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Abstract
We apply singularity theory to study bifurcation problems with trivial solutions. The approach is based on a new equiv-

alence relation called t-equivalence which preserves the trivial solutions. We obtain a sufficient condition for recognizing such
bifurcation problems to be t-equivalent and discuss the properties of the bifurcation problems with trivial solutions. Under the
action of t-equivalent group, we classify all bifurcation problems with trivial solutions of codimension three or less. c©2017 All
rights reserved.
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1. Introduction

Bifurcation theory is the study of equations with multiple solutions. For a wide variety of equations,
including many partial differential equations, problems concerning multiple solutions can be reduced to
study how the solutions x of a single scalar equation g(x, λ) = 0 vary with the parameter λ. It is difficult
to classify the qualitatively different equations because there are infinitely many equation types and there
are equation types of arbitrarily high complexity. The singularity theory notion of codimension provides
a rational approach to this problem. Golubistky and Schaeffer [6] introduced the idea of applying singu-
larity theoretic methods to the study of bifurcation problems. Subsequently, some authors have studied
classifications of bifurcation problems up to some codimensions. Most of low-codimension classifications
has been performed. Such classifications include bifurcation problems in one state variable without sym-
metry up to codimension 7 (see [8]), those in one state variable with Z2 symmetry up to codimension 3
(see [7]), those in two state variables with D4 symmetry up to topological codimension 2 (see [5]) and with
hidden symmetry (see [9]), and those in one state variable with two bifurcation parameters up to codi-
mension 1 (see [11]). Apart from those, Gao and Li [3] discussed the classification of (D4,S1)-equivariant
bifurcation problems up to topological codimension 2.
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The bifurcation theory may apply to the models from mathematical biology. In evolutionary theory,
changes in the environment are often reflected by changes in the residents’ ability to reproduce. Evolu-
tionary game theory studies the evolution of phenotypic traits and was originated by Maynard-Smith and
Price [12]. The adaptive dynamics approach for studying evolution of phenotypic traits has been explored
by various authors such as Dieckmann and Law [2], Geritz et al. [4], Diekmann [1], and Waxman and
Gavrilets [15]. Vutha and Golubitsky [13] applied singularity theory and adaptive dynamics theory to
study ESS and CvSS singularities of strategy functions. Wang and Golubitsky [14] studied the fitness
functions in adaptive dynamics under dimorphism equivalence and classified singularities up to topolog-
ical codimension 2. We present these here because these give the studying vitality by making connections
with applications.

This paper applies the techniques from singularity theory to bifurcation problems with trivial solu-
tions. The equivalence relation is called as t-equivalence which preserves the trivial solution. The equiv-
alence was described in [7]. We give a sufficient condition to recognize bifurcation problems be equiva-
lent. By analyzing the properties of germs, we give the classification theorem up to codimension 3. All
undefined terms and symbols could be seen in [7, 10]. We suppose the function germs are smooth in this
paper.

The structure of this paper is as follows. We present the basic notations and preliminaries in Section
2. In Section 3, we give a sufficient condition to judge t-equivalent. In Section 4, we discuss the properties
of bifurcation problems and obtain the classification theorem of them.

2. Basic concepts and preliminaries

Let εx,λ denote the space of germs of C∞ functions of (R2, 0)→ R with coordinates x and λ. Let ελ be
the space of germs depending on one variable λ. A germ g ∈ εx,λ satisfying g(0, 0) = gx(0, 0) = 0 is called
a bifurcation problem at origin.

Definition 2.1. Let g ∈ εx,λ be a bifurcation problem and g(0, λ) ≡ 0 for any λ ∈ (R, 0). Then we call g a
bifurcation problem with trivial solution.

Let g be a germ in εx,λ with g(0, λ) ≡ 0. Then there exists a smooth germ f in εx,λ such that

g(x, λ) = xf(x, λ).

Let εx,λ{x} denote the subring of εx,λ consisting of germs with trivial solutions, that is,

εx,λ{x} = {g ∈ εx,λ | g(x, λ) = xf(x, λ), f ∈ εx,λ}.

