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Abstract

Four fixed point theorems for mappings satisfying contractive conditions of integral type in complete metric spaces are
proved. The results presented in this paper extend and improve a few results existing in literature. Two examples involving the
contractive mappings of integral type are constructed. c©2017 All rights reserved.
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1. Introduction and preliminaries

It is well-known that the Banach contraction principle is a very important result in the fixed point the-
ory and has various generalizations and applications ([1–19]). In 2001, Rhoades [18] introduced the notion
of ϕ-weakly contractive mappings and proved the following fixed point theorem, which generalizes the
Banach contraction principle.

Theorem 1.1 ([18]). Let f be a mapping from a complete metric space (X,d) into itself satisfying

d(fx, fy) 6 d(x,y) −ϕ(d(x,y)), ∀x,y ∈ X, (1.1)

where

ϕ : [0,+∞)→ [0,+∞) is continuous and nondecreasing such that ϕ is positive on (0,+∞),
ϕ(0) = 0, and lim

t→+∞ϕ(t) = +∞. (1.2)

Then f has a unique fixed point in X.
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In 2008, Dutta and Choudhury [5] introduced the notion of (ψ,ϕ)-weakly contractive mappings and
showed the following fixed point theorem, which extends Theorem 1.1.

Theorem 1.2 ([5]). Let f be a mapping from a complete metric space (X,d) into itself satisfying

ψ(d(fx, fy)) 6 ψ(d(x,y)) −ϕ(d(x,y)), ∀x,y ∈ X, (1.3)

where
ψ : [0,+∞)→ [0,+∞) is continuous and nondecreasing function and ϕ : [0,+∞)→ [0,+∞)

is lower semicontinuous and nondecreasing function such that ψ(t) = 0 = ϕ(t) if and only if
t = 0.

(1.4)

Then f has a unique fixed point in X.

In 2002, Branciari [3] gave an integral version of the Banach contraction principle and became the first
to research on the existence of fixed points for contractive mappings of integral type.

Theorem 1.3 ([3]). Let f be a mapping from a complete metric space (X,d) into itself satisfying∫d(fx,fy)

0
ϕ(t)dt 6 c

∫d(x,y)

0
ϕ(t)dt, ∀x,y ∈ X, (1.5)

where
ϕ : [0,+∞)→ [0,+∞) is Lebesgue integrable which is summable on each compact

subset of [0,+∞), nonnegative, and such that for each ε > 0,
∫ε

0
ϕ(t)dt > 0.

(1.6)

Then f has a unique fixed point a ∈ X such that limn→∞ fnx = a for each x ∈ X.

Later on, the authors [2, 4, 7–14, 16, 17] continued the study of Branciari and established a lot of fixed
and common fixed point theorems for mappings satisfying contractive conditions of integral type. In
particular, Rhoades [19] proved two fixed point theorems for mappings satisfying a general contractive
inequality of integral type and generalized Theorem 1.3. Liu et al. [15] introduced some contractive
mappings of integral type and proved the following fixed point results.

Theorem 1.4 ([15]). Let f be a mapping from a complete metric space (X,d) into itself satisfying∫d(fx,fy)

0
ϕ(t)dt 6

∫d(x,y)

0
ϕ(t)dt−

∫ψ(d(x,y))

0
ϕ(t)dt, ∀x,y ∈ X, (1.7)

where
ϕ : [0,+∞)→ [0,+∞) is Lebesgue integrable, summable on each compact subset of [0,+∞)

and
∫ε

0
ϕ(t)dt > 0 for each ε > 0, ψ : [0,+∞)→ [0,+∞) is lower semicontinuous function

with ψ(0) = 0 and ψ(t) > 0 for each t > 0.

(1.8)

Then f has a unique fixed point a ∈ X such that limn→∞ fnx = a for each x ∈ X.

Theorem 1.5 ([15]). Let f be a mapping from a complete metric space (X,d) into itself satisfying∫d(fx,fy)

0
ϕ(t)dt 6

∫M(x,y)

0
ϕ(t)dt−

∫ψ(M(x,y))

0
ϕ(t)dt, ∀x,y ∈ X, (1.9)

where

M(x,y) = max
{
d(x,y),d(x, fx),d(y, fy),

1
2
[d(x, fy) + d(y, fx)]

}
and ϕ : [0,+∞)→ [0,+∞) is Lebesgue integrable, summable on each compact subset of [0,+∞)and

∫ε
0 ϕ(t)dt >

0 for each ε > 0, ψ : [0,+∞) → [0,+∞) is lower semicontinuous function with ψ(0) = 0 and ψ(t) > 0 for each
t > 0. Then f has a unique fixed point a ∈ X such that limn→∞ fnx = a for each x ∈ X.
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The aim of this paper is to prove the existence, uniqueness and iterative approximations of fixed points
for four classes of contractive mappings satisfying contractive conditions of integral type, which include
the mappings (1.1), (1.3), (1.7), and (1.9) as special cases. Our results generalize Theorems 1.1, 1.2, 1.4,
and 1.5. Two examples are constructed to show that our results differ from Theorems 1.1-1.4.

Throughout this paper, we assume that R+ = [0,+∞), N0 = {0} ∪N, where N denotes the set of all
positive integers. Let (X,d) be a metric space. For f : X→ X, define

xn+1 = fxn, dn = d(xn, xn+1), ∀(n, x0) ∈N0 ×X,

m1(x,y) = max
{
d(x,y),d(x, fx),d(y, fy),

1
2
[d(x, fy) + d(y, fx)],

d(x, fx)d(y, fy)
1 + d(fx, fy)

,
d(x, fy)d(y, fx)

1 + d(fx, fy)
,

d(x, fx)d(y, fy)
1 + d(x,y)

,
d(x, fy)d(y, fx)

1 + d(x,y)

}
, ∀x,y ∈ X,

m2(x,y) = max
{
d(x,y),d(x, fx),d(y, fy),

1
2
[d(x, fy) + d(y, fx)],

d(x, fy)[1 + d(y, fx)]
2[1 + d(x,y)]

,
d(y, fx)[1 + d(x, fy)]

2[1 + d(x,y)]
,

d(x, fx)[1 + d(y, fy)]
1 + d(x,y)

,
d(y, fy)[1 + d(x, fx)]

1 + d(x,y)

}
, ∀x,y ∈ X,

m3(x,y) = max
{
d(x,y),d(x, fx),d(y, fy),

1
2
[d(x, fy) + d(y, fx)]

}
, ∀x,y ∈ X.

