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Abstract

This paper investigates the existence of at least two positive solutions for the following high-order fractional semipositone
boundary value problem (SBVP, for short) with coupled integral boundary value conditions:

D& u(t) +Af(tu(t),v(t) =0, te(0,1),
DS&V(t) + 7\9(t, u(t),v(t)) =0, te (Or 1)/
u0)(0) =v0)(0)=0, j=0,1,2,--- ,n—2,

1
D& u(1) = AlJ v(t)dt,

8
DEv(1) = ?\QJ u(t)dt,
0

wheren—1<oa<n, n>3, 0<nyny <1, A A, A are parameters and satisfy A;Ax(n1m2)* < M(a+1), D is the standard
Riemann-Liouville derivative, and f, g are continuous and semipositone. By using the nonlinear alternative of Leray-Schauder
type, Krasnoselskii’s fixed point theorems, and the theory of fixed point index on cone, we establish some existence results of
multiple positive solutions to the considered fractional SBVP. As applications, two examples are presented to illustrate our main
results. (©2017 All rights reserved.
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conditions, fixed point index.
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1. Introduction

Fractional calculus and fractional differential equations have been investigated extensively due to
their numerous and frequent applications in various fields of engineering and scientific disciplines such
as physics, chemistry, economics, control theory, aerodynamics and electromagnetics, etc. Fractional
derivatives provide an excellent tool for the description of memory and hereditary properties of various
materials and processes. Thus fractional models are the natural substitutes of the classical integer-order
model. For an extensive collection of such theory, methods and applications, we refer the readers to the
materials [1, 3, 9, 10, 13, 14, 16, 18, 21-27] and references therein.
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Some new types of fractional derivatives are also reported in several excellent papers. For example,
in [31], Yang introduced a class of the fractional derivatives of constant and variable orders for the first
time. Fractional-order relaxation equations of constants and variable orders in the sense of Caputo type
were modeled from mathematical view of point and they were very efficient in description of the complex
phenomenon arising in heat transfer. In [32], the authors proposed a new fractional derivative without
singular kernel. This was an extension of the Riemann-Liouville fractional derivative with singular kernel
and had some important applications in the modeling of the fractional-order heat flow. In addition, a
new definition of the local fractional derivative (LFD) was formulated to describe some non-differentiable
problems that occur in fractal engineering recently. In [33], the authors studied the LC-electric circuit with
the non-differentiable inductor and capacitor elements with the help of LFDs and fractal electrodynamics.
They gave the comparative results among LFD, Riemann-Liouville fractional derivative and conventional
derivative, which indicated that LFD was a new tool suitable for the study of a large class of electric
circuits, and they had opened some new perspectives towards the characterization of non-differentiable
electric circuits via LFDs.

On the other hand, coupled boundary conditions arise in the research of Sturm-Liouville problems and
reaction-diffusion equations, see [15] for a good overview, and have wide applications in various fields
such as engineering and sciences. While problems with integral boundary conditions arise in thermal
conduction problems, semiconductor problems and hydrodynamic problems.

For example, in [28], by means of the method of upper and lower solutions and the Schauder fixed
point theorem, Vong investigated the positive solutions of nonlocal BVP for a class of fractional differential
equations:

D& x(t) +f(t,x(t) =0, 0<t<1,

1
X/(0) = - = x(M=1(0) = 0, x(1) = JO x(s)dus),

wheren > 2, € (n—1,n) and p(s) is a function of bounded variation.
In [4], A51f and Khan considered the following BVP:

—u(t) = f(t,u(t),v(t), te(0,1),
—v"(t) = g(t,u(t),v(t)), te(0,1),
u(0) =0,u(l) = av(&),
v(0) =0,v(1) = Bu(n),

where f, g : (0,1) x [0, +00) x [0,400) — [0, +00) are continuous and singular at t = 0,t = 1, and pa-
rameters «, 3, &, 1 satisfy £, € (0,1),0 < xP&n < 1. They obtained the existence of at least one positive

solution by using Krasnoselskii’s fixed point theorem in a special cone.
In [7], Goodrich investigated a system of fractional BVP given by

Q,*ul( ) =Mar(t)f(u(t),uz(t)), 0<t<1,
—D0+u2( ) = A2az(t)g(ur(t), uz(t)),
w0y =uV0) =0, 0<i<n—2
D w (t)i=1 = d1(w), DFEw(t)li=1 = d2(v), 1<a<n-2.

The author gave the existence of at least one positive solution in view of Krasnoselskii’s fixed point
theorem under the local and the nonlocal boundary conditions, respectively.

Motivated by the above-mentioned works, we aim to establish some existence criteria of multiple
positive solutions for the following high-order semipositone fractional differential system with coupled
integral boundary conditions:

Db u(t) + Af(t ),v(t)) =0, te(0,1),
1

/ ( O/
D0+V( )+7\9( Au(t),v(t)) =0, te (0, ),
1(0)=v0)(0)=0, j=0,1,2,--- ,n-2,

a—1 N
Dy u(l) =M v(t)dt,

1 8
Doc v(1 AZJ u(t

=

(1.1)
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wheren—1<a<n, n>3, 0<ny,m <1, A, A, are parameters and satisfy AAx(n1m2)* < T (o + 1),
Dg; is the standard Riemann-Liouville derivative, and f, g are sign-changing continuous functions.

