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Abstract

This paper deals with the existence of traveling wave solutions for m-dimensional delayed lattice dynamical systems with
competitive quasimonotone and global interaction. By using Schauder’s fixed point theorem and a cross-iteration scheme, we
reduce the existence of traveling wave solutions to the existence of a pair of upper and lower solutions. The general results
obtained will be applied to m-dimensional delayed lattice dynamical systems with Lotka-Volterra type competitive reaction
terms and global interaction. c©2017 All rights reserved.
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1. Introduction

Lattice differential systems are infinite systems of ordinary differential equations indexed by points in
a lattice, such as the D-dimensional integer lattice ZD which involve some aspect of the spatial structure
of the lattice. Such systems arise from practical backgrounds, such as modeling population growth over
patchy environments [8, 16, 20] and modeling the phase transitions [1, 2]. On the other hand, they are also
the natural results of discretization of spatial variable for the continuous models such as partial differential
equations [7, 9, 18]. We refer to the surveys of lattice dynamical systems by Chow [6]. Particularly, many
researchers have paid attention to the traveling wave solutions of lattice dynamical systems due to its
significant sense in mathematical theory and practical fields. More precisely, they can determine the
asymptotical behavior of the corresponding initial value problem for the lattice dynamical systems, and
also describe many important phenomena in population dynamics, physical science and other practical
areas.

In the past years, traveling wave solutions for lattice differential equations with or without time delays
have been widely studied by many authors. For the single lattice differential equation , Bell and Cosner
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[3] used
dun(t)

dt
= D[un+1(t) − 2un(t) + un−1(t)] + f(un(t)), n ∈ Z, t > 0, (1.1)

to model myelinated axons in nerve systems. They studied the long time behavior of solutions to (1.1) for
some nonlinear function f. When the nonlinear term f is a monostable/bistable type, there are extensive
results about the traveling wave solutions for equation (1.1), some of which have revealed some essential
differences between a discrete model and its corresponding continuous one. For details, see for example,
[4, 5, 23, 24]. Taking into account time delay in population dynamics, Wu and Zou [21] considered the
delayed lattice differential equations and studied the existence of traveling wave solutions.

As mentioned in Weinberger et al. [19], the most interesting population model should involve the
interactions of different species, and there are also some concrete system of lattice differential equations
which are derived in population dynamics. For example, Huang and Lu [10] and Huang et al. [11]
considered the following delayed lattice dynamical systems

dun(t)
dt =

m∑
j=1

aj[g(un+j(t)) − 2g(un(t)) + g(un−j(t))] + f1(un(t− τ), vn(t− τ)),

dvn(t)
dt =

m∑
j=1

aj[g(vn+j(t)) − 2g(vn(t)) + g(vn−j(t))] + f2(un(t− τ), vn(t− τ)),
(1.2)

where n ∈ Z,m > 1 is an integer, aj,bj > 0, fi : C([−τ, 0], R2) → R and g : R → R are continuous
functions. By using the method of monotone iteration and upper-lower solution, they established the
existence of traveling wave solutions for system (1.2) connecting the trivial equilibrium and the positive
one, if the reaction terms satisfy the so-called (exponential) quasimonotone condition or the partial (ex-
ponential) quasimonotone condition. Later, Lin and Li [12] considered the delayed system of two lattice
ODEs {

dun(t)
dt = g1(un+1(t)) + g1(un−1(t)) − 2g1(un(t)) + f1(unt, vnt),

dvn(t)
dt = g2(vn+1(t)) + g2(vn−1(t)) − 2g2(vn(t)) + f2(unt, vnt),

(1.3)

where fi, i = 1, 2 satisfy the (exponential) competitive quasimonotone condition, and obtained the exis-
tence of traveling wave solutions for system (1.3).

Besides the lattice dynamical systems mentioned above, there are also some literatures consider the
lattice differential equations with global interaction. For example, Ma et al. [17] derived a discrete model
for a single species in one-dimensional patchy environment with infinite number of patches connected
non-locally by diffusion, which takes the form

dun(t)

dt
=
∑
i∈Z0

J(i)[un+i(t) − un(t)] − dun(t) +
∑
i∈Z

K(i)b(un−i(t− τ)), n ∈ Z.

Recently, Lin et al. [14] considered the traveling wavefronts of the following general system of lattice
differential equations

duin(t)

dt
=
∑
k∈Z0

Ji(k)[u
i
n+k(t) − u

i
n(t)]

+ fi

(∑
l∈Z

Ji1(l)u
1
n+l(t− τi1), · · · ,

∑
l∈Z

Jim(l)umn+l(t− τim)

)
, n ∈ Z,

(1.4)

where Un = (u1
n,u2

n, · · · ,umn ) ∈ Rm, i ∈ I =: {1, 2, · · · ,m}, Ji(k) is summable for k ∈ Z0 := Z \ {0}, and fi
satisfy the (exponential) quasimonotone condition.