Let

• Φ1 =
{
ϕ | ϕ : R+ → R+ satisfies that ϕ is Lebesgue integrable, summable on each compact subset

of R+ and
∫ε

0 ϕ(t)dt > 0 for each ε > 0
}

;

• Φ2 = {ϕ | ϕ : R+ → R+ is nondecreasing continuous in R+ \ {0} and ϕ(t) = 0⇔ t = 0};

• Φ3 = {ϕ | ϕ : R+ → R+ is a lower semicontinuous function and ϕ(t) > 0 for each t > 0}.

Lemma 1.6 ([11]). Let ϕ ∈ Φ1 and {rn}n∈N be a nonnegative sequence with limn→∞ rn = a. Then

lim
n→∞

∫rn
0
ϕ(t)dt =

∫a
0
ϕ(t)dt.

2. Several fixed point theorems

In this section we show the existence, uniqueness and iterative approximations of fixed points for the
contractive mappings (2.1), (2.14), (2.17), and (2.18).

Theorem 2.1. Let f be a mapping from a complete metric space (X,d) into itself satisfying

φ

( ∫d(fx,fy)

0
ϕ(t)dt

)
6 φ

( ∫m1(x,y)

0
ϕ(t)dt

)
−

∫ψ(m1(x,y))

0
ϕ(t)dt, ∀x,y ∈ X, (2.1)

where (ϕ,φ,ψ) ∈ Φ1 ×Φ2 ×Φ3. Then f has a unique fixed point a ∈ X and limn→∞ fnx0 = a for each x0 ∈ X.

Proof. Let x0 be an arbitrary point in X. Suppose that there exists some n0 ∈N0 with xn0 = xn0+1. Clearly,
xn0 = fxn0 = limn→∞ fnxn0 , that is, xn0 is a fixed point of X. Suppose that xn 6= xn+1 for each n ∈N0. It
follows that

m1(xn−1, xn) = max
{
d(xn−1, xn),d(xn−1, fxn−1),d(xn, fxn),

1
2
[d(xn−1, fxn) + d(xn, fxn−1)],

d(xn−1, fxn−1)d(xn, fxn)
1 + d(xn−1, xn)

,
d(xn−1, fxn)d(xn, fxn−1)

1 + d(xn−1, xn)
,

d(xn−1, fxn−1)d(xn, fxn)
1 + d(fxn−1, fxn)

,
d(xn−1, fxn)d(xn, fxn−1)

1 + d(fxn−1, fxn)

}
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= max
{
d(xn−1, xn),d(xn−1, xn),d(xn, xn+1),

1
2
[d(xn−1, xn+1) + d(xn, xn)], (2.2)

d(xn−1, xn)d(xn, xn+1)

1 + d(xn−1, xn)
,
d(xn−1, xn+1)d(xn, xn)

1 + d(xn−1, xn)
,

d(xn−1, xn)d(xn, xn+1)

1 + d(xn, xn+1)
,
d(xn−1, xn+1)d(xn, xn)

1 + d(xn, xn+1)

}
= max

{
dn−1,dn−1,dn,

1
2
d(xn−1, xn+1),

dn−1dn

1 + dn−1
, 0,
dn−1dn

1 + dn
, 0
}

= max{dn−1,dn}, ∀n ∈N.

Firstly, we show that
dn 6 dn−1, ∀n ∈N. (2.3)

Suppose that (2.3) does not hold. It follows that there exists some n0 ∈N satisfying

dn0 > dn0−1. (2.4)

Making use of (2.1), (2.2), (2.4), and (ϕ,φ,ψ) ∈ Φ1 ×Φ2 ×Φ3, we conclude immediately that

0 < φ
( ∫dn0

0
ϕ(t)dt

)
= φ

( ∫d(xn0 ,xn0+1)

0
ϕ(t)dt

)
= φ

( ∫d(fxn0−1,fxn0)

0
ϕ(t)dt

)
6 φ

( ∫m1(xn0−1,xn0)

0
ϕ(t)dt

)
−

∫ψ(m1(xn0−1,xn0))

0
ϕ(t)dt

= φ

( ∫max{dn0−1,dn0}

0
ϕ(t)dt

)
−

∫ψ(max{dn0−1,dn0})

0
ϕ(t)dt

= φ

( ∫dn0

0
ϕ(t)dt

)
−

∫ψ(dn0)

0
ϕ(t)dt < φ

( ∫dn0

0
ϕ(t)dt

)
,

which is a contradiction. Note that (2.3) means that there exists a constant c with

lim
n→∞dn = c > 0. (2.5)

Secondly, we show that c = 0. Suppose that c > 0. Set lim infn→∞ψ(dn) = α. Obviously, there
exists a subsequence {dn(k)−1}k∈N of {dn}n∈N0 such that limk→∞ψ(dn(k)−1) = α. Since ψ is lower
semicontinuous, it follows from ψ ∈ Φ3 that α > ψ(c) > 0. On account of (2.1), (2.2), (2.3), (2.5), Lemma
1.6, and (ϕ,φ,ψ) ∈ Φ1 ×Φ2 ×Φ3, we obtain that

0 < φ
( ∫c

0
ϕ(t)dt

)
= lim sup

k→∞ φ

( ∫dn(k)
0

ϕ(t)dt

)
= lim sup

k→∞ φ

( ∫d(xn(k),xn(k)+1)

0
ϕ(t)dt

)
= lim sup

k→∞ φ

( ∫d(fxn(k)−1,fxn(k))