As a real vector space, εx,λ{x} is a subspace of εx,λ. Let I ⊆ εx,λ. We denote the set {xf(x, λ) | for all f ∈ I}
by I{x}.

Definition 2.2. Let g, h ∈ εx,λ{x}. Then we say g and h are t-equivalent, denoted g ∼ h, if there exist a
diffeomorphism (X,Λ) : R2 → R2 and a function S ∈ εx,λ such that the relation

g(x, λ) = S(x, λ)h(X(x, λ),Λ(λ))

holds near the origin. Here we still require that

S(0, 0) > 0, Xx(0, 0) > 0, Λλ(0) > 0,Λ(0) = 0, X(0, λ) ≡ 0, λ ∈ (R, 0).

The set of all (S, (X,Λ)) is a group, and denoted by Γ . In particular, (S,Φ)−1 = ( 1
S ,Φ−1), where

Φ = (X,Λ).
Let (S, (X,Λ)) ∈ Γ , g ∈ εx,λ{x}. Then the action of Γ on εx,λ{x} is defined by

(S, (X,Λ))g(x, λ) = S(x, λ)g(X(x, λ),Λ(λ)).

The orbit of g under the action of Γ is Og = {h ∈ εx,λ{x}|h ∼ g}.
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Definition 2.3. Let g ∈ εx,λ{x} be a bifurcation problem. The orbit tangent space of g is defined by

T̃(g) = {ag+ bxgx + cλgλ|a,b ∈ εx,λ, c ∈ ελ}.

If g(x, λ) = xf(x, λ), then T̃(g) can be represented by

T̃(g) =< g, xgx >εx,λ +ελ{λgλ} = [< f, xfx >εx,λ +ελ{λfλ}]{x}.

Definition 2.4. Let g ∈ εx,λ{x} satisfying g = gx = 0 at (0,0).

(1) Let W be a subspace of some vector space X. If there exists a subspace V with finite dimension such
that X =W + V , then we call W has finite codimension in X.

(2) If T̃(g) has finite codimension in εx,λ{x}, then we call g has finite codimension in εx,λ{x}.

(3) Let r ∈ N. If there exists a vector subspace V of X with dimension r, such that X = W ⊕ V , then r is
called the codimension of W in X, denoted by codimXW = r or codimW = r. If codimεx,λ{x}T̃(g) = r,
then we call g has codimension r, denoted by codim g = r.

Remark 2.5. Let W be a subspace of εx,λ{x} with finite codimension. Set W
′
= {h ∈ εx,λ|xh(x, λ) ∈ W}.

Then it is easy to see that W =W
′
{x}, where W

′
is a subspace of εx,λ with finite codimension.

3. The orbit tangent space

Lemma 3.1. Let g,p ∈ εx,λ{x} be bifurcation problems. If

T̃(g+ tp) = T̃(g) (3.1)

holds for t near 0, then there exist α,β,γ ∈ εx,λ,t such that

p = αG+βxGx + γλGλ, (3.2)

where G(x, λ, t) = g(x, λ) + tp(x, λ).

Proof. Let t0 ∈ (R, 0) satisfy T̃(g+ t0p) = T̃(g). Notice that

T̃(g+ t0p) =< g+ t0p, xgx + t0xpx >εx,λ +ελ{λgλ + t0λpλ}, T̃(g) =< g, xgx >εx,λ +ελ{λgλ}.

Since g+ t0p, xgx+ t0xpx, λgλ+ t0λpλ ∈ T̃(g+ t0p), we have g+ t0p, xgx+ t0xpx, λgλ+ t0λpλ ∈ T̃(g),
and thus there exist germs ai,bi ∈ εx,λ and ci ∈ ελ, i = 1, 2, 3 such that

g+ t0p = a1g+ b1xgx + c1λgλ,
xgx + t0xpx = a2g+ b2xgx + c2λgλ,
λgλ + t0λpλ = a3g+ b3xgx + c3λgλ.