Motivated by the work [13–15, 22], in this paper, we will consider the existence of traveling wave
solutions for system (1.4) with the nonlinearities fi satisfying the (exponential) competitive quasimono-
tone condition. By using the cross-iteration scheme and upper-lower solution method, we consider the
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traveling-wave solution problem for system (1.4), and give the existence result of traveling wave solutions
for a delayed lattice competitive Lotka-Volterra system.

The rest of this paper is organized as follows. In Section 2, we reduce the existence of traveling wave
solutions to the existence of fixed point of the operator F. In Section 3, we obtain the existence of traveling
wave solutions for system (1.4). In the last section, we apply our main results to an m-dimensional
delayed lattice dynamical systems with competitive interaction and prove the existence of traveling wave
solutions.

2. Preliminaries

Throughout this paper, we employ the usual notations for the standard ordering in Rm. That is, for
u = (u1, · · · ,um) and v = (v1, · · · , vm), we denote u 6 v if ui 6 vi, i = 1, · · · ,m, and u < v if u 6 v, but
u 6= v. If u 6 v, we also denote [u, v] = {w ∈ Rm,u 6 w 6 v}. We use | · | to denote the Euclidean norm in
Rm and ‖ · ‖ to denote the supremum norm in C([−τ, 0], Rm).

A traveling wave solution of (1.4) is a special translation invariant solution of the form

uin(t) = φi(n+ ct), i ∈ I = {1, 2, · · · ,m},

where c > 0 is the wave speed and Φ = (φ1, · · · ,φm) is the wave profile function. Substituting uin(t) =
φi(n+ ct) into (1.4) and denoting n+ ct still by t, we obtain the corresponding wave equations

cφ ′i(t) =
∑
k∈Z0

Ji(k)[φi(t+ k) −φi(t)]

+ fi

(∑
l∈Z

Ji1(l)φ1(t+ l− cτi1), · · · ,
∑
l∈Z

Jim(l)φm(t+ l− cτim)

)
, i ∈ I.

(2.1)

Note that, (2.1) is a mixed functional differential equations. For convenience, we denote

fi(Φ)(t) = fi

(∑
l∈Z

Ji1(l)φ1(t+ l− cτi1), · · · ,
∑
l∈Z

Jim(l)φm(t+ l− cτim)

)
,

then (2.1) can be reduced to

cφ ′i(t) =
∑
k∈Z0

Ji(k)[φi(t+ k) −φi(t)] + fi(Φ)(t), i ∈ I. (2.2)

In this paper, we are only interested in traveling wave solutions satisfying the following asymptotic bound-
ary conditions

lim
t→−∞Φ(t) = 0, lim

t→+∞Φ(t) = K =: (k1, · · · ,km), (2.3)

where 0 and K are two equilibria of (1.4).
Firstly, we give the (exponential) competitive quasimonotone condition (CQM or ECQM) and some

assumptions for (1.4):

CQM: There exist positive constants βi, such that

fi

(∑
l∈Z

Jii(l)u
i
n+l(s),

∑
l∈Z

Jiĩ(l)u
ĩ
n+l(s)

)
− fi

(∑
l∈Z

Jii(l)v
i
n+l(s),

∑
l∈Z

Jiĩ(l)u
ĩ
n+l(s)

)
>
∑
k∈Z0

Ji(k)[u
i
n(0) − vin(0)] −βi[uin(0) − vin(0)],

fi

(∑
l∈Z

Jii(l)u
i
n+l(s),

∑
l∈Z

Jiĩ(l)u
ĩ
n+l(s)

)
− fi

(∑
l∈Z

Jii(l)u
i
n+l(s),

∑
l∈Z

Jiĩ(l)v
ĩ
n+l(s)

)
6 0,

(2.4)

for vin(s),uin(s) ∈ C([−τ, 0], R), vin(s) 6 uin(s), s ∈ [−τ, 0], i ∈ I, n ∈ Z, τ = max
i,j∈I

{τij}, for all

ĩ ∈ Ii =: I \ {i}.
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ECQM: There exist positive constants βi, such that (2.4) holds for vin(s),uin(s) ∈ C([−τ, 0], R), i ∈ I, n ∈
Z, τ = max

i,j∈I
{τij}, for all ĩ ∈ Ii =: I \ {i} with

(i) vin(s) 6 uin(s), s ∈ [−τ, 0];

(ii) eβis[uin(s) − vin(s)] is nondecreasing for s ∈ [−τ, 0].