0
ϕ(t)dt

)
6 lim sup

k→∞
[
φ

( ∫m1(xn(k)−1,xn(k))

0
ϕ(t)dt

)
−

∫ψ(m1(xn(k)−1,xn(k)))

0
ϕ(t)dt

]
= lim sup

k→∞
[
φ

( ∫max{dn(k)−1,dn(k)}

0
ϕ(t)dt

)
−

∫ψ(max{dn(k)−1,dn(k)})

0
ϕ(t)dt

]
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= lim sup
k→∞

[
φ

( ∫dn(k)−1

0
ϕ(t)dt

)
−

∫ψ(dn(k)−1)

0
ϕ(t)dt

]
6 lim sup

k→∞ φ

( ∫dn(k)−1

0
ϕ(t)dt

)
− lim inf

k→∞
∫ψ(dn(k)−1)

0
ϕ(t)dt

= φ

( ∫c
0
ϕ(t)dt

)
−

∫α
0
ϕ(t)dt

6 φ

( ∫c
0
ϕ(t)dt

)
−

∫ψ(c)

0
ϕ(t)dt < φ

( ∫c
0
ϕ(t)dt

)
,

which is a contradiction. Hence c = 0 and

lim
n→∞dn = 0. (2.6)

Thirdly, we show that {xn}n∈N0 is a Cauchy sequence. Suppose that {xn}n∈N0 is not a Cauchy se-
quence. It follows that there is a constant ε > 0 and two subsequences {xm(k)}k∈N and {xn(k)}k∈N of
{xn}n∈N0 such that m(k) is minimal in the sense that m(k) > n(k) > k and d(xm(k), xn(k)) > ε. It follows
that d(xm(k)−1, xn(k)) 6 ε. Observe that

ε < d(xm(k), xn(k))

6 d(xm(k), xm(k)−1) + d(xm(k)−1, xn(k)−1) + d(xn(k)−1, xn(k))

6 dm(k)−1 + d(xm(k)−1, xn(k)) + d(xn(k), xn(k)−1) + dn(k)−1

6 dm(k)−1 + ε+ 2dn(k)−1, ∀k ∈N

(2.7)

and ∣∣d(xm(k)−1, xn(k)−1) − d(xm(k)−1, xn(k))
∣∣ 6 dn(k)−1, ∀k ∈N,∣∣d(xm(k)−1, xn(k)−1) − d(xm(k), xn(k)−1)
∣∣ 6 dm(k)−1, ∀k ∈N.

(2.8)

Letting k→∞ in (2.7), (2.8) and using (2.6), we infer that

ε = lim
k→∞d(xm(k), xn(k)) = lim

k→∞d(xm(k)−1, xn(k))

= lim
k→∞d(xm(k), xn(k)−1) = lim

k→∞d(xm(k)−1, xn(k)−1).
(2.9)

On account of (2.6) and (2.9), we receive that

lim
k→∞m1(xm(k)−1, xn(k)−1)

= lim
k→∞max

{
d(xm(k)−1, xn(k)−1),d(xm(k)−1, fxm(k)−1),d(xn(k)−1, fxn(k)−1),

1
2
[d(xm(k)−1, fxn(k)−1) + d(xn(k)−1, fxm(k)−1)],

d(xm(k)−1, fxm(k)−1)d(xn(k)−1, fxn(k)−1)

1 + d(xm(k)−1, xn(k)−1)
,

d(xm(k)−1, fxn(k)−1)d(xn(k)−1, fxm(k)−1)

1 + d(xm(k)−1, xn(k)−1)
,

d(xm(k)−1, fxm(k)−1)d(xn(k)−1, fxn(k)−1)

1 + d(fxm(k)−1, fxn(k)−1)
,

d(xm(k)−1, fxn(k)−1)d(xn(k)−1, fxm(k)−1)

1 + d(fxm(k)−1, fxn(k)−1)

}
(2.10)
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= lim
k→∞max

{
d(xm(k)−1, xn(k)−1),d(xm(k)−1, xm(k)),d(xn(k)−1, xn(k)),

1
2
[d(xm(k)−1, xn(k)) + d(xn(k)−1, xm(k))],

d(xm(k)−1, xm(k))d(xn(k)−1, xn(k))
1 + d(xm(k)−1, xn(k)−1)

,
d(xm(k)−1, xn(k))d(xn(k)−1, xm(k))

1 + d(xm(k)−1, xn(k)−1)
,

d(xm(k)−1, xm(k))d(xn(k)−1, xn(k))
1 + d(xm(k), xn(k))

,
d(xm(k)−1, xn(k))d(xn(k)−1, xm(k))

1 + d(xm(k), xn(k))

}
= max

{
ε, 0, 0,

1
2
(ε+ ε), 0,

ε · ε
1 + ε

, 0,
ε · ε
1 + ε

}
= ε.

Put
lim inf
k→∞ ψ(m1(xm(k)−1, xn(k)−1)) = β. (2.11)

Clearly, there exists a subsequence {m1(xm(kj)−1, xn(kj)−1)}j∈N of {d(xm(k)−1, xn(k)−1)}k∈N such that

lim
j→∞ψ(m1(xm(kj)−1, xn(kj)−1)) = β. (2.12)

Since ψ is lower semicontinuous, it follows from (2.10)-(2.12) that β > ψ(ε) > 0. In view of (2.1), (2.9)-
(2.12), Lemma 1.6, and (ϕ,φ,ψ) ∈ Φ1 ×Φ2 ×Φ3, we deduce that

0 < φ
( ∫ε

0
ϕ(t)dt

)
= lim sup

j→∞ φ

( ∫d(xm(kj)
,xn(kj))

0
ϕ(t)dt

)
= lim sup

j→∞
[
φ

( ∫d(fxm(kj)−1,fxn(kj)−1)

0
ϕ(t)dt

)]
6 lim sup

j→∞
[
φ

( ∫m1(xm(kj)−1,xn(kj)−1)

0
ϕ(t)dt

)
−

∫ψ(m1(xm(kj)−1,xn(kj)−1))

0
ϕ(t)dt

]
6 lim sup

j→∞ φ

( ∫m1(xm(kj)−1,xn(kj)−1)

0
ϕ(t)dt

)
− lim inf

j→∞
∫ψ(m1(xm(kj)−1,xn(kj)−1))

0
ϕ(t)dt

= φ

( ∫ε
0
ϕ(t)dt

)
−

∫β
0
ϕ(t)dt 6 φ

( ∫ε
0
ϕ(t)dt

)
−

∫ψ(ε)

0
ϕ(t)dt < φ

( ∫ε
0
ϕ(t)dt

)
,

which is a contradiction. Thus, {xn}n∈N0 is a Cauchy sequence. Since (X,d) is a complete metric space, it
follows that there exists a point a ∈ X such that limn→∞ xn = a.