(3.3)

By (3.3), we have  p

xpx
λpλ

 = Q

 g

xgx
λgλ

 , (3.4)

where Q is a 3× 3 matrix whose entries are smooth germs in εx,λ. Now for any germ h, we introduce the
notation V(h) for the column vector

V(h) =

 h

xhx
λhλ

 .
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Using this notation, we rewrite (3.4) in the form

V(p) = QV(g). (3.5)

Recalling that G = g+ tp, we get
V(G) = V(g) + tV(p). (3.6)

By (3.6) and (3.5), we have
(I+ tQ)V(p) = QV(G). (3.7)

Observe that (3.7) is a system of equations with smooth dependence on t. Since I is invertible, it follows
that for sufficiently small t, I+ tQ is an invertible 3× 3 matrix. Thus (I+ tQ)−1 is a 3× 3 matrix whose
entries are smooth germs in εx,λ,t. In particular, these germs are smooth in t. The invertibility of I+ tQ
and (3.7) imply

V(p) = (I+ tQ)−1QV(G). (3.8)

Equating the first components on each side of (3.8) yields the equality

p = αG+βxGx + γλGλ,

where α,β and γ ∈ εx,λ,t .

Lemma 3.2. Let g,p ∈ εx,λ{x} be bifurcation problems. If

T̃(g+ tp) = T̃(g)

holds for t near 0, then g+ tp ∼ g for all sufficiently near 0.

Proof. Let G(x, λ, t) = g(x, λ) + tp(x, λ), t ∈ (R, 0). By Lemma 3.1, there exist α,β,γ ∈ εx,λ,t such that (3.2)
is true. The non-autonomous system(

u̇

v̇

)
=

(
−uβ(u, v, t)
−vγ(u, v, t)

)
,
{
u(0) = x,
v(0) = λ,

and the equation {
Ṡ = −Sα(X(x, λ, t)),Λ(λ, t), t),
S(0) = 1,

decide the diffeomorphism family (X(x, λ, t), Λ(λ, t)) in (R2, 0) for t ∈ (R, 0) and S ∈ εx,λ,t. Besides, the
solutions of the above system satisfy X(0, λ, t) ≡ 0,Λ(0, t) ≡ 0, t, λ ∈ (R, 0). Thus we get a family of triples
(S(x, λ, t), (X(x, λ, t),Λ(λ, t))) ∈ Γ , t ∈ (R, 0) which satisfy

S(x, λ, t)G(X(x, λ, t),Λ(λ, t), t) = g(x, λ).

In fact,

d

dt
(S(x, λ, t)G(X(x, λ, t),Λ(λ, t), t))

= St(x, λ, t)G(X,Λ, t) + S(x, λ, t)[Gx(X,Λ, t)Xt +Gλ(X,Λ, t)Λt +Gt(X,Λ, t)]
= −Sα(X,Λ, t)G(X,Λ, t) − S[Gx(X,Λ, t)Xβ(X,Λ, t) +Gλ(X,Λ, t)Λγ(X,Λ, t) − p(X,Λ)] = 0.

Thus
S(x, λ, t)G(X(x, λ, t),Λ(λ, t), t) = S(x, λ, 0)G(X(x, λ, 0),Λ(λ, 0), 0) = g(x, λ).

This completes the proof.
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Theorem 3.3. Let g,p ∈ εx,λ{x} be bifurcation problems. If (3.1) holds for all t ∈ [0, 1], then g+ tp ∼ g for all
t ∈ [0, 1].

Proof. Let t0 ∈ [0, 1] and h = g+ t0p. Then

T̃(h) = T̃(g) (3.9)

and
T̃(h+ rp) = T̃(g+ (t0 + r)p) = T̃(g) (3.10)

for all r sufficiently near 0. By (3.9) and (3.10), we have

T̃(h+ rp) = T̃(h).

By Lemma 3.2, we get h+ rp ∼ h. Then g+ (t0 + r)p ∼ g+ t0p, that is,

g+ tp ∼ g+ t0p

for all t near t0. Thus the equivalence classes of t ′s are open and it follows from either the compactness
or connectedness of [0, 1] that there is exactly one equivalence class. Hence g+ tp ∼ g for all t ∈ [0, 1].