(A1) fi(0, · · · , 0) = fi(k1, · · · ,km) = 0 with kj > 0, i, j ∈ I, and
m∏
i=1

[0,Mi](Mi > ki) is a positive invariant

region of the corresponding ODEs

dui(t)

dt
= fi(u1(t), · · · ,um(t)), i ∈ I.

(A2) There exist constants Li > 0, i ∈ I such that

|fi(u1, · · · ,um) − fi(v1, · · · , vm)| 6 Li|U− V |, i ∈ I,

where 0 6 U = (u1, · · · ,um),V = (v1, · · · , vm) 6 M =: (M1, · · · ,Mm).

(A3) Ji(k) > 0,k ∈ Z0, and 0 <
∑
k∈Z0

Ji(k)e
λ|k| < +∞, i ∈ I with λ ∈ (0, min

i∈I
{βi/c}).

(A4)
∑
l∈Z

Jij(l) = 1, and
∑
l∈Z

|Jij(l)e
λ|l|| < +∞, where i, j ∈ I, λ ∈ (0, min

i∈I
{βi/c}).

Throughout this paper, we assume that (1.4) satisfies the conditions (A1)-(A4).
Let

C[0,M](R, Rm) = {(φ1, · · · ,φm) ∈ C(R, Rm) : 0 6 φi(t) 6Mi, i ∈ I, t ∈ R}.

For Φ = (φ1, · · · ,φm) ∈ C[0,M](R, Rm), define the operator H = (H1, · · · ,Hm) : C[0,M](R, Rm) →
C(R, Rm) by

Hi(Φ)(t) = βiφi(t) +
∑
k∈Z0

Ji(k)[φi(t+ k) −φi(t)] + fi(Φ)(t).

Then (2.2) can be rewritten as follows

cφ ′i(t) +βiφi(t) −Hi(Φ)(t) = 0.

Furthermore, we define the operator F = (F1, · · · , Fm) : C[0,M](R, Rm)→ C(R, Rm) by

Fi(Φ)(t) =
1
c
e−

βi
c t

∫t
−∞ e

βi
c sHi(Φ)(s)ds. (2.5)

We can easily see that F is well-defined and a fixed point of F is a solution of (2.1), which is a traveling
wave solution of (1.4) connecting 0 with K if it satisfies (2.3).

For 0 < µ < min{βic , i ∈ I}, we define the exponential decay norm

|Φ|µ = sup
t∈R

|Φ(t)|e−µ|t|,

for set C(R, Rm). Denote
Bµ(R, Rm) = {Φ : Φ ∈ C(R, Rm) : |Φ|µ <∞}.

Then it is easy to check that (Bµ(R, Rm), | · |µ) is a Banach space.
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3. Existence of traveling wave solutions of system (1.4)

In this section, we study the existence of traveling wave solutions of (1.4) when f satisfies the condition
CQM or ECQM respectively. Because the similarity in the verification of the following lemmas, we will
give them parallelly. First, we give some nice properties of H, F as follows.

Lemma 3.1. Assume that CQM (ECQM) holds. Then
H1(φ1,ψ2,ψ3, · · · ,ψm)(t) > H1(ψ1,φ2,φ3, · · · ,φm)(t),
H2(ψ1,φ2,ψ3, · · · ,ψm)(t) > H2(φ1,ψ2,φ3, · · · ,φm)(t),

...
Hm(ψ1,ψ2,ψ3, · · · ,φm)(t) > Hm(φ1,φ2,φ3, · · · ,ψm)(t),

and 
F1(φ1,ψ2,ψ3, · · · ,ψm)(t) > F1(ψ1,φ2,φ3, · · · ,φm)(t),
F2(ψ1,φ2,ψ3, · · · ,ψm)(t) > F2(φ1,ψ2,φ3, · · · ,φm)(t),

...
Fm(ψ1,ψ2,ψ3, · · · ,φm)(t) > Fm(φ1,φ2,φ3, · · · ,ψm)(t),

for Φ = (φ1, · · · ,φm),Ψ = (ψ1, · · · ,ψm) ∈ C(R, Rm) with{
(i) 0 6 ψi(t) 6 φi(t) 6Mi, t ∈ R, i ∈ I;
(ii) e

βi
c t[φi(t) −ψi(t)] is nondecreasing for t ∈ R.

