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Abstract
Lutwak introduced the Lp-harmonic radial body of a star body. In this paper, we define the notion of asymmetric Lp-

harmonic radial bodies and study their properties. In particular, we obtain the extremum values of dual quermassintegrals and
the volume of the polars of the asymmetric Lp-harmonic radial bodies, respectively. c©2017 All rights reserved.
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1. Introduction and main results

Lutwak in 1996 extended the classical Brunn-Minkowski theory to Lp-Brunn-Minkowski theory (see
[15]), which had an enormous impact, providing stronger affine isoperimetric inequalities than the classi-
cal counterparts (see [22, 30]). Several years later, Ludwig, Haberl and Schuster extended the Lp-Brunn-
Minkowski theory to asymmetric Lp Brunn-Minkowski theory by introducing a continuous parameter
(see [6–9, 11, 12]). The asymmetric Lp-Brunn-Minkowski theory is far more general since the continuous
parameter makes the Lp-asymmetric geometric bodies can be studied by analytical methods. In the past
ten years, the investigations of Lp-asymmetric geometric bodies have received great interest from many
articles (see [2, 10, 16, 17, 19, 20, 22, 24–29]).

The Lp-harmonic radial combination of convex bodies was first investigated by Firey (see [3, 4]) and
was extended to star bodies by Lutwak (see [15]), which played an important role in Lp Brunn-Minkowski
theory. For the further researches of Lp-harmonic radial combination, also see ([1, 21, 30]).

We will use Kn to denote the set of convex bodies (compact, convex subsets with nonempty interiors)
in Rn. Kno denotes the set of convex bodies containing the origin in their interiors. The n-dimensional
volume of a body K is written as V(K) and W̃i(K) denotes the dual quermassintegral of K. The unit sphere
in Rn is denoted as Sn−1 and B denotes the standard unit ball in Rn.

If K is a compact star shaped (about the origin) set in Rn, then its radial function, ρK = ρ(K, ·) :
Rn\{0}→ [0,∞), is defined by (see [5, 18])

ρ(K,u) = max{λ > 0, λu ∈ K}, u ∈ Sn−1.
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If ρK is positive and continuous, then K is called a star body (about the origin) and Sn denotes the set
of star bodies in Rn. We will use Sno and Snos to denote the subset of Sn containing the origin in their
interiors and the set of origin-symmetric star body respectively. Two star bodies K and L are said to be
dilated of one another if ρK(u)/ρl(u) is independent of u ∈ Sn−1.

For K,L ∈ Sno , p > 1 and λ,µ > 0 (not both zero), the Firey Lp-harmonic radial combination, λ ?
K+̃−pµ ? L ∈ Sno of K and L, was defined by

ρ−p(λ ?K+̃−pµ ? L, ·) = λρ−p(K, ·) + µρ−p(L, ·). (1.1)

In (1.1), let λ = µ = 1
2 and L = −K, the Lp-harmonic radial body was defined as follows,

∆̃pK =
1
2
?K+̃−p

1
2
? (−K). (1.2)

Based on the definitions of (1.1) and (1.2), Wang and Leng [23] gave the following results.

Theorem 1.1. If K,L ∈ Sn0 , p > 1 and λ,µ > 0 (not both zero), i 6= n, then for i < n or n < i < n+ p,

W̃i(λ ?K+̃−pµ ? L)
− p
n−i > λW̃i(K)

− p
n−i + µW̃i(L)

− p
n−i , (1.3)

for i > n+ p,
W̃i(λ ?K+̃−pµ ? L)

− p
n−i 6 λW̃i(K)

− p
n−i + µW̃i(L)

− p
n−i ,

with equality in each inequality if and only if K and L are dilates.

Theorem 1.2. If K ∈ Sn0 , p > 1, then for i < n or n < i < n+ p,

W̃i(∆̃pK) > W̃i(K),

for i > n+ p,
W̃i(∆̃pK) 6 W̃i(K),

with equality in each inequality if and only if K is origin-symmetric.

Here W̃i(K) denotes the dual quermassintegrals of K ∈ Sno which be defined by (see [13])

W̃i(K) =
1
n

∫
Sn−1

ρ(K,u)n−idu,

for any real i.
Motivated by the idea of Wang and Ma (see [26]), in this paper we extend the notion of Lp-harmonic

radial bodies to asymmetric Lp-harmonic radial bodies as follows. For K ∈ Sn0 , p > 1 and τ ∈ [−1, 1], the
asymmetric Lp-harmonic radial body of K is defined by

∆̃τpK = f1(τ) ?K+̃−pf2(τ) ? (−K), (1.4)

here the functions f1(τ) and f2(τ) are defined as

f1(τ) =
(1 + τ)p

(1 + τ)p + (1 − τ)p
, f2(τ) =

(1 − τ)p

(1 + τ)p + (1 − τ)p
. (1.5)

The function f1(τ) and f2(τ) were first defined in [9, 11]. From (1.5), we easily see that f1(τ) and f2(τ)
satisfy

f1(τ) + f2(τ) = 1,

f1(−τ) = f2(τ), f2(−τ) = f1(τ).