4. Main results

Lemma 4.1. Let g ∈ εx,λ{x} be singular at (0, 0) with finite codimension. Then there exists an integer l > 1 such
that g can be written as g = x(h+ k), where h ∈ εx is l-regular for x and k ∈< λ >εx,λ .

Proof. Let g(x, λ) = xf(x, λ), where f ∈ εx,λ. Then

gx(x, λ) = f(x, λ) + xfx(x, λ).

Observe that g is singular at origin. Then f ∈Mx,λ, where Mx,λ is the maximal ideal in εx,λ.
Set k(x, λ) = f(x, λ) − f(x, 0), h(x) = f(x, 0). Then k ∈< λ >εx,λ and h ∈ Mx, where Mx is a maximal

ideal in εx. Now we prove that there exists an integer l > 1 such that h ∈ εx,λ is l-regular for x. Let

W =W
′
{x} = T̃(g).

Since g has finite codimension,
W
′
=< f, xfx >εx,λ +ελ{λfλ}

is a subspace of εx,λ with finite codimension. Let Φ : εx,λ → εx be an algebra homomorphism induced
by inclusion map i : (R, 0)→ (R×R, (0, 0)), i(x) = (x, 0). Then Φ is a surjection homomorphism. Thus Φ
maps a finite subspace of εx,λ to a finite subspace of εx. Especially, it is not difficult to show that

Φ(W
′
) =< Φ(f),Φ(xfx) >εx

is a subspace with finite codimension and also an ideal of εx. Note that Φ(f) = h, Φ(xfx) = xhx. Then
there exists an integer m > 1 such that Mm

x ⊂< h, xhx >εx . So there exist a,b ∈ εx such that

xm = ah+ xbhx. (4.1)

Consider the series jet nets j0h(0), j1h(0), j2h(0), . . .. Note that h ∈Mx. Then j0h(0) = 0. There must exist
an integer l > 0 such that

j0h(0) = j1h(0) = · · · = jl−1h(0) = 0, jlh(0) 6= 0.

Otherwise, there will be a contradiction by making m-jet net on two sides of (4.1). By Taylor theorem,
h ∈ εx is l-regular for x.
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Lemma 4.2. Let g ∈ εx,λ{x} be a bifurcation problem and let g(x, λ) = xf(x, λ), where f ∈ εx,λ. Then the following
conditions hold.

(1) T̃(g) ⊂< xl, λ > {x} and codim g > l.

(2) If l = 3 and fλ(0, 0) = 0, then T̃(g) ⊂< x3, xλ, λ2 > {x} and codim g > 4.

(3) If l = 2 and fλ(0, 0) = 0, we have

(i) if fxλ(0, 0) = 0, then T̃(g) ⊂< x2, λ2 > {x} and codim g > 4;

(ii) if fλλ(0, 0) = 0, then T̃(g) ⊂< x2, xλ, λ3 > {x} and codim g > 4;

(iii) if fxλ(0, 0)fλλ(0, 0) 6= 0, then T̃(g) ⊂< x2, xλ, λ2 > {x} and codim g > 4.

(4) If l = 1 and fλ(0, 0) = fλλ(0, 0) = fλλλ(0, 0) = 0, then T̃(g) ⊂< x, λ4 > {x} and codim g > 4. Here we
denote < h,k > as < h,k >εx,λ .

Proof. By Lemma 4.1, let f(x, λ) = xla(x) + λq(x, λ), where l > 1, a ∈ εx, q ∈ εx,λ and a(0) 6= 0.

(1) The codimension of < xl, λ > {x} is l. Since T̃(g) ⊂< xl, λ > {x}, we have codim T̃(g) > l, it follows that
codim g > l.