Now we assert that a = fa. Suppose that a 6= fa. Note that

lim
n→∞m1(xn,a) = lim

n→∞max
{
d(xn,a),d(xn, fxn),d(a, fa),

1
2
[d(xn, fa) + d(a, fxn)],

d(xn, fxn)d(a, fa)
1 + d(xn,a)

,
d(xn, fa)d(a, fxn)

1 + d(xn,a)
,

d(xn, fxn),d(a, fa)
1 + d(fxn, fa)

,
d(xn, fa)d(a, fxn)

1 + d(fxn, fa)

}
= lim
n→∞max

{
d(xn,a),d(xn, xn+1),d(a, fa),

1
2
[d(xn, fa) + d(a, xn+1)], (2.13)

d(xn, xn+1)d(a, fa)
1 + d(xn,a)

,
d(xn, fa)d(a, xn+1)

1 + d(xn,a)
,
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d(xn, xn+1)d(a, fa)
1 + d(xn+1, fa)

,
d(xn, fa)d(a, xn+1)

1 + d(xn+1, fa)

}
= max

{
0, 0,d(a, fa),

1
2
d(a, fa), 0, 0, 0, 0

}
= d(a, fa).

Put
lim inf
n→∞ ψ(m1(xn,a)) = γ.

Clearly, there exists a subsequence {m1(xn(j),a)}j∈N of {m1(xn,a)}n∈N such that

lim
j→∞ψ(m1(xn(j),a)) = γ > ψ(d(a, fa)) > 0.

In view of (2.1), (2.13), Lemma 1.6, and (ϕ,φ,ψ) ∈ Φ1 ×Φ2 ×Φ3, we deduce that

0 < φ
( ∫d(a,fa)

0
ϕ(t)dt

)
= lim sup

j→∞ φ

( ∫d(xn(j)+1,fa)

0
ϕ(t)dt

)
= lim sup

j→∞ φ

( ∫d(fxn(j),fa)

0
ϕ(t)dt

)
6 lim sup

j→∞
[
φ

( ∫m1(xn(j),a)

0
ϕ(t)dt

)
−

∫ψ(m1(xn(j),a))

0
ϕ(t)dt

]
6 lim sup

j→∞ φ

( ∫m1(xn(j),a)

0
ϕ(t)dt

)
− lim inf

j→∞
∫ψ(m1(xn(j),a))

0
ϕ(t)dt

= φ

( ∫d(a,fa)

0
ϕ(t)dt

)
−

∫γ
0
ϕ(t)dt

6 φ

( ∫d(a,fa)

0
ϕ(t)dt

)
−

∫ψ(d(a,fa))

0
ϕ(t)dt < φ

( ∫d(a,fa)

0
ϕ(t)dt

)
,

which is a contradiction. Thus, a = fa is a fixed point of f in X. Suppose that f has another fixed point
b ∈ X \ {a}. Notice that

m1(a,b) = max
{
d(a,b),d(a, fa),d(b, fb),

1
2
[d(a, fb) + d(b, fa)],

d(a, fa)d(b, fb)
1 + d(a,b)

,
d(a, fb)d(b, fa)

1 + d(a,b)
,

d(a, fa)d(b, fb)
1 + d(fa, fb)

,
d(a, fb)d(b, fa)

1 + d(fa, fb)

}
= max

{
d(a,b), 0, 0,d(a,b), 0,

d2(a,b)
1 + d(a,b)

, 0,
d2(a,b)

1 + d(a,b)

}
= d(a,b),

which together with (2.1), ψ(d(a,b)) > 0, and (ϕ,φ,ψ) ∈ Φ1 ×Φ2 ×Φ3 means that

φ

( ∫d(a,b)

0
ϕ(t)dt

)
= φ

( ∫d(fa,fb)

0
ϕ(t)dt

)
6 φ

( ∫m1(a,b)

0
ϕ(t)dt

)
−

∫ψ(m1(a,b))

0
ϕ(t)dt

= φ

( ∫d(a,b)

0
ϕ(t)dt

)
−

∫ψ(d(a,b))

0
ϕ(t)dt < φ

( ∫d(a,b)

0
ϕ(t)dt

)
,

which is a contradiction. This completes the proof.
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Theorem 2.2. Let f be a mapping from a complete metric space (X,d) into itself satisfying

φ

( ∫d(fx,fy)

0
ϕ(t)dt

)
6 φ

( ∫m2(x,y)

0
ϕ(t)dt

)
−

∫ψ(m2(x,y))

0
ϕ(t)dt, ∀x,y ∈ X, (2.14)

where (ϕ,φ,ψ) ∈ Φ1 ×Φ2 ×Φ3. Then f has a unique fixed point a ∈ X and limn→∞ fnx0 = a for each x0 ∈ X.