Together with (1.2), (1.4) and (1.5), we get if τ = 0, then ∆̃τpK = ∆̃pK; if τ = ±1, then ∆̃+1
p K = K and

∆̃−1
p K = −K.

The main goal of this paper is to give the extremum values of the dual quermassintegrals of asym-
metric Lp-harmonic radial bodies and their polars.
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Theorem 1.3. If K ∈ Sn0 , p > 1, and τ ∈ [−1, 1], then for i < n or n < i < n+ p,

W̃i(∆̃pK) > W̃i(∆̃
τ
pK) > W̃i(K). (1.6)

For i > n+ p,
W̃i(∆̃pK) 6 W̃i(∆̃

τ
pK) 6 W̃i(K),

if K is not origin-symmetric, equality holds in the left inequality if and only if τ = 0 and equality holds in the right
inequality if and only if τ = ±1.

When i = 0, we know W̃i(K) = V(K) and we have the following result.

Corollary 1.4. If K ∈ Sn0 , p > 1, and τ ∈ [−1, 1], then,

V(K) 6 V(∆̃τpK) 6 V(∆̃pK). (1.7)

If K is not origin-symmetric, equality holds in the left inequality if and only if τ = 0 and equality holds in the right
inequality if and only if τ = ±1.

If we denote by ∆̃τ,∗
p K the polar body of the asymmetric Lp-harmonic radial body ∆̃τpK of K, we can

have the following result.

Theorem 1.5. If K ∈ Sn0 , p > 1, and τ ∈ [−1, 1], then,

V(K∗) 6 V(∆̃τ,∗
p K) 6 V(∆̃∗pK).

If K is not origin-symmetric, equality holds in the left inequality if and only if τ = ±1 and equality holds in the
right inequality if and only if τ = 0.

Since ∆̃pK ∈ Snos, using Theorem 1.1 and extensive Blaschke-Santaló inequality ([15]) for symmetric
star bodies, we deduce the following.

Theorem 1.6. If K ∈ Sn0 , p > 1, and τ ∈ [−1, 1], then,

V(K)V(∆̃τ,c
p K) 6 ω2

n, (1.8)

with equality if and only if K is an ellipsoid. Here ∆̃τ,c
p K = (∆̃τpK)

c.

As a direct result, we have the following corollary.

Corollary 1.7. If K ∈ Sn0 , p > 1, then,
V(K)V(∆̃∗pK) 6 ω

2
n, (1.9)

with equality if and only if K is an ellipsoid centered at the origin. Here ωn = V(B).

The proofs of Theorem 1.3-1.6 will be given in Section 3 of this paper. In the next section, we will give
the associated background material and derive some properties of the asymmetric Lp-harmonic radial
bodies needed in the proof of the main results.

2. Preliminaries

2.1. Background material
The notion of Lp-dual mixed volume was introduced by Lutwak ([14]). For K, L ∈ Sno , p > 1 and

ε > 0, the Lp-dual mixed volume, Ṽ−p(K, L), of the K and L is defined by

n

−p
Ṽ−p(K, L) = lim

ε→0+

V(K+̃−pε ? L) − V(K)

ε
.

Lutwak ([14]) has proved the Lp-dual mixed volume has the following integral representation

Ṽ−p(K, L) =
1
n

∫
Sn−1

ρ(K,u)n+pρ(L,u)−pdu. (2.1)
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Obviously, by (2.1),

Ṽ−p(K, K) =
1
n

∫
Sn−1

ρ(K,u)ndu.

The Lp-dual Brunn-Minkowski inequality can be stated as follows ([14]): If K, L ∈ Sno , and p > 1,
λ,µ > 0 (not both zero), then

V(λ ?K+̃−pµ ? L)
−p
n > λV(K)

−p
n + µV(L)

−p
n , (2.2)

with equality if and only if K and L are dilates.
Associated with the Lp-Minkowski sum, Firey has proved the following interesting result:

(λK+p µL)
∗ = λ ?K∗+̃−pµ ? L

∗. (2.3)

Here E∗ denotes the polar set of a non-empty set E which is defined by (see [5])

E∗ = {x ∈ Rn : x · y 6 1, any y ∈ E}.