It is an easy task to verify the statements on codimension from the statement on containments. For
example, consider (3). If l = 2 and fλ(0, 0) = 0, then there exist q1,q2 ∈ εx,λ such that q = xq1 + λq2. Thus

f(x, λ) = x2a(x) + xλq1 + λ
2q2. (4.2)

(i) If fxλ(0, 0) = 0, then there exist q3,q4 ∈ εx,λ such that q1 = xq3 + λq4 and so

f = x2a(x) + x2λq3 + xλ
2q4 + λ

2q2

and f, xfx, λfλ ∈< x2, λ2 > . Thus
T̃(g) ⊂< x2, λ2 > {x}.

Since codim(< x2, λ2 > {x}) = 4, we have codim T̃(g) > 4 and so codim g > 4.

(ii) If fλλ(0, 0) = 0, then there exist q3,q4 ∈ εx,λ such that q2 = xq3 + λq4 and so

f = x2a(x) + xλq1 + xλ
2q3 + λ

3q4

and f, xfx, λfλ ∈< x2, xλ, λ3 >. Thus

T̃(g) ⊂< x2, xλ, λ3 > {x}.

Since codim(< x2, xλ, λ3 > {x}) = 4, codim g > 4.

(iii) If fxλ(0, 0)fλλ(0, 0) 6= 0, then q1(0, 0) · q2(0, 0) 6= 0. By (4.2), we have

f(x, λ) = x2a(x) + xλq1 + λ
2q2,

xfx(x, λ) = x2[2a(x) + xax(x)] + xλ[q1 + xq1x ] + xλ
2q2x ,

λfλ(x, λ) = xλ[q1 + λq1λ ] + λ
2[2q2 + λq2λ ].

(4.3)

Hence T̃(g) ⊂< x2, xλ, λ2 > {x}. Since codim(< x2, xλ, λ2 > {x}) = 3, we have codim g > 3.
Next, we need to prove codim g 6= 3. It suffices to verify that < x2, xλ, λ2 > {x} is not contained in T̃(g).
Suppose that < x2, xλ, λ2 > {x} ⊂ T̃(g). Then

< x2, xλ, λ2 >⊂< f, xfx > +ελ{λfλ}.
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Hence there exist bij ∈ εx,λ, ci ∈ ελ, where i = 1, 2, 3 and j = 1, 2, such that

x2 = b11f+ b12xfx + c1λfλ, xλ = b21f+ b22xfx + c2λfλ, λ2 = b31f+ b32xfx + c3λfλ. (4.4)

We calculate the 2-jet of equalities in (4.3) at the origin:

1
2
x2fxx(0, 0) + xλfx,λ(0, 0) +

1
2
λ2fλλ(0, 0) = a(0)x2 + q1(0, 0)xλ+ q2(0, 0)λ2,

x2fxx(0, 0) + xλfx,λ(0, 0) = 2a(0)x2 + q1(0, 0)xλ,

xλfx,λ(0, 0) + λ2fλλ(0, 0) = q1(0, 0)xλ+ 2q2(0, 0)λ2.

(4.5)

Calculating the 2-jet of the first equality in (4.4) at the origin, we get

x2 =b11(0, 0)[
1
2
x2fxx(0, 0) + xλfx,λ(0, 0) +

1
2
λ2fλλ(0, 0)]

+ b12(0, 0)[x2fxx(0, 0) + xλfx,λ(0, 0)] + c1(0)[xλfx,λ(0, 0) + λ2fλλ(0, 0)].
(4.6)

By (4.5) and (4.6), we have

x2 =b11(0, 0)[a(0)x2 + q1(0, 0)xλ+ q2(0, 0)λ2]

+ b12(0, 0)[2a(0)x2 + q1(0, 0)xλ] + c1(0)[q1(0, 0)xλ+ 2q2(0, 0)λ2].

Then

x2 =a(0)[b11(0, 0) + 2b12(0, 0)]x2 + q1(0, 0)[b11(0, 0) + b12(0, 0) + c1(0)]xλ+ q2(0, 0)[b11(0, 0) + 2c1(0)]λ2.