Proof. Let x0 be an arbitrary point in X. Suppose that there exists some n0 ∈N0 with xn0 = xn0+1. Clearly,
xn0 = fxn0 = limn→∞ fnxn0 , that is, xn0 is a fixed point of f. Suppose that xn 6= xn+1 for each n ∈ N0.
Note that {

a+ b

2(1 + a)
,
a(1 + b)

1 + a

}
6 max{a,b}, ∀a,b ∈ R+

and

m2(xn−1, xn) = max
{
d(xn−1, xn),d(xn−1, fxn−1),d(xn, fxn),

1
2
[d(xn−1, fxn) + d(xn, fxn−1)],

d(xn−1, fxn−1)[1 + d(xn, fxn)]
1 + d(xn−1, xn)

,
d(xn, fxn)[1 + d(xn−1, fxn−1)]

1 + d(xn−1, xn)
,

d(xn−1, fxn)[1 + d(xn, fxn−1)]

2[1 + d(xn−1, xn)]
,
d(xn, fxn−1)[1 + d(xn−1, fxn)]

2[1 + d(xn−1, xn)]

}
= max

{
d(xn−1, xn),d(xn−1, xn),d(xn, xn+1),

1
2
[d(xn−1, xn+1) + d(xn, xn)],

d(xn−1, xn)[1 + d(xn, xn+1)]

1 + d(xn−1, xn)
,
d(xn, xn+1)[1 + d(xn−1, xn)]

1 + d(xn−1, xn)
,

d(xn−1, xn+1)[1 + d(xn, xn)]
2[1 + d(xn−1, xn)]

,
d(xn, xn)[1 + d(xn−1, xn+1)]

2[1 + d(xn−1, xn)]

}
= max

{
dn−1,dn−1,dn,

1
2
d(xn−1, xn+1),

dn−1(1 + dn)

1 + dn−1
,dn,

d(xn−1, xn+1)

2(1 + dn−1)
, 0
}

= max{dn−1,dn}, ∀n ∈N.

(2.15)

Firstly, we show that (2.3) holds. Suppose that (2.3) does not hold. It follows that there exists some
n0 ∈N satisfying (2.4). Using (2.4), (2.14), (2.15), and (ϕ,φ,ψ) ∈ Φ1 ×Φ2 ×Φ3, we obtain that

0 < φ
( ∫dn0

0
ϕ(t)dt

)
= φ

( ∫d(xn0 ,xn0+1)

0
ϕ(t)dt

)
= φ

( ∫d(fxn0−1,fxn0)

0
ϕ(t)dt

)
6 φ

( ∫m2(xn0−1,xn0)

0
ϕ(t)dt

)
−

∫ψ(m2(xn0−1,xn0))

0
ϕ(t)dt

= φ

( ∫max{dn0−1,dn0}

0
ϕ(t)dt

)
−

∫ψ(max{dn0−1,dn0})

0
ϕ(t)dt

= φ

( ∫dn0

0
ϕ(t)dt

)
−

∫ψ(dn0)

0
ϕ(t)dt < φ

( ∫dn0

0
ϕ(t)dt

)
,

which is impossible and hence (2.3) holds. Note that (2.3) means that (2.5) holds.
Next, we show that c = 0. Suppose that c > 0. Set lim infn→∞ψ(dn) = ξ. Obviously, there exists a

subsequence {dn(k)}k∈N of {dn}n∈N0 such that limk→∞ψ(dn(k)−1) = ξ. Since ψ is lower semicontinuous,
it follows from ψ ∈ Φ3 that ξ > ψ(c) > 0. On account of (2.5), (2.14), (2.15), Lemma 1.6, and (ϕ,φ,ψ) ∈
Φ1 ×Φ2 ×Φ3, we deduce that

0 < φ
( ∫c

0
ϕ(t)dt

)
= lim sup

k→∞ φ

( ∫dn(k)
0

ϕ(t)dt

)
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= lim sup
k→∞ φ

( ∫d(xn(k),xn(k)+1)

0
ϕ(t)dt

)
= lim sup

k→∞ φ

( ∫d(fxn(k)−1,fxn(k))

0
ϕ(t)dt

)
6 lim sup

k→∞
[
φ

( ∫m2(xn(k)−1,xn(k))

0
ϕ(t)dt

)
−

∫ψ(m2(xn(k)−1,xn(k)))

0
ϕ(t)dt

]
= lim sup

k→∞
[
φ

( ∫max{dn(k)−1,dn(k)}

0
ϕ(t)dt

)
−

∫ψ(max{dn(k)−1,dn(k)})

0
ϕ(t)dt

]
= lim sup

k→∞
[
φ

( ∫dn(k)−1

0
ϕ(t)dt

)
−

∫ψ(dn(k)−1)

0
ϕ(t)dt

]
6 lim sup

k→∞ φ

( ∫dn(k)−1

0
ϕ(t)dt

)
− lim inf

k→∞
∫ψ(dn(k)−1)

0
ϕ(t)dt

= φ

( ∫c
0
ϕ(t)dt

)
−

∫ξ
0
ϕ(t)dtt 6 φ

( ∫c
0
ϕ(t)dt

)
−

∫ψ(c)

0
ϕ(t)d < φ

( ∫c
0
ϕ(t)dt

)
,

which is a contradiction. Hence (2.6) holds.
Secondly, we prove that {xn}n∈N0 is a Cauchy sequence. Suppose that {xn}n∈N0 is not a Cauchy

sequence. It follows that there is a constant ε > 0 and two subsequences {xm(k)}k∈N and {xn(k)}k∈N of
{xn}n∈N0 such that m(k) is minimal in the sense that m(k) > n(k) > k and d(xm(k), xn(k)) > ε. It follows
that d(xm(k)−1, xn(k)) 6 ε, for all k ∈ N. Similar to the proof of Theorem 2.1, we deduce (2.7)-(2.9). It
follows that

lim
k→∞m2(xm(k)−1, xn(k)−1)

= lim
k→∞max

{
d(xm(k)−1, xn(k)−1),d(xm(k)−1, fxm(k)−1),d(xn(k)−1, fxn(k)−1),

1
2
[d(xm(k)−1, fxn(k)−1) + d(xn(k)−1, fxm(k)−1)],

d(xm(k)−1, fxm(k)−1)[1 + d(xn(k)−1, fxn(k)−1)]

