (L,M)-fuzzy convexity on X/R and (X/R,D) is a quotient (L,M)-fuzzy convex structure of
(X,C).

(2) If (X,C) is an I-convex structure, then one can define an I-convexity D on X/R as follows: D = {B ∈ I(X/R) :
π←I (B) ∈ C}. Then D is an I-convexity on X/R and (X/R,D) is called the quotient I-convex structure.

5. Substructures and products of (L,M)-fuzzy convex structures

In this section, we give substructures and products of (L,M)-fuzzy convex structures and discuss some
of their fundamental properties.

Lemma 5.1. Let (X,C) be an L-convex structure and ∅ 6= Y ⊆ X. For A ∈ C, co(A|Y)|Y = A|Y.

Proof. On one hand, it is obvious that A|Y ⊆ co(A|Y). Then A|Y = (A|Y)|Y ⊆ co(A|Y)|Y. On the other
hand, A|Y ⊆ A. Hence co(A|Y) ⊆ co(A) = A and then co(A|Y)|Y ⊆ co(A)|Y = A|Y. Therefore, co(A|Y)|Y =
A|Y.

Theorem 5.2. Let (X,C) be an (L,M)-fuzzy convex structure, ∅ 6= Y ⊆ X. Then (Y,C|Y) is an (L,M)-fuzzy
convex structure on Y, where for each A ∈ LY , (C|Y)(A) =

∨
{C(B) : B ∈ LX, B|Y = A}. We call (Y,C|Y) an

(L,M)-fuzzy substructure of (X,C).

Proof.

(1) Clearly, (C|Y)(χ∅) = (C|Y)(χX) = >M.

(2) For any nonempty set {Ai : i ∈ Ω} ⊆ LY , we have

∧
i∈Ω

(C|Y)(Ai) =
∧
i∈Ω

∨
{C(B) : B ∈ LX, B|Y = Ai} =

∨
f∈Πi∈ΩHi

∧
i∈Ω

C(f(i)) 6
∨

f∈Πi∈ΩHi

C

(∧
i∈Ω

f(i)

)
,

where Hi = {B : B ∈ LX, B|Y = Ai} (i ∈ Ω). Since
( ∧
i∈Ω

f(i)

)
|Y =

∧
i∈Ω

(f(i)|Y) =
∧
i∈Ω

Ai, we have

(C|Y)

( ∧
i∈Ω

Ai

)
>
∧
i∈Ω

(C|Y)(Ai).
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(3) For any {Ai : i ∈ Ω} ⊆ LY , which is nonempty and totally ordered by inclusion, we have

∧
i∈Ω

(C|Y)(Ai) =
∧
i∈Ω

∨
{C(B) : B ∈ LX, B|Y = Ai} =

∨
f∈Πi∈Ωµi

∧
i∈Ω

C(f(i)) 6
∨

f∈Πi∈Ωµi

C

(∨
i∈Ω

f(i)

)
,

where µi = {B : B ∈ LX, B|Y = Ai} (i ∈ Ω). Since
( ∨
t∈T

f(i)

)
|Y =

∨
i∈Ω

(f(i)|Y) =
∨
i∈Ω

Ai, we have

(C|Y)

( ∨
i∈Ω

Ai

)
>
∧
i∈Ω

(C|Y)(Ai).

(4) For any set {Ai : i ∈ Ω} ⊆ LY ⊆ LX, which is nonempty and totally ordered by inclusion, let a be any
element in M\{⊥} with the property of

∧
i∈Ω

(C|Y)(Ai) � a, that is,
∧
i∈Ω

∨
{C(B) : B ∈ LX, B|Y = Ai} � a.

Then for each i ∈ Ω, there exists Bi ∈ LX such that Bi|Y = Ai and C(Bi) > a, i.e., Bi ∈ C[a]. By Theorem
1.8, for each a ∈ M\{⊥}, (X,C[a]) is a convex structure. Let coa denote the hull operator of (X,C[a])

for each a ∈ M\{⊥}. Then coa(Ai) ∈ C[a] for all i ∈ Ω. Since {Ai : i ∈ Ω} ⊆ LY is nonempty and
totally ordered by inclusion, {coa(Ai) : i ∈ Ω} is nonempty and totally ordered by inclusion. Hence,∨
i∈Ω

coa(Ai) ∈ C[a], that is, C(
∨
i∈Ω

coa(Ai)) > a. By Lemma 5.1,

(
∨
i∈Ω

coa(Ai))|Y = (
∨
i∈Ω

coa(Bi|Y))|Y =
∨
i∈Ω

coa(Bi|Y)|Y =
∨
i∈Ω

(Bi|Y) =
∨
i∈Ω

Ai.