Proof. We only prove it when f satisfies ECQM condition. According to ECQM, (A3) and the definition of
operator H, we have

H1(φ1,ψ2,ψ3, · · · ,ψm)(t) −H1(ψ1,φ2,φ3, · · · ,φm)(t)

= H1(φ1,ψ2,ψ3, · · · ,ψm)(t)

−H1(ψ1,ψ2,ψ3, · · · ,ψm)(t)

+H1(ψ1,ψ2,ψ3, · · · ,ψm)(t)

−H1(ψ1,φ2,φ3, · · · ,φm)(t)

= β1(φ1(t) −ψ1(t))

−
∑
k∈Z0

J1(k)(φ1(t) −ψ1(t))

+ f1(φ1,ψ2, · · · ,ψm)(t) − f1(ψ1,ψ2, · · · ,ψm)(t)

+ f1(ψ1,ψ2, · · · ,ψm)(t) − f1(ψ1,φ2, · · · ,φm)(t)

+
∑
k∈Z0

J1(k)((φ1(t+ k) −ψ1(t+ k))

>
∑
k∈Z0

J1(k)(φ1(t+ k) −ψ1(t+ k)) > 0.

It follows from (2.5) and property of H1 that

F1(φ1,ψ2,ψ3, · · · ,ψm)(t) > F1(ψ1,φ2,φ3, · · · ,φm)(t).

The other inequalities can be verified in the same method. This completes the proof.
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Similar to [14, Lemmas 3.5, 3.6], we have the following.

Lemma 3.2.
F = (F1, · · · , Fm) : C[0,M](R, Rm)→ C(R, Rm),

is continuous and compact with respect to the decay norm | · |µ.

Nxet, we assume that (2.1) has a pair of upper and lower solutions as below.

Definition 3.3. A pair of continuous functions Φ = (φ1, · · · ,φm) and Φ = (φ1, · · · ,φ
m
) are called an

upper solution and a lower solution of (2.1), respectively, if Φ and Φ are continuous differentiable in
R \ T and satisfy

cφ
′
i(t) >

∑
k∈Z0

Ji(k)[φi(t+ k) −φi(t)] + fi(φ1, · · · ,φ
i−1,φi,φi+1, · · · ,φ

m
)(t),

cφ ′
i
(t) 6

∑
k∈Z0

Ji(k)[φi(t+ k) −φi(t)] + fi(φ1, · · · ,φi−1,φ
i
,φi+1, · · · ,φm)(t),

for i ∈ I, t ∈ R \ T, where T = {T1, T2, · · · , Ts} with T1 < T2 < · · · < Ts.

Furthermore, we give some hypotheses (P1)-(P3):

(P1) 0 6 (φ1, · · · ,φ
m
) 6 (φ1, · · · ,φm) 6 M;

(P2) lim
t→−∞(φ1, · · · ,φm) = 0, lim

t→+∞(φ1, · · · ,φ
m
) = lim

t→+∞(φ1, · · · ,φm) = K;

(P3) e
βi
c t[φi(t) −φi(t)], i ∈ I are nondecreasing for t ∈ R.

We define the wave profile set

Γ := {Φ = (φ1, · · · ,φm) ∈ C[0,M](R, Rm) : (φ1, · · · ,φ
m
) 6 (φ1, · · · ,φm) 6 (φ1, · · · ,φm)},

when the upper-lower solutions satisfy hypotheses (P1)-(P2), and Γ∗ by

Γ∗ =

Φ = (φ1, · · · ,φm) ∈ C[0,M](R, Rm) :

(i) (φ1, · · · ,φ
m
) 6 (φ1, · · · ,φm) 6 (φ1, · · · ,φm);

(ii) e
βi
c t[φi(t) −φi(t)] and e

βi
c t[φi(t) −φi(t)]

are nondecreasing on t ∈ R, i ∈ I.

 ,

when the upper-lower solutions satisfy hypotheses (P1)-(P3), respectively. It is easy to see that Γ and Γ∗

are non-empty, closed and bounded convex subsets of Bµ(R, Rm).

Lemma 3.4. Assume that CQM and (P1)-(P2) hold, then F(Γ) ⊂ Γ .

Lemma 3.5. Assume that ECQM and (P1)-(P3) hold, then F(Γ∗) ⊂ Γ∗.

Proof. First of all, we prove that F(Φ) satisfies (i) of Γ∗.
For any Φ = (φ1, · · · ,φm) ∈ Γ∗, by Lemma 3.1, it suffices to verify that

φ1(t) 6 F1(φ1,φ2, · · · ,φm)(t) 6 F1(φ1,φ2, · · · ,φ
m
)(t) 6 φ1(t),

φ2(t) 6 F2(φ1,φ2, · · · ,φm)(t) 6 F2(φ1,φ2, · · · ,φ
m
)(t) 6 φ2(t),

...
φ
m
(t) 6 Fm(φ1, · · · ,φm−1,φ

m
)(t) 6 Fm(φ1, · · · ,φ

m−1,φm)(t) 6 φm(t).