The main features of the present paper are as follows. Firstly, the nonlinear terms we discuss here are
semipositone. This is different from lots of the previous articles, see [5, 6, 17, 19, 20, 29] and the reference
therein, where the nonlinearity needs to be nonnegative to get the positive solutions. Secondly, the
boundary value conditions of the considered system are fractional high-order coupled integral boundary
value conditions and contain parameters, and this enriches the theoretical knowledge of above mentioned
works. Thirdly, the given conditions fo, Go and (H4) are quite different from many other papers such as
[11, 34, 35], and then the methods used in Theorem 3.2 are also different from these papers.

In this paper, we derive corresponding integral representation for SBVP (1.1) and give some important
properties which will play an important role in our proof. This is our key to establish a cone. By utilizing
the nonlinear alternative of Leray-Schauder type, Krasnoselskii’s fixed point theorems, and the theory of
fixed point index on cone, we derive an interval of parameter A such that for any A lying in this interval,
the SBVP (1.1) has at least two positive solutions. To the best of our knowledge, no contribution exists
considering the multiple positive solutions for SBVP (1.1). It should also be noted that ny,m2 € (0,1] are
more general than those in [28, 30, 35, 36], in which 13,12 equal to one. By a positive solution of SBVP
(1.1) we mean a pair of functions (u,v) € C[0,1] x C[0, 1] satisfying (1.1) with D u(t), Dgiv(t) € L(0,1)
and u(t) > 0,v(t) > 0 for any t € (0,1].

The rest of this paper is organized as follows. Section 2 contains some necessary preliminaries and
lemmas. Section 3 investigates the existence of multiple positive solutions to system (1.1). Finally, in
Section 4, two illustrative examples are presented to demonstrate our new results.

2. Preliminaries and lemmas

For the convenience of readers, we first recall some well-known results about the standard Riemann-
Liouville derivative. For details, please refer to [22, 25, 26] and the references therein.

Definition 2.1. The Riemann-Liouville standard fractional integral of order o« > 0 of a continuous function
u: (0,4+00) = R is given by

t
Ihu(t) = F(loc) L (t—s)* Tu(s)ds,

provided that the right side integral is pointwise defined on (0, +o0).

Definition 2.2. The Riemann-Liouville fractional derivative of order « of a continuous function u :
(0, +00) — R is defined by

D&, u(t) =

1 d th u(s) ds

where n = [«] + 1, provided that the right side is pointwise defined on (0, 4+00).
M+ o «

NM+o—o )

Lemma 2.3 ([12]). Let & > 0. Then the following equality holds for w € L(0,1), D§; € L(0,1),

As an example, for @ > —1, we have D§, u® =

I8 Dyt u(t) = u(t) + Ot et 2 et
wherec, € R, 1=1,2,--- ,n,andn—1 < o« < n.

For convenience in the following discussion, we set
[0 4 @
K= =2
MNo+1) MNo+1)

It is obvious that 1 — kikoAiAp > 0 if AjA(mim2)* < T2 (e +1).
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Lemma 2.4. Let x,y € C[0, 1] be given functions. Then the unique solution of system

Dgiu(t) +x(t) =0, t
Dgiv(t) +y(t) t
u)(0) =vi)(0)

wheren—1<a<n, n>3, 0<n,m <1, AMAaMmm)® < M («+1), is given by

1

1 1 1
u(t) :J Gl(t,s)x(s)ds+J Hi(t,s)y(s)ds, v(t) :J Gz(t,s)y(s)ds~|—J H»(t,s)x(s)ds,
0 0 0 0

where
KA At * Jl t T — (t—s)>! :
G(T,s)d , 0<s< St
T kkanda (o) Jy ST ] * < mine,t
kl}\ﬂ\ztfxil Jl t(xil
G(t,s)dt+ ——, t<s <y,
Gi(t,s) = (1 —kikaMA2)T (o) Jo 5] N3 ?
1L, S tocfl_(t_s)ocfl
<t
o) p m <s
tocfl
r((x) 7 S 2 max{nb t}/
koA Apt® 1 Jl L .
G 7 d 7 O < < /-t 4
T kkadda) (o) Jy S8 ] * < mintmt)
k27\17\2to‘71 J~1 tocfl
G(t,s)dt+ —, t<s<ny,
Golts) = | (L= kikaeAha)T(e) Jo ST g '
2(L, S t(xfl_(t_s)ocfl
, m <s<t,
I"( o)
t(X*l
o) s > max{ny, t},
)\1’[“_1 m
H t == 7 7
168 = o Jy S799
)\ztocfl JTIZ
Ha(t,s) = G(T,