From definition (2.3), it follows that if K ∈ Kno , then

hK∗ =
1
ρK

, ρK∗ =
1
hK

. (2.4)

For K ∈ Snos, an extension of the well-known Blaschke-Santaló inequality takes the following form ([14]):

V(K)V(K∗) 6 ω2
n, (2.5)

with equality if and only if K is an ellipsoid.
For a general star body K ∈ Sno , the Blaschke-Santaló inequality means

V(K)V(Kc) 6 ω2
n,

with equality if and only if K is an ellipsoid. Here Kc denotes the polar body of K with respect to the
centroid of K, i.e., Kc = (K− cent(K))∗.

2.2. Properties of asymmetric Lp-harmonic radial bodies
In this subsection, we establish several properties of the asymmetric Lp-radial bodies needed in Section

3.

Theorem 2.1. If K ∈ Sno , p > 1 and τ ∈ [−1, 1], then

∆̃−τ
p K = ∆̃τp(−K) = −∆̃τpK. (2.6)

Proof. From the definitions (1.4) and (1.5), we have

∆̃−τ
p K = f1(−τ) ?K+̃−pf2(−τ) ? (−K) = f1(τ) ? (−K)+̃−pf2(τ) ? (−(−K)) = ∆̃τp(−K).

Further, together with definitions (1.1), (1.4) and (1.5),

ρ−p
(
− ∆̃τpK,u

)
= ρ−p

(
∆̃τpK,−u

)
= f1(τ)ρ

−p(K,−u) + f2(τ)ρ
−p(−K,−u)

= f1(τ)ρ
−p(−K,u) + f2(τ)ρ

−p((−(−K)),u)

= ρ−p
(
∆̃τp(−K),u

)
.

This yields the right equality of (2.6).
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Theorem 2.2. If K ∈ Sno , p > 1 and τ ∈ [−1, 1], τ 6= 0, then ∆̃τpK = ∆̃−τ
p K if and only if K is an origin-symmetric

star body.

Proof. From the definitions (1.1), (1.4) and (1.5), we have that for all u ∈ Sno ,

ρ−p
(
∆̃τpK,u

)
= f1(τ)ρ

−p(K,u) + f2(τ)ρ
−p(−K,u), (2.7)

and
ρ−p

(
∆̃−τ
p K,u

)
= f2(τ)ρ

−p(K,u) + f1(τ)ρ
−p(−K,u). (2.8)

Hence, if ∆̃τpK = ∆̃−τ
p K, then we get

[f1(τ) − f2(τ)]ρ
−p(K,u) = [f1(τ) − f2(τ)]ρ

−p(−K,u).

Since τ 6= 0, we have f1(τ) − f2(τ) 6= 0, thus ρ−p(K,u) = ρ−p(−K,u), for all u ∈ Sno , i.e., K is an
origin-symmetric star body.

Contrarily, if K is an origin-symmetric star body, i.e., K = −K, then (2.7) and (2.8) yield ρ−p
(
∆̃τpK,u

)
=

ρ−p
(
∆̃−τ
p K,u

)
for all u ∈ Sno which means ∆̃τpK = ∆̃−τ

p K.

From Theorem 2.2, we deduce immediately:

Corollary 2.3. For K ∈ Sno , p > 1 and τ ∈ [−1, 1], if K is not an origin-symmetric star body, then ∆̃τpK = ∆̃−τ
p K

if and only if τ = 0.

Theorem 2.4. If K ∈ Snos, p > 1 and τ ∈ [−1, 1], then ∆̃τpK = K.

Proof. Since K ∈ Snos, that is K = −K, by (1.1) and (1.4) we have

ρ−p
(
∆̃τpK,u

)
= f1(τ)ρ

−p(K,u) + f2(τ)ρ
−p(K,u) = ρ−p(K,u),

for all u ∈ Sno . This gives ∆̃τpK = K.

Theorem 2.5. If K ∈ Sno , p > 1 and τ ∈ [−1, 1], then,

∆̃pK =
1
2
? ∆̃τpK+̃−p

1
2
? ∆̃−τ

p K. (2.9)

Proof. From (1.1) and (1.4), it follows that for all u ∈ Sno ,

ρ−p
(1

2
? ∆̃τpK+̃−p

1
2
? ∆̃−τ

p K,u
)
=

1
2
ρ−p(∆̃τpK,u) +

1
2
ρ−p(∆̃−τ

p K,u)

=
1
2
f1(τ)ρ

−p(K,u) +
1
2
f2(τ)ρ

−p(−K,u)

+
1
2
f1(−τ)ρ

−p(K,u) +
1
2
f2(−τ)ρ

−p(−K,u)

=
1
2
ρ−p(K,u) +

1
2
ρ−p(−K,u)

= ρ−p(∆̃pK,u),

i.e., ∆̃pK = 1
2 ? ∆̃

τ
pK+̃−p

1
2 ? ∆̃

−τ
p K.