(3.1)
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According to the definitions of upper and lower solutions, we obtain

cφ
′
i(t) +βiφi(t) −Hi(φ1, · · · ,φ

i−1,φi,φi+1, · · · ,φ
m
)(t) > 0,

for t ∈ R \ T, i ∈ I.
Let T0 = −∞ and Ts+1 = +∞. Then

F1(φ1,φ2, · · · ,φ
m
)(t) =

1
c
e−

β1
c t

∫t
−∞ e

β1
c sH1(φ1,φ2, · · · ,φ

m
)(s)ds

6
1
c
e−

β1
c t

( i−1∑
j=1

∫Tj
Tj−1

+

∫t
Ti−1

)
e
β1
c s

[
cφ
′
1(s) +β1φ1(s)

]
ds

= φ1(t), Ti−1 < t < Ti,

where i = 1, 2, · · · , s+ 1, and the continuity of F1(φ1,φ2, · · · ,φ
m
)(t) and φ1(t) implies

F1(φ1,φ2, · · · ,φ
m
)(t) 6 φ1(t),

for all t ∈ R. By a similar argument, the remainders of (3.1) are also valid.
Next we need to verify the condition (ii) of Γ∗. According to the definition of F, we have

e
βi
c t

[
φi(t) − Fi(φ1, · · · ,φm)(t)

]
= e

βi
c tφi(t) −

1
c

∫t
−∞ e

βi
c sHi(φ1, · · · ,φm)(s)ds,

then,

d

dt

{
e
βi
c t

[
φi(t)−Fi(φ1, · · · ,φm)(t)

]}
= e

βi
c t

(
βi
c
φi(t) +φ

′
i(t)

)
−

1
c
e
βi
c tHi(φ1, · · · ,φm)(t)

=
1
c
e
βi
c t[cφ

′
i(t) +βiφi(t) −Hi(φ1, · · · ,φm)(t)]

>
1
c
e
βi
c t

[
Hi(φ1, · · · ,φ

i−1,φi,φi+1, · · · ,φ
m
)(t) −Hi(φ1, · · · ,φm)(t)

]
> 0, t ∈ R \ T.

By continuity of Fi(φ1,φ2, · · · ,φm)(t) and φi(t), we see that e
βi
c t[φi(t) − Fi(φ1, · · · ,φm)(t)] is nonde-

creasing in t ∈ R. Also, we can similarly prove that e
βi
c t[Fi(φ1, · · · ,φm)(t) −φ

i
(t)] is nondecreasing in

t ∈ R. This completes the proof.

Now, we are in a position to state the following main theorem.

Theorem 3.6. Assume CQM holds, and further that (2.1) has a pair of upper-lower solution Φ = (φ1, · · · ,φm),
Φ = (φ1, · · · ,φ

m
) satisfying (P1)-(P2). Then (1.4) has a traveling wave solution satisfying (2.3).

Theorem 3.7. Assume that ECQM holds, and further that (2.1) has a pair of upper-lower solution
Φ = (φ1, · · · ,φm), Φ = (φ1, · · · ,φ

m
) satisfying (P1)-(P3). Then (1.4) has a traveling wave solution satisfying

(2.3).

Proof. From Lemmas 3.2 and 3.5, we know that F(Γ∗) ⊂ Γ∗ and F is compact. By the Schauder’s fixed
point theorem, there exists a fixed point (φ∗1 , · · · ,φ∗m) ∈ Γ∗, which is a solution of (2.1), that is a traveling
wave solution of (1.4).
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Next, we verify the boundary conditions (2.3).
By (P2) and the inequality

0 6 (φ1, · · · ,φ
m
) 6 (φ∗1 , · · · ,φ∗m) 6 (φ1, · · · ,φm) 6 (M1, · · · ,Mm),

we see that

lim
t→−∞(φ∗1(t), · · · ,φ∗m(t)) = (0, · · · , 0), lim

t→+∞(φ∗1(t), · · · ,φ∗m(t)) = (k1, · · · ,km).

Therefore, the fixed point (φ∗1(t), · · · ,φ∗m(t)) satisfies the boundary conditions (2.3). The proof is com-
plete.

4. Applications

In this section, we employ our conclusions to establish the existence of traveling wave solutions for
the following system.