Notice that a(0)q1(0, 0)q2(0, 0) 6= 0. Then

b11(0, 0) + b12(0, 0) + c1(0) = 0, (4.7a)
b11(0, 0) + 2c1(0) = 0, (4.7b)

b11(0, 0) + 2b12(0, 0) =
1
a(0)

. (4.7c)

By (4.7a) and (4.7b), we have
b11(0, 0) + 2b12(0, 0) = 0. (4.8)

We get a contradiction between (4.8) and the equality (4.7c). Hence codim g > 4 and so we complete the
proof of (3).

Using the stated hypotheses we may verify statements (2) and (4) in a similar fashion.

Lemma 4.3. Let g ∈ εx,λ{x} be a bifurcation problem.

(1) Let g = x(ax+ qλk), where a,q ∈ R and aq 6= 0, k > 1. If p ∈< x2, xλ, λk+1 >, then

T̃(g+ txp) = T̃(g), t ∈ [0, 1].

(2) Let g = x(axl + qλ), where a,q ∈ R and aq 6= 0, l > 2. If p ∈< xl+1, xλ, λ2 >, then

T̃(g+ txp) = T̃(g), t ∈ [0, 1].

Proof. We only give the proof of (2), since the proof of (1) is similar.
Let p = xl+1b+ xλc+ λ2d, where b, c,d ∈ εx,λ. Then

g+ txp = x(axl + qλ+ txl+1b+ txλc+ tλ2d).
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Let
∆ = axl + qλ+ txl+1b+ txλc+ tλ2d. (4.9)

Then g+ txp = x∆ and

∆x = laxl−1 + (l+ 1)txlb+ txl+1bx + tλc+ txλcx + tλ
2dx,

∆λ = q+ txl+1bλ + txc+ txλcλ + 2tλd+ tλ2dλ.

Obviously, ∆, x∆x, λ∆λ ∈< xl, λ >. Notice that T̃(g) =< xl, λ > {x}. Hence T̃(g+ txp) ⊂ T̃(g) for all
t ∈ [0, 1].

On the other hand, since (q+ txc+ tλd)|(0,0) = q 6= 0, by (4.9),

λ =
1

q+ txc+ tλd
[∆− (x+ txb)xl]. (4.10)

Since
x∆x = laxl + (l+ 1)txl+1b+ txl+2bx + txλc+ tx

2λcx + txλ
2dx

and

[la+ (l+ 1)txb+ tx2bx]|(0,0) = la 6= 0,

xl =
1

la+ (l+ 1)txb+ tx2bx
[x∆x − (txc+ tx2cx + txλdx)λ]. (4.11)

By (4.10) and (4.11), we have

xl =
1

la+ (l+ 1)txb+ tx2bx
[x∆x −

txc+ tx2cx + txλdx
q+ txc+ tλd

(∆− (a+ txb)xl)]. (4.12)

In (4.12), let

L =
1

la+ (l+ 1)txb+ tx2bx
, M =

txc+ tx2cx + txλdx
q+ txc+ tλd

, N = a+ txb.

Then
xl = L[x∆x −M(∆−Nxl)] = Lx∆x − LM∆+ LMNxl.

Thus we have (1 − LMN)xl = Lx∆x − LM∆.
Observe that M(0, 0) = 0 and (1 − LMN)|(0,0) = 1 6= 0. Then

xl =
1

1 − LMN
(Lx∆x − LM∆) ∈< ∆, x∆x >,

λ =
1

q+ txc+ tλd
[∆− (a+ txb)xl)] ∈< ∆, x∆x > .

Hence T̃(g) ⊂ T̃(g+ txp), t ∈ [0, 1].

Lemma 4.4. Let g ∈ εx,λ{x} be singular at (0, 0). If g has the form g(x, λ) = x(xla + xλb + λkq), where
a ∈ εx, b, q ∈ εx,λ and a(0) 6= 0, q(0, 0) 6= 0, then

g(x, λ) ∼ g̃(x, λ) = x[xla(0) + λkq(0, 0)],

where l = 1, k ∈N or k = 1, l ∈N.