3. Proofs of the main results

In this section, we prove Theorem 1.3-1.6. First we prove Theorem 1.3.

Proof of Theorem 1.3. For i < n or n < i < n+ p, in inequality (1.3), let λ = f1(τ), µ = f2(τ), notice (1.4),
we have

W̃i(∆̃
τ
pK)

− p
n−i > f1(τ)W̃i(K)

− p
n−i + f2(τ)W̃i(−K)

− p
n−i = W̃i(K)

− p
n−i ,

which yields
W̃i(∆̃

τ
pK) > W̃i(K). (3.1)



Z. F. Li, W. D. Wang, J. Nonlinear Sci. Appl., 10 (2017), 3612–3618 3617

Clearly, equality holds in (3.1) when τ = ±1. If τ = ±1, by the equality condition of (1.3), we see
that equality holds in (3.1), if and only if K and −K are dilates which means K = −K, i.e., K is an origin-
symmetric star body. Hence, if K is not origin-symmetric, equality holds in the right inequality if and
only if τ = ±1.

Now we prove the left hand inequality of (1.6). Notice (2.9), similarly to the right inequality of (1.6)
and (2.6), we have

W̃i(∆̃pK)
− p
n−i = W̃i(

1
2
? ∆̃τpK+̃−p

1
2
? ∆̃−τ

p K)−
p
n−i

>
1
2
W̃i(∆̃

τ
pK)

− p
n−i +

1
2
W̃i(∆̃

−τ
p K)−

p
n−i

= W̃i(∆̃
τ
pK)

− p
n−i ,

i.e., W̃i(∆̃pK) > W̃i(∆̃τpK), which is just the left hand inequality of (1.6).
Similarly, from the condition of equality in inequality (1.3), we know that equality holds in the left

hand inequality of (1.6) if and only if ∆̃τpK and ∆̃−τ
p K are dilates, that is ∆̃τpK = ∆̃−τ

p K, thus using Corollary
2.3, we deduce that if K is not origin-symmetric, then equality holds in the left hand inequality of (1.6) if
and only if τ = 0.

For the case i > n+ p, the proof is similar.

The proof of Theorem 1.5 needs the following lemma ([26]).

Lemma 3.1. If K ∈ Kno , p > 1, and τ ∈ [−1, 1], then

V(4pK) > V(4τpK) > V(K).

If K is not origin-symmetric and p > 1 (or K is not central if p = 1), there is equality in the left if and only if τ = 0
and equality in the right inequality if and only if τ = ±1.

Here 4τpK denotes the asymmetric Lp-difference body and is defined as follows.

4τp K = f1(τ)K+p f2(τ)(−K). (3.2)

Proof of Theorem 1.5. Clearly, by (2.2) and (3.2), we have

∆̃τ,∗
p K = (∆̃τpK)

∗

= (f1(τ) ?K+̃−pf2(τ) ? (−K))
∗

= f1(τ)K
∗ +p f2(τ)(−K)

∗

= 4τpK∗.

Hence, we have ∆̃∗pK = 4pK∗ and ∆̃+1,∗
p K = K∗, ∆̃−1,∗

p K = (−K)∗.
Thus by Lemma 3.1, we have

V(K∗) 6 V(∆̃τ,∗
p K) 6 V(∆̃∗pK).

The equality conditions of Lemma 3.1 lead to that if K is not origin-symmetric, equality holds in the
left inequality if and only if τ = ±1 and equality holds in the right inequality if and only if τ = 0.

Proof of Theorem 1.6. Since K ∈ Sn0 , using (1.7) and the general Blaschke-Santaló inequality (2.5). We have

V(K)V(∆̃τ,c
p K) 6 V(∆̃τpK)V(∆̃

τ,c
p K) 6 ω2

n.

The equality conditions of inequalities (1.7) and (2.5) mean that equality holds in (1.8) if and only if K
is an ellipsoid.
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Proof of Corollary 1.7. Since ∆̃pK ∈ Snos, combining with (1.7) and the extensive Blaschke-Santaló inequality
(2.4), we have

V(K)V(∆̃∗pK) 6 V(∆̃pK)V(∆̃
∗
pK) 6 ω

2
n.

i.e., (1.9) holds.
The equality conditions of inequalities (1.7) and (2.4) tell ue that equality holds in (1.9) if and only if

∆̃pK ∈ Snos and ∆̃pK is an ellipsoid. This and Theorem 2.4 indicate that equality holds in (1.9) if and only
if K is an ellipsoid centered at the origin.
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