So we have (C|Y)

( ∨
i∈Ω

Ai

)
> a. This implies (C|Y)

( ∨
i∈Ω

Ai

)
>
∧
i∈Ω

(C|Y)(Ai).

Corollary 5.3 ([14, 15]). Let (X,C) be an I-convex structure, ∅ 6= Y ⊆ X. Then an I-convexity C|Y on Y is given
by the fuzzy sets of the form {B|Y : B ∈ C}. The pair (Y,C|Y) is an I-convex substructure of (X,C).

By Theorem 2.14, we can give the following definition.

Definition 5.4. Let ϕ : LX → M be a mapping. The (L,M)-fuzzy convex structure (X,C) generated by ϕ
is given by

∀A ∈ LX, C(A) =
∧

{D(A) : ϕ 6 D ∈ H},

where H denotes all the (L,M)-fuzzy convexities on X. Then ϕ is called a subbase of the (L,M)-fuzzy
convexity C. Alternatively, we say that ϕ generates the convexity C.

Based on Definition 5.4, we can define the product of (L,M)-fuzzy convex structures as follows.

Definition 5.5. Let {(Xt,Ct)}t∈T be a family of (L,M)-fuzzy convex structures. Let X be the product of
the sets of Xt for t ∈ T , and let πt : X → Xt denote the projection for each t ∈ T . Define a mapping
ϕ : LX → M by ϕ(A) =

∨
t∈T

∨
(πt)←L (B)=A

Ct(B) for each A ∈ LX. Then the product convexity C of X is the

one generated by the subbase ϕ. The resulting (L,M)-fuzzy convex structure (X,C) is called the product
of {(Xt,Ct)}t∈T and is donated by

∏
t∈T

(Xt,Ct).

When L = [0, 1] and M = 2, we can obtain the following definition.

Definition 5.6 ([14, 15]). Let {(Xt,Ct)}t∈T be a family of I-convex structures. Let X be the product of the
sets of Xt for t ∈ T , and let πt : X → Xt denote the projection for each t ∈ T . Then X can be equipped
with the I-convexity C generated by the convex fuzzy sets of the form {(πt)

←
I (B) : B ∈ Ct, t ∈ T }. Then C

is called the product I-convexity for X and (X,C) is called the product I-convex structure.
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Theorem 5.7. Let (X,C) be the product of {(Xt,Ct)}t∈T . Then for all t ∈ T , πt : X → Xt is an (L,M)-fuzzy
convexity preserving function. Moreover, C is the coarsest (L,M)-fuzzy convex structure such that {πt : t ∈ T } are
(L,M)-fuzzy convexity preserving functions.

Proof. Let t0 ∈ T and B ∈ LXt0 . By

Ct0(B) 6
∨
t∈T

∨
(πt)←L (B)=(πt0)

←
L (B)

Ct(B) = ϕ((πt0)
←
L (B)) 6 C((πt0)

←
L (B)),

it implies that πt0 : X → Xt0 is an (L,M)-fuzzy convexity preserving function. By the arbitrariness of
t0, we know for each t ∈ T , πt : X → Xt is an (L,M)-fuzzy convexity preserving function. If there
is an (L,M)-fuzzy convex structure D on X such that for each t ∈ T , πt : X → Xt is an (L,M)-fuzzy
convexity preserving function, then we need to prove D > C. For each B ∈ LX, t ∈ T , if (πt)←L (G) = B,
D(B) = D((πt)

←
L (G)) > Ct(G). Note that ϕ(B) =

∨
t∈T

∨
(πt)←L (G)=B

Ct(G). We have D(B) > ϕ(B) for all

B ∈ LX. Hence D > C.

6. Relation between MYCS and LMCS

In this section, we discuss the relation between (L,M)-fuzzy convex structures and M-fuzzifying con-
vex structures from a categorical aspect. (L,M)-fuzzy convex structures and their (L,M)-fuzzy convexity
preserving functions form a category which is denoted by LMCS and M-fuzzifying convex structures and
their M-fuzzifying convexity preserving functions form a category which is denoted by MYCS. We show
that MYCS can be embedded in LMCS as a coreflective subcategory. In this section, we always suppose
that L satisfies the following further property: ∀a,b ∈ L, β(a∧ b) = β(a)∩β(b).

Lemma 6.1. For any b ∈ L and A ∈ LX, {A[c] : b ∈ β(c)} is up-directed.

Proof. Let A[c1],A[c2] ∈ {A[c] : b ∈ β(c)}. Then b ∈ β(c1) and b ∈ β(c2). We have b ∈ β(c1)
⋂
β(c2) =

β(c1 ∧c2). HenceA[c1∧c2] ∈ {A[c] : b ∈ β(c)}. Moreover, A[c1],A[c2] ⊆ A[c1∧c2]. Therefore, {A[c] : b ∈ β(c)}
is up-directed.