1 + d(xm(k)−1, xn(k)−1)
,

d(xn(k)−1, fxn(k)−1)[1 + d(xm(k)−1, fxm(k)−1)]

1 + d(xm(k)−1, xn(k)−1)
,

d(xm(k)−1, fxn(k)−1)[1 + d(xn(k)−1, fxm(k)−1)]

2[1 + d(xm(k)−1, xn(k)−1)]
,

d(xn(k)−1, fxm(k)−1)[1 + d(xm(k)−1, fxn(k)−1)]

2[1 + d(xm(k)−1, xn(k)−1)]

}
= lim
k→∞max

{
d(xm(k)−1, xn(k)−1),d(xm(k)−1, xm(k)),d(xn(k)−1, xn(k)),

1
2
[d(xm(k)−1, xn(k)) + d(xn(k)−1, xm(k))],

d(xm(k)−1, xm(k))[1 + d(xn(k)−1, xn(k))]
1 + d(xm(k)−1, xn(k)−1)

,
d(xn(k)−1, xn(k))[1 + d(xm(k)−1, xm(k))]

1 + d(xm(k)−1, xn(k)−1)
,

d(xm(k)−1, xn(k))[1 + d(xn(k)−1, xm(k))]

2[1 + d(xm(k)−1, xn(k)−1)]
,
d(xn(k)−1, xm(k))[1 + d(xm(k)−1, xn(k))]

2[1 + d(xm(k)−1, xn(k)−1)]

}
= max

{
ε, 0, 0,

1
2
(ε+ ε), 0, 0,

ε(1 + ε)

2(1 + ε)
,
ε(1 + ε)

2(1 + ε)

}
= ε.

(2.16)
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It is clear that (2.11) and (2.12) hold. It follows from (2.11) and (2.12) that β > ψ(ε) > 0. In light of (2.14),
(2.16), Lemma 1.6, and (ϕ,φ,ψ) ∈ Φ1 ×Φ2 ×Φ3, we deduce that

0 < φ
( ∫ε

0
ϕ(t)dt

)
= lim sup

j→∞ φ

( ∫d(xm(kj)
,xn(kj))

0
ϕ(t)dt

)
= lim sup

j→∞
[
φ

( ∫d(fxm(kj)−1,fxn(kj)−1)

0
ϕ(t)dt

)]
6 lim sup

j→∞
[
φ

( ∫m2(xm(kj)−1,xn(kj)−1)

0
ϕ(t)dt

)
−

∫ψ(m2(xm(kj)−1,xn(kj)−1))

0
ϕ(t)dt

]
6 lim sup

j→∞ φ

( ∫m2(xm(kj)−1,xn(kj)−1)

0
ϕ(t)dt

)
− lim inf
n→∞

∫ψ(m2(xm(kj)−1,xn(kj)−1))

0
ϕ(t)dt

= φ

( ∫ε
0
ϕ(t)dt

)
−

∫β
0
ϕ(t)dt 6 φ

( ∫ε
0
ϕ(t)dt

)
−

∫ψ(ε)

0
ϕ(t)dt < φ

( ∫ε
0
ϕ(t)dt

)
,

which is a contradiction. Thus, {xn}n∈N0 is a Cauchy sequence. Since (X,d) is a complete metric space, it
follows that there exists a point a ∈ X such that limn→∞ xn = a.

Thirdly, we assert that a = fa. Suppose that a 6= fa. Note that (2.6) and limn→∞ xn = a yield that

lim
n→∞m2(xn,a) = lim

n→∞max
{
d(xn,a),d(xn, fxn),d(a, fa),

1
2
[d(xn, fa) + d(a, fxn)],

d(xn, fxn)[1 + d(a, fa)]
1 + d(xn,a)

,
d(a, fa)[1 + d(xn, fxn)]

1 + d(xn,a)
,

d(xn, fa)[1 + d(a, fxn)]
2[1 + d(xn,a)]

,
d(a, fxn)[1 + d(xn, fa)]

2[1 + d(xn,a)]

}
= lim
n→∞max

{
d(xn,a),d(xn, xn+1),d(a, fa),

1
2
[d(xn, fa) + d(a, xn+1)],

d(xn, xn+1)[1 + d(a, fa)]
1 + d(xn,a)

,
d(a, fa)[1 + d(xn, xn+1)]

1 + d(xn,a)
,

d(xn, fa)[1 + d(a, xn+1)]

2[1 + d(xn,a)]
,
d(a, xn+1)[1 + d(xn, fa)]

2[1 + d(xn,a)]

}
= max

{
0, 0,d(a, fa),

1
2
d(a, fa), 0,d(a, fa),

d(a, fa)
2

, 0
}

= d(a, fa).

Put
lim inf
n→∞ ψ(m2(a, xn)) = η.

Clearly, there exists a subsequence {m2(a, xn(j))}j∈N of {m2(a, xn)}n∈N such that

lim
j→∞ψ(m2(a, xn(j))) = η > ψ(d(a, fa)).

In view of (2.14), Lemma 1.6, and (ϕ,φ,ψ) ∈ Φ1 ×Φ2 ×Φ3, we give that

0 < φ
( ∫d(a,fa)

0
ϕ(t)dt

)
= lim sup

j→∞ φ

( ∫d(xn(j)+1,fa)

0
ϕ(t)dt

)
= lim sup

j→∞ φ

( ∫d(fxn(j),fa)

0
ϕ(t)dt

)
6 lim sup

j→∞
[
φ

( ∫m2(xn(j),a)

0
ϕ(t)dt

)
−

∫ψ(m2(xn(j),a))

0
ϕ(t)dt

]
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6 lim sup
j→∞ φ

( ∫m2(xn(j),a)

0
ϕ(t)dt

)
− lim inf

j→∞
∫ψ(m2(xn(j),a))

0
ϕ(t)dt

= φ

( ∫d(a,fa)

0
ϕ(t)dt

)
−

∫η
0
ϕ(t)dt

6 φ

( ∫d(a,fa)