Proof. If l = 1, k ∈N, then g̃(x, λ) = x[a(0)x+ q(0, 0)λk] and

g(x, λ) = x[xa(x) + xλb(x, λ) + λkq(x, λ)] = x[a(0)x+ q(0, 0)λk + p] = g̃(x, λ) + xp,

where p ∈< x2, xλ, λk+1 >. By Theorem 3.3 and Lemma 4.3, we have
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g̃(x, λ) ∼ g̃(x, λ) + txp(x, λ), t ∈ [0, 1].

Hence g(x, λ) ∼ g̃(x, λ). If k = 1, l ∈N, then g̃(x, λ) = x[a(0)xl + q(0, 0)λ] and

g(x, λ) = x[xla(x) + xλb(x, λ) + λq(x, λ)] = x[a(0)xl + q(0, 0)λ+ p] = g̃(x, λ) + xp,

where p ∈< xl+1, xλ, λ2 >. By Theorem 3.3 and Lemma 4.3, we have

g̃(x, λ) ∼ g̃(x, λ) + txp(x, λ), t ∈ [0, 1].

Hence g(x, λ) ∼ g̃(x, λ).

Theorem 4.5. Let g ∈ εx,λ{x} satisfy g = gx = 0 at (0, 0) with codim g 6 3. Then

(1) g must be t-equivalent to one of the bifurcation problems: εxk + δλlx, where (k, l) may equal to (2, 1), (3, 1),
(4, 1), (2, 2), (2, 3) and ε, δ = ±1;

(2) any two cases in (1) are not equivalent to each other.

Proof.

(1) Let g ∈ εx,λ{x} be a bifurcation problem and codim g 6 3. By Lemma 4.1, we set

g(x, λ) = x(xna(x) + λq(x, λ)),

where n ∈N, a ∈ εx, q ∈ εx,λ and a(0) 6= 0. By Lemma 4.2, we conclude n 6 3. Let

f(x, λ) = xna(x) + λq(x, λ).

Then we will discuss with different values of n as below.

(i) Let n = 3. Then
g(x, λ) = x(x3a(x) + λq(x, λ)), f(x, λ) = x3a(x) + λq(x, λ).

If fλ(0, 0) 6= 0, then q(0, 0) 6= 0. By Lemma 4.4,

g(x, λ) ∼ g̃(x, λ) = x[a(0)x3 + q(0, 0)λ].

Let
S(x, λ) = 3

√
|a(0)|, X(x, λ) =

1
3
√
|a(0)|

x, Λ(λ) =
1

|q(0, 0)|
λ.

Then (S, (X,Λ)) ∈ Γ and
S(x, λ)g̃(X(x, λ),Λ(λ)) = εx4 + δxλ,

where ε =sgn(a(0)), δ =sgn(q(0, 0)). Hence g(x, λ) ∼ εx4 + δxλ, which is the case of (k, l) = (4, 1).
If fλ(0, 0) = 0, by Lemma 4.2, we have codim g > 4.

(ii) Let n = 2. Then

g(x, λ) = x(x2a(x) + λq(x, λ)), f(x, λ) = x2a(x) + λq(x, λ).

If fλ(0, 0) 6= 0, then q(0, 0) 6= 0. By Lemma 4.4,

g(x, λ) ∼ g̃(x, λ) = x(a(0)x2 + q(0, 0)λ).

Let
S(x, λ) =

√
|a(0)|, X(x, λ) =

1√
|a(0)|

x, Λ(λ) =
1

|q(0, 0)|
λ.

Then (S, (X,Λ)) ∈ Γ and
S(x, λ)g̃(X(x, λ),Λ(λ)) = εx3 + δxλ,

where ε =sgn(a(0)), δ =sgn(q(0, 0)). Hence g(x, λ) ∼ εx3 + δxλ, which is the case of (k, l) = (3, 1).
If fλ(0, 0) = 0, by Lemma 4.2, we have codim g > 4.
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(iii) Let n = 1. Then
g(x, λ) = x[xa(x) + λq(x, λ)], f(x, λ) = xa(x) + λq(x, λ).