Theorem 6.2. Let (X, C ) be an M-fuzzifying convex structure. Define a mapping ω(C ) : LX →M by

∀A ∈ LX, ω(C )(A) =
∧
a∈L

C (A[a]).

Then ω(C ) is an (L,M)-fuzzy convexity.

Proof.

(LMC1) Obviously, ω(C )(χX) = ω(C )(χ∅) = >M.

(LMC2) For any nonempty set {Ai : i ∈ Ω} ⊆ LX, we have

ω(C )(
∧
i∈Ω

Ai) =
∧
a∈L

C ((
∧
i∈Ω

Ai)[a]) =
∧
a∈L

C (
∧
i∈Ω

(Ai)[a])

>
∧
a∈L

∧
i∈Ω

C ((Ai)[a]) =
∧
i∈Ω

∧
a∈L

C ((Ai)[a]) =
∧
i∈Ω

ω(C )(Ai).

(LMC3) For any set {Ai : i ∈ Ω} ⊆ LX, which is nonempty and totally ordered by inclusion, we need

to prove that ω(C )

( ∨
i∈Ω

Ai

)
>
∧
i∈Ω

ω(C )(Ai), that is,
∧
a∈L

C ((
∨
i∈Ω

Ai)[a]) >
∧
i∈Ω

∧
a∈L

C ((Ai)[a]). Let h ∈

M\{⊥M} and
∧
i∈Ω

∧
a∈L

C ((Ai)[a]) > h. Then we have for any i ∈ Ω and for any a ∈ L, C ((Ai)[a]) > h, i.e.,
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(Ai)[a] ∈ C[h]. Since (X, C ) is an M-fuzzifying convex structure, by Theorem 1.8, for each h ∈ M\{⊥M},
(X, C[h]) is a convex structure. By Theorems 1.3 and 1.4, we know that

(
∨
i∈Ω

Ai)[a] =
⋂

b∈β(a)

(
∨
i∈Ω

Ai)(b) =
⋂

b∈β(a)

⋃
i∈Ω

(Ai)(b) =
⋂

b∈β(a)

⋃
i∈Ω

⋃
b∈β(c)

(Ai)[c].

By Lemma 6.1, for each b ∈ β(a) and for each i ∈ Ω, {(Ai)[c] : b ∈ β(c)} ⊆ C[h] is up-directed. Then by
Definition 1.5, we have

⋃
b∈β(c)

(Ai)[c] ∈ C[h]. Let Bi =
⋃

b∈β(c)
(Ai)[c] for each i ∈ Ω. Since {Ai : i ∈ Ω}

is totally ordered, we obtain {Bi : i ∈ Ω} is totally ordered. Then
⋃
i∈Ω

⋃
b∈β(c)

(Ai)[c] ∈ C[h]. Therefore

(
∨
i∈Ω

Ai)[a] =
⋂

b∈β(a)

⋃
i∈Ω

⋃
b∈β(c)

(Ai)[c] ∈ C[h]. Hence ω(C )

( ∨
i∈Ω

Ai

)
> h. By the arbitrariness of h, we

have ω(C )

( ∨
i∈Ω

Ai

)
>
∧
i∈Ω

ω(C )(Ai).

Theorem 6.3. Let (X, C ) and (Y, D) be two M-fuzzifying convex structures and f : X → Y a function. Then
f : (X, C )→ (Y, D) is an M-fuzzifying convexity preserving function if and only if f : (X,ω(C ))→ (Y,ω(D)) is
an (L,M)-fuzzy convexity preserving function.

Proof. Suppose that f : (X, C )→ (Y, D) is anM-fuzzifying convexity preserving function. Then C
(
f−1(A)

)
> D(A) for any A ∈ 2Y . In order to prove that f : (X,ω(C )) → (Y,ω(D)) is an (L,M)-fuzzy convexity
preserving function, we need to prove ω(C )

(
f←L (A)

)
> ω(D)(A) for any A ∈ LY . For any A ∈ LY and for

any a ∈ L, we have f←L (A)[a] = f
−1(A[a]). In fact, for any A ∈ LY , by

ω(C ) (f←L (A)) =
∧
a∈L

C (f←L (A)[a]) =
∧
a∈L

C (f−1(A[a])) >
∧
a∈L

D(A[a]) = ω(D)(A),

we can prove the necessity.
Conversely, suppose that f : (X,ω(C )) → (Y,ω(D)) is an (L,M)-fuzzy convexity preserving function.