Example 4.1. Consider the following m-dimensional delayed lattice dynamical systems with CQM con-
dition and global interaction

du1
n(t)
dt =

∑
k∈Z0

J1(k)[u
1
n+k(t) − u

1
n(t)] + r1u

1
n(t)[1 − a11u

1
n(t) −

∑
j∈I1

a1ju
j
n(t− τ1j)],

...
dumn (t)
dt =

∑
k∈Z0

Jm(k)[umn+k(t) − u
m
n (t)] + rmu

m
n (t)[1 −

∑
j∈Im

amju
j
n(t− τmj) − ammu

m
n (t)],

(4.1)

where ri > 0, aij > 0, Ji(k), i ∈ I satisfy condition (A3), Ii = I \ {i}. (4.1) has a trivial steady state E0 =

(0, 0, · · · , 0). Moreover, we assume that there exists E∗ = (k1,k2, · · · ,km), ki > 0 such that
∑
j∈I

aijkj = 1,

and
aiiki >

∑
j∈Ii

aijkj, i ∈ I. (4.2)

Thus, we are interested with the existence of traveling wave solutions of (4.1) connecting E0 and E∗. Let
M = (M1, · · · ,Mm) with Mi =

1
aii

, then [0, M] is an invariant region of the corresponding ODEs.
Substituting uin(t) = φi(n+ ct) into (4.1) and denoting n+ ct still by t, we derive the corresponding

wave equations

cφ ′1(t) =
∑
k∈Z0

J1(k)[φ1(t+ k) −φ1(t)] + r1φ1(t)[1 − a11φ1(t) −
∑
j∈I1

a1jφm(t− cτ1j)],

...
cφ ′m(t) =

∑
k∈Z0

Jm(k)[φm(t+ k) −φm(t)] + rmφm(t)[1 −
∑
j∈Im

amjφm(t− cτ1j) − ammφm(t)].

(4.3)

For φ1, · · · ,φm ∈ C([−τ, 0], R), denote

f1(φ1, · · · ,φm) = r1φ1(0)[1 − a11φ1(0) −
∑
j∈I1

a1jφm(t− τ1j)],

...

fm(φ1, · · · ,φm) = rmφm(0)[1 −
∑
j∈I1

amjφm(t− τmj) − ammφm(0)].

Obviously, f = (f1, · · · , fm) satisfies assumptions (A1), (A2) and CQM condition.
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In order to apply Theorem 3.6, we need to construct an upper solution and a lower solution for (4.3).
For c > 0, λ > 0, we define

∆i(λ, c) =
∑
k∈Z0

Ji(k)(e
λk − 1) − cλ+ ri.

Then ∆i(λ, c) is well-defined. Furthermore, we have the following lemma.

Lemma 4.2. There exist ci > 0, i ∈ I such that the following hold:
if c > ci, ∆i(λ, c) has two distinct positive roots λi1 < λi2, and

∆i(λ, c) =

{
> 0, λ ∈ (0, λi1)∪ (λi2,∞),
< 0, λ ∈ (λi1, λi2),

if c < ci, ∆i(λ, c) has no positive root.

Let c∗ = max{c1, c2, · · · , cm}, we always assume that c > c∗. Assume that q > 1 holds and η satisfies

η ∈
(

1, min
i,j∈I

{
λi2
λi1

,
λi1 + λj1
λi1

})
. (4.4)

Define li(t) = eλi1t − qeηλi1t, i ∈ I. Noting that li(t) are unimodal functions, and by careful calculation,
we can derive that li(t), i ∈ I have a common maximum expressed by

σ = (η− 1)η
η

1−ηq
1

1−η > 0, (4.5)

which correct the inappropriate statement in [13, 22], and can simplify the verification of upper-lower
solution for system (4.3).

Furthermore, we denote constants ti3 such that

ti3 = max
{
t : li(t) =

σ

2

}
.

Let λ ∈ (0, 1) be small enough such that

ki −

(
ki −

σ

2

)
e−λti3 >

σ

4
. (4.6)

Then, for every i ∈ I, we can define the continuous function Φ(t) = (φ1(t), · · · ,φ
m
(t)) by

φ
i
(t) =

{
eλi1t − qeηλi1t, t 6 ti2,
ki − (ki −

σ
2 )e

−λt, t > ti2,

where ti2 > ti3 for all i ∈ I.
Remark 4.3. By calculating, we can conclude that ti2 is dependent on parameter q. Thus, we can choose q
large enough such that ti2 < 0, which is crucial in the verifications of upper-lower solutions.