0
ϕ(t)dt

)
−

∫ψ(d(a,fa))

0
ϕ(t)dt < φ

( ∫d(a,fa)

0
ϕ(t)dt

)
,

which is impossible. Thus, a = fa. Suppose that f has another fixed point b ∈ X \ {a}. Note that

m2(a,b) = max
{
d(a,b),d(a, fa),d(b, fb),

1
2
[d(a, fb) + d(b, fa)],

d(a, fa)[1 + d(b, fb)]
1 + d(a,b)

d(b, fb)[1 + d(a, fa)]
1 + d(a,b)

,

d(a, fb)[1 + d(b, fa)]
2[1 + d(a,b)]

,
d(b, fa)[1 + d(a, fb)]

2[1 + d(a,b)]

}
= max

{
d(a,b), 0, 0,d(a,b), 0, 0,

d(a,b)
2

,
d(a,b)

2

}
= d(a,b),

which together with (2.14), ψ(d(a,b)) > 0, and (ϕ,φ,ψ) ∈ Φ1 ×Φ2 ×Φ3 means that

φ

( ∫d(a,b)

0
ϕ(t)dt

)
= φ

( ∫d(fa,fb)

0
ϕ(t)dt

)
6 φ

( ∫m2(a,b)

0
ϕ(t)dt

)
−

∫ψ(m2(a,b))

0
ϕ(t)dt

= φ

( ∫d(a,b)

0
ϕ(t)dt

)
−

∫ψ(d(a,b))

0
ϕ(t)dt < φ

( ∫d(a,b)

0
ϕ(t)dt

)
,

which is impossible. This completes the proof.

Similar to the proofs of Theorems 2.1 and 2.2, we have the following results.

Theorem 2.3. Let f be a mapping from a complete metric space (X,d) into itself satisfying

φ

( ∫d(fx,fy)

0
ϕ(t)dt

)
6 φ

( ∫m3(x,y)

0
ϕ(t)dt

)
−

∫ψ(m3(x,y))

0
ϕ(t)dt, ∀x,y ∈ X, (2.17)

where (ϕ,φ,ψ) ∈ Φ1 ×Φ2 ×Φ3. Then f has a unique fixed point a ∈ X and limn→∞ fnx0 = a for each x0 ∈ X.

Theorem 2.4. Let f be a mapping from a complete metric space (X,d) into itself satisfying

φ

( ∫d(fx,fy)

0
ϕ(t)dt

)
6 φ

( ∫d(x,y)

0
ϕ(t)dt

)
−

∫ψ(d(x,y))

0
ϕ(t)dt, ∀x,y ∈ X, (2.18)

where (ϕ,φ,ψ) ∈ Φ1 ×Φ2 ×Φ3. Then f has a unique fixed point a ∈ X and limn→∞ fnx0 = a for each x0 ∈ X.

Remark 2.5. It is clear that Theorem 2.3 extends Theorem 1.5, and Theorem 2.4 generalizes Theorems 1.1,
1.2, and 1.4. The examples below are applications of Theorems 2.1-2.4 and show that Theorems 2.1-2.3
differ from Theorems 1.1-1.4.

Example 2.6. Let X = R+ be endowed with Euclidean metric d = | · |, f : X → X and ϕ,φ,ψ : R+ → R+

be defined by

fx =

{
1, ∀x ∈ R+ \ {1

8 },
7
8 , x = 1

8 ,
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and

ϕ(t) = 4t3, φ(t) = t, ∀t ∈ R+, ψ(t) =

{
3
4t, ∀t ∈

[
0, 3

4

)
,

1
4 , ∀t ∈

[ 3
4 , +∞)

.

Clearly, (X,d) is a complete metric space and (ϕ,φ,ψ) ∈ Φ1 ×Φ2 ×Φ3. Let x,y ∈ X. In order to verify
(2.1), (2.14), and (2.17), we have to consider the following two possible cases.

Case 1. x,y ∈ R+ \ {1
8 } or x = y = 1

8 . Observe that ψ(t) 6 t, for all t ∈ R+. Obviously,

φ

( ∫d(fx,fy)

0
ϕ(t)dt

)
= φ(0) = 0 6 (mi(x,y))4 − (ψ(mi(x,y)))4

= φ

( ∫mi(x,y)

0
ϕ(t)dt

)
−

∫ψ(mi(x,y))

0
ϕ(t)dt, i ∈ {1, 2, 3};

Case 2. x ∈ R+ \ {1
8 } and y = 1

8 or x = 1
8 and y ∈ R+ \ {1

8 }. Note that φ is nondecreasing in R+. It follows
that

mi(x, y) > max{|x− fx|, |y− fy|} >
3
4

, i ∈ {1, 2, 3},

and

φ

( ∫d(fx,fy)

0
ϕ(t)dt

)
= φ

(
1
84

)
=

1
4096

<
81
256

−
1

256

= φ

((
3
4

)4)
−

(
ψ

(
3
4

))4

= φ

( ∫ 3
4

0
ϕ(t)dt

)
−

∫ψ( 3
4 )

0
ϕ(t)dt

6 φ

( ∫mi(x,y)

0
ϕ(t)dt

)
−

∫ψ(mi(x,y))

0
ϕ(t)dt, i ∈ {1, 2, 3}.

That is, (2.1), (2.14), and (2.17) hold. Thus each of Theorems 2.1-2.3 guarantees that f has a unique fixed
point in X.