Then ω(C )
(
f←L (A)

)
> ω(D)(A) for any A ∈ LY . In particular, it follows that ω(C )

(
f←L (A)

)
> ω(D)(A)

for any A ∈ 2Y . In order to prove that f : (X, C ) → (Y, D) is an M-fuzzifying convexity preserving
function, we need to prove C

(
f−1(A)

)
> D(A) for any A ∈ 2Y . In fact, for any A ∈ 2Y , we have

C
(
f−1(A)

)
= C

(
f−1(A[a])

)
= C

(
f←L (A)[a]

)
=
∧
a∈L

C (f←L (A)[a]) = ω(C ) (f←L (A)) > ω(D) (A) =
∧
a∈L

D(A[a]) = D(A).

This shows that f : (X, C )→ (Y, D) is an M-fuzzifying convexity preserving function.

Theorem 6.4. Suppose that (X,C) is an (L,M)-fuzzy convex structure. We can obtain an M-fuzzifying convex
structure ι(C) on X generated by the subbase ϕC(U) : 2X →M defined as follows:

∀U ∈ 2X, ϕC(U) =
∨
a∈L

∨
{C(B) : B ∈ LX,B[a] = U}.

Then ι ◦ω = id and ω ◦ ι > id.

Proof. We observe that for every M-fuzzifying convex structure C on X the relation ϕω(C )(U) > C (U)

holds for all U ∈ 2X. In fact, it could be showed by for each U ∈ 2X,

ϕω(C )(U) =
∨
a∈L

∨
{ω(C )(B) : B ∈ LX,B[a] = U} > ω(C )(U) =

∧
a∈L

C (U[a]) = C (U).
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Thus, ι(ω(C )) > C , i.e., ι ◦ω > id.
Conversely, let U ∈ 2X and take any a ∈ L. Then for each B ∈ LX with B[a] = U,

ω(C )(B) =
∧
b∈L

C (B[b]) 6 C (U).

Hence, ϕω(C )(U) =
∨
a∈L

∨
{ω(C )(B) : B ∈ LX,B[a] = U} 6 C (U). It means that ι(ω(C )) 6 C , i.e.,

ι ◦ω 6 id. Finally, we obtain ι ◦ω = id by all proofs above.
Let (X,C) be an (L,M)-fuzzy convex structure. Then

ϕC(U) =
∨
a∈L

∨
{C(B) : B ∈ LX,B[a] = U}

for all U ∈ 2X and ι(C) =
∧
{D : ϕC 6 D ∈ H}, where H denotes all the M-fuzzifying convexities on X. For

each A ∈ LX, by

(ω ◦ ι(C))(A) =
∧
a∈L

ι(C)(A[a]) >
∧
a∈L

ϕC(A[a]) =
∧
a∈L

∨
b∈L

∨
{C(B) : B ∈ LX,B[b] = A[a]} > C(A),

we have ω ◦ ι(C) > C, i.e., ω ◦ ι > id.

Theorem 6.5. Let (X, C ) be an M-fuzzifying convex structure, (X,D) be an (L,M)-fuzzy convex structure, and
f : (X, C ) → (Y, ι(D)) be an M-fuzzifying convexity preserving function. Then f : (X,ω(C )) → (Y,D) is an
(L,M)-fuzzy convexity preserving function.

Proof. Since f : (X, C ) → (Y, ι(D)) is an M-fuzzifying convexity preserving function, for each A ∈ 2Y ,
C (f−1(A)) > ι(D)(A). For each B ∈ LY , by

D(B) 6 ω ◦ ι(D)(B) = ω(ι(D))(B) =
∧
a∈L

ι(D)(B[a]) 6
∧
a∈L

C(f−1(B[a])) =
∧
a∈L

C (f←L (B)[a]) = ω(C )(f←L (B)),

we obtain f : (X,ω(C ))→ (Y,D) is an (L,M)-fuzzy convexity preserving function.

Based on the above results, we finally obtain the following theorem.

Theorem 6.6. MYCS can be embedded in LMCS as a coreflective subcategory.

7. Conclusion

In this paper, combining L-convex structures [10, 14, 15] and M-fuzzifying convex structures [19] and
based on complete distributive lattices L andM, we present a more general approach to the fuzzification of
convex structures. It is a generalization of L-convex structures andM-fuzzifying convex structures. Under
the framework of (L,M)-fuzzy convex structures, the concepts of quotient structures, substructures and
products are presented and their fundamental properties are discussed.

The notion of convexity preserving functions is also generalized to lattice-valued fuzzy setting and
then an (L,M)-fuzzy convexity preserving function is obtained. Thus there are two categories LMCS
and MYCS, where LMCS consists of all (L,M)-fuzzy convex structures and of all (L,M)-fuzzy convexity
preserving functions, and MYCS consists of all M-fuzzifying convex structures and of all M-fuzzifying
convexity preserving functions. Moreover, we show that MYCS can be embedded in LMCS as a coreflec-
tive subcategory.

The above facts will be useful to help further investigations and it is possible that the fuzzification of
convex structure would be applied to some problems related to the theory of abstract convexity in the
future.
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