Define the continuous function Φ(t) = (φ1(t), · · · ,φm(t)) as follows:

φi(t) =

{
min{Mi, eλi1t}, t 6 ti1,
ki + kie

−λt, t > ti1.

Remark 4.4. In view of (4.2), there exists εi ∈ (0,ki) such that

aiiki >
∑
j∈Ii

aijεj, aiiεi >
∑
j∈Ii

aijkj, (4.7)

hold for any εi ∈ [εi,ki], which are useful in the following demonstrations.
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Lemma 4.5. For q > 1 being large enough, the following statements

q > max
i∈I

{
ri
∑
j∈I aij

−∆i(ηλi1, c)
+ 1
}

, (4.8)

ki − εi >
σ

2
, (4.9)

min
i∈I

{ti1} > max
i∈I

{ti2}+ cτ. (4.10)

are valid.

Proof. By Lemma 4.2 and (4.4), we have (4.8) holds. From (4.5), we know that σ is decreasing with respect
to q. Then, we can choose q large enough such that (4.9) holds. For (4.10), we have ti1 > lnki

λi
. Since

φ
i
(t), i ∈ I are continuous functions, we obtain that

qeηλi1ti2 = eλi1ti2 − ki + (ki −
σ

2
)e−λti2 := Ni.

Thus, ti2 = 1
ηλi1

(lnNi − lnq). Therefore, there exists q > 1 sufficiently large such that (4.10) holds.

It is easy to see that Φ(t),Φ(t) satisfy (P1), (P2). We now prove that Φ(t) and Φ(t) are an upper
solution and a lower solution of (4.3), respectively.

Lemma 4.6. Assume that (4.2) and (4.4) hold. Then (φ1(t),φ2(t), · · · ,φm(t)) is an upper solution of (4.3).

Proof. For φ1(t), it suffices to prove that

L1(t) :=
∑
k∈Z0

J1(k)[φ1(t+ k) −φ1(t)] − cφ
′
1(t) + r1φ1(t)

[
1 − a11φ1(t) −

∑
j∈I1

a1jφj(t− cτ1j)

]
6 0. (4.11)

When t 6 t11, noting that for any k ∈ Z0,

φ1(t+ k) 6M1(= k1 + k1e
−λt11), (4.12)

equation (4.11) is clear if φ1(t) =M1.
If φ1(t) = e

λ11t, noting that for any k ∈ Z0,φ1(t+ k) 6 e
λ11(t+k) and φ

j
(t− cτ1j) > 0, j ∈ I1, we have

L1(t) 6
∑
k∈Z0

J1(k)[φ1(t+ k) −φ1(t)] − cφ
′
1(t) + r1φ1(t)

6 eλ11t

[ ∑
k∈Z0

(eλ11k − 1) − cλ11 + r1

]
= 0.

When t > t11, then φ1(t) = k1 + k1e
−λt. Due to (4.10), we have φ

j
(t− cτ1j) = kj − (kj −

σ
2 )e

−λ(t−cτ1j),
j ∈ I1. By (4.12), we have

L1(t) 6
∑
k∈Z0

J1(k)[k1 + k1e
−λt11 − (k1 + k1e

−λt)] + cλk1e
−λt + r1(k1 + k1e

−λt)[
1 − a11(k1 + k1e

−λt) −
∑
j∈I1

a1j

(
kj − (kj −

σ

2
)

)
e−λ(t−cτ1j)

]

6 k1e
−λt

{ ∑
k∈Z0

J1(k)[e
−λ(t11−t) − 1] + cλ+ r1(1 + e−λt)
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j∈I1

a1j(kj −
σ

2
)eλcτ1j − a11k1

]}
=: k1e

−λtI1(λ).

Since

I1(0) = 2r1

[∑
j∈I1

a1j(kj −
σ

2
) − a11k1

]
< 0,

then there exists λ∗1 > 0 such that I1(λ) < 0 for any λ ∈ (0, λ∗1). Thus, L1(t) 6 0 holds for λ ∈ (0, λ∗1) if
t > t11.

Similarly, we can prove that∑
k∈Z0

Ji(k)[φi(t+ k) −φi(t)] − cφ
′
i(t) + riφi(t)

[
1 − aiiφi(t) −

∑
j∈Ii

aijφj(t− cτij)

]
6 0,

for i = 2, · · · ,m.
By the above argument, we see that φ1(t),φ2(t), · · · ,φm(t) is an upper solution of (4.3).

Lemma 4.7. Assume that (4.2) and (4.4) hold. Then (φ1(t),φ2(t), · · · ,φ
m
(t)) is a lower solution of (4.3).