However, Theorems 1.1-1.4 are useless in proving the existence of fixed points of f in X.
Suppose that f satisfies the conditions of Theorem 1.1. That is, there exists ϕ : R+ → R+ satisfying

(1.1) and (1.2). It follows from (1.1) and (1.2) that

1
8
= d

(
f

1
16

, f
1
8

)
6 d

(
1

16
,

1
8

)
−ϕ

(
d

(
1
16

,
1
8

))
=

1
16

−ϕ

(
1

16

)
<

1
16

,

which is a contradiction.
Suppose that f satisfies the conditions of Theorem 1.2. That is, there exist ψ,ϕ : R+ → R+ satisfying

(1.3) and (1.4). Using (1.3) and (1.4), we infer that

ψ

(
1
8

)
= ψ

(
d

(
f

1
32

, f
1
8

))
6 ψ

(
d

(
1
32

,
1
8

))
−ϕ

(
d

(
1

32
,

1
8

))
= ψ

(
3
32

)
−ϕ

(
3

32

)
,

that is,

0 < ϕ
(

3
32

)
6 ψ

(
3
32

)
−ψ

(
1
8

)
6 0,

which is impossible.
Suppose that f satisfies the conditions of Theorem 1.3. That is, there exists ϕ : R+ → R+ satisfying

(1.5) and (1.6). In view of (1.5) and (1.6), we conclude that

0 <
∫ 1

8

0
ϕ(t)dt =

∫d(1, 7
8 )

0
ϕ(t)dt = lim

x→ 1
8

∫d(fx,f 1
8 )

0
ϕ(t)dt 6 lim

x→ 1
8

c

∫d(x, 1
8 )

0
ϕ(t)dt = 0,
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which is a contradiction.
Suppose that f satisfies the conditions of Theorem 1.4. That is, there exist ψ,ϕ : R+ → R+ satisfying

(1.7) and (1.8). In light of (1.7) and (1.8), we deduce that

0 <
∫ 1

8

0
ϕ(t)dt =

∫d( 7
8 ,1)

0
ϕ(t)dt = lim

y→ 1
8

∫d(f 1
8 ,fy)

0
ϕ(t)dt

6 lim
y→ 1

8

( ∫d( 1
8 ,y)

0
ϕ(t)dt−

∫ψ(d( 1
8 ,y))

0
ϕ(t)dt

)
6 lim
y→ 1

8

∫d( 1
8 ,y)

0
ϕ(t)dt = 0,

which is absurd.

Example 2.7. Let X =
[
0, 1

2

]
∪ {1, 3} be endowed with Euclidean metric d = | · |, f : X → X and ϕ,φ,ψ :

R+ → R+ be defined by

fx =


x
2 , ∀x ∈

[
0, 1

2

]
,

0, x = 1,
1, x = 3,

ϕ(t) =

{
2t, ∀t ∈ [0, 1],
1, ∀t ∈ (1, +∞),

and

φ(t) =

{
t, ∀t ∈ [0, 1],
t+1

2 , ∀t ∈ (1, +∞),
ψ(t) =

{
t
2 , ∀t ∈ [0, 1),
1
4 , ∀t ∈ [1, +∞).

Obviously, (X,d) is a complete metric space and (ϕ,φ,ψ) ∈ Φ1 ×Φ2 ×Φ3. Let x,y ∈ X with x < y. In
order to verify (2.18), we have to consider the following cases.

Case 1. x,y ∈
[
0, 1

2

]
. It follows that

φ

( ∫d(fx,fy)

0
ϕ(t)dt

)
= φ

( ∫ 1
2 |y−x|

0
ϕ(t)dt

)
= φ

(
(y− x)2

4

)
=

(y− x)2

4
6 (y− x)2 −

(y− x)2

4
= φ

( ∫d(x,y)

0
ϕ(t)dt

)
−

∫ψ(d(x,y))

0
ϕ(t)dt;

Case 2. x ∈
(
0, 1

2

]
and y = 1. Note that

φ

( ∫d(fx,fy)

0
ϕ(t)dt

)
= φ

( ∫ x
2

0
ϕ(t)dt

)
= φ

(
x2

4

)
=
x2

4

6
1
16
<

3
16

6
3
4
(1 − x)2 = (1 − x)2 −

(1 − x)2

4

= φ

( ∫d(x,y)

0
ϕ(t)dt

)
−

∫ψ(d(x,y))

0
ϕ(t)dt;

Case 3. x = 0 and y = 1. It is clear that

φ

( ∫d(f0,f1)

0
ϕ(t)dt

)
= 0 < 1 −

1
16

= φ

( ∫d(0,1)

0
ϕ(t)dt

)
−

∫ψ(d(0,1))

0
ϕ(t)dt;
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Case 4. x ∈
[
0, 1

2

]
and y = 3. It is clear that

φ

( ∫d(fx,fy)

0
ϕ(t)dt

)
= φ

( ∫ 2−x
2

0
ϕ(t)dt

)
= φ

((
2 − x

2

)2)
=

(
2 − x

2

)2

6 1 < 2 −
x

2
−

1
16

= φ(1 + 2 − x) −

∫ 1
4

0
ϕ(t)dt

= φ

( ∫ 1

0
ϕ(t)dt+

∫ 3−x

1
ϕ(t)dt

)
−

∫ψ(3−x)

0
ϕ(t)dt

= φ

( ∫ 3−x

0
ϕ(t)dt

)
−

∫ψ(3−x)

0
ϕ(t)dt

= φ

( ∫d(x,y)

0
ϕ(t)dt

)
−

∫ψ(d(x,y))

0
ϕ(t)dt;

Case 5. x = 1 and y = 3. It is easy to verify that

φ

( ∫d(fx,fy)

0
ϕ(t)dt

)
= φ

( ∫ 1

0
ϕ(t)dt

)
= φ(1) = 1

<
3
2
−

1
16

= φ(2) −
∫ 1

4

0
ϕ(t)dt

= φ

( ∫ 1

0
ϕ(t)dt+

∫ 2

1
ϕ(t)dt

)
−

∫ψ(2)

0
ϕ(t)dt

= φ

( ∫ 2

0
ϕ(t)dt

)
−

∫ψ(2)

0
ϕ(t)dt

= φ

( ∫d(x,y)

0
ϕ(t)dt

)
−

∫ψ(d(x,y))

0
ϕ(t)dt.

That is, (2.18) holds. Thus the conditions of Theorem 2.4 are satisfied. It follows from Theorem 2.4 that f
has a unique fixed point in X.
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