If fλ(0, 0) 6= 0, then q(0, 0) 6= 0. By Lemma 4.4,

g(x, λ) ∼ g̃(x, λ) = x[a(0)x+ q(0, 0)λ].

Let
S(x, λ) = |a(0)|, X(x, λ) =

1
|a(0)|

x, Λ(λ) =
1

|q(0, 0)|
λ.

Then we conclude that
g(x, λ) ∼ εx2 + δxλ,

where ε =sgn(a(0)), δ =sgn(q(0, 0)). This is the case of (k, l) = (2, 1).
If fλ(0, 0) = 0, then there exist q1,q2 ∈ εx,λ such that q = xq1 + λq2 and hence

g(x, λ) = x(xa+ xλq1 + λ
2q2), f(x, λ) = xa+ xλq1 + λ

2q2.

Here we consider two cases:
If fλλ(0, 0) 6= 0, then q2(0, 0) 6= 0. By Lemma 4.4,

g(x, λ) ∼ g̃(x, λ) = x[a(0)x+ q2(0, 0)λ2].

Let
S(x, λ) = |a(0)|, X(x, λ) =

1
|a(0)|

x, Λ(λ) =
1

|q2(0, 0)|
λ.

Then we conclude that
g(x, λ) ∼ εx2 + δxλ2,

where ε =sgn(a(0)), δ =sgn(q2(0, 0)). This is the case of (k, l) = (2, 2).
If fλλ(0, 0) = 0, then q2(0, 0) = 0. There exist q3,q4 ∈ εx,λ such that q2 = xq3 + λq4. Hence

g = x(xa+ xλq1 + xλ
2q3 + λ

3q4), f = xa+ xλq1 + xλ
2q3 + λ

3q4.

If fλλλ(0, 0) = 0, by Lemma 4.2, we have codim g > 4.
If fλλλ(0, 0) 6= 0, then q4(0, 0) 6= 0. By Lemma 4.4,

g(x, λ) ∼ g̃(x, λ) = x(a(0)x+ q4(0, 0)λ3).

Let
S(x, λ) = |a(0)|, X(x, λ) =

1
|a(0)|

x, Λ(λ) =
1

3
√
|q4(0, 0)|

λ.

Then we have
g(x, λ) ∼ εx2 + δxλ3,

where ε =sgn(a(0)), δ =sgn(q4(0, 0)). This is the case of (k, l) = (2, 3).

(2) The proof contains three steps.

(i) Obviously, the germs with different codimensions cannot be equivalent to each other.

(ii) We observe that bifurcation problems with codimension 2, x(εx2 + δλ) and x(εx+ δλ2), are not equiv-
alent. We use symbol N(g, λ) to represent the number of x that satisfies the equation g(x, λ) = 0. If g ∼ h,
then it is obvious that N(h, λ) = N(g,Λ(λ)), λ ∈ (R, 0). Assume the abscissa is λ-axe and the ordinate is
x-axe. We only discuss ε = 1, δ = −1, since the other cases are similar.

On the left of (0, 0),
N[x(x2 − λ), λ] = 1, N[x(x− λ2), λ] = 2.

On the right of (0, 0),
N[x(x2 − λ), λ] = 3, N[x(x− λ2), λ] = 2.

Hence x(x2 − λ) and x(x− λ2) are not equivalent.
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(iii) We consider bifurcation problems with codimension 3, that is, x(εx3 + δλ), x(εx+ δλ3). We only
disscuss ε = δ = 1. Suppose

x(x3 + λ) ∼ x(x+ λ3).

Then there exists (S, (X,Λ)) ∈ Γ such that

S(x, λ)(X4(x, λ) +X(x, λ)Λ(λ)) = x2 + xλ3.

Set λ = 0. Then S(x, 0)X4(x, 0) = x2, that is,

2
√
S(x, 0)X2(x, 0) = |x|. (4.13)

In (4.13), the function on the left is differentiable about x, but the function on the right is not. This is a
contradiction and so the assumption is not true. It is similar to prove other cases.
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