Proof. For φ1(t), it suffices to prove that

L1(t) :=
∑
k∈Z0

J1(k)[φ1(t+ k) −φ1(t)] − cφ
′
1(t) + r1φ1(t)

[
1 − a11φ1(t) −

∑
j∈I1

a1jφj(t− cτ1j)

]
> 0.

When t 6 t12, then φ1(t) = e
λ11t − qeηλ11t,φj(t− cτ1j) 6 eλ11(t−cτ1j). Noting that for any k ∈ Z0,

φ1(t+ k) > e
λ11(t+k) − qeηλ11(t+k),

we have

L1(t) >
∑
k∈Z0

J1(k)

[
eλ11(t+k) − eλ11t − qeηλ11t(eηλ11k − 1)

]
− c(eλ11t − qeηλ11t) ′

+ r1(e
λ11t − qeηλ11t)

[
1 − a11(e

λ11t − qeηλ11t) −
∑
j∈I1

a1je
λ11(t−cτ1j)

]

= eλ11t

[ ∑
k∈Z0

J1(k)(e
λ11k − 1) − cλ11 + r1

]
− qeηλ11t

[ ∑
k∈Z0

J1(k)(e
ηλ11k − 1) − cηλ11 + r1

]
(4.13)

− r1(e
λ11t − qeηλ11t)

[
a11(e

λ11t − qeηλ11t) +
∑
j∈I1

a1je
λ11(t−cτ1j)

]
> −qeηλ11t∆1(ηλ11, c) − r1a11(e

λ11t − qeηλ11t)2 − r1e
λ11t
∑
j∈I1

a1je
λ11(t−cτ1j)

> −qeηλ11t∆1(ηλ11, c) − r1a11e
2λ11t − r1

∑
j∈I1

a1je
2λ11t.

Noting that t12 < 0, by (4.8) and (4.13), we have

L1(t) > e
2λ11t[−q∆1(ηλ11, c) − r1a11 − r1

∑
j∈I1

a1j] > 0.

When t > t12, then φ1(t) = k1 − (k1 −
σ
2 )e

−λt,φj(t− cτ1j) 6 kj + kje
−λ(t−cτ1j), j ∈ I1. Noting that for
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any k ∈ Z0,
φ1(t+ k) > k1 − (k1 −

σ

2
)e−λ(t+k),

we have

L1(t) >
∑
k∈Z0

J1(k)

[
(k1 −

σ

2
)e−λt − (k1 −

σ

2
)e−λ(t+k)

]
− cλ(k1 −

σ

2
)e−λt + r1

[
k1 − (k1 −

σ

2
)e−λt

]
[

1 − a11

[
k1 − (k1 −

σ

2
)e−λt

]
−
∑
j∈I1

a1jkj −
∑
j∈I1

a1jkje
−λ(t−cτ1j)

]

> e−λt
{
(k1 −

σ

2
)
∑
k∈Z0

J1(k)(1 − e−λk) − cλ(k1 −
σ

2
)

+ r1

[
k1 − (k1 −

σ

2
)e−λt

][
a11(k1 −

σ

2
) −
∑
j∈I1

a1jkje
λcτ1j

]}
.

(4.14)

Due to (4.6) and (4.14), we have

L1(t) > e
−λt

{
(k1 −

σ

2
)
∑
k∈Z0

J1(k)(1 − e−λk) − cλ(k1 −
σ

2
)

+
r1σ

4

[
a11(k1 −

σ

2
) −
∑
j∈I1

a1jkje
λcτ1j

]}
:= e−λtI2(λ).

By (4.7) and (4.9), we have

I2(0) =
r1σ

4

[
a11(k1 −

m1

2
) −
∑
j∈I1

a1jkj

]
>
r1σ

4
(a11ε1 −

∑
j∈I1

a1jkj) > 0.

Then there exists λ∗2 > 0 such that I2(λ) > 0 for any λ ∈ (0, λ∗2). Thus, L1(t) > 0 holds for λ ∈ (0, λ∗2) if
t > t12.

Similarly, we can prove that∑
k∈Z0

Ji(k)[φi(t+ k) −φi(t)] − cφ
′
i
(t) + riφi(t)

[
1 − aiiφi(t) −

∑
j∈Ii

aijφj(t− cτij)

]
> 0,

for i = 2, · · · ,m.
By the above argument, we see that φ1(t),φ2(t), · · · ,φ

m
(t) is a lower solution of (4.3).

By Theorem 3.6, we have the following result.

Theorem 4.8. Assume that (4.2) holds. Then for every c > c∗, system (4.1) has a traveling wave solution with
speed c connecting the trivial steady state E0 and the positive steady state E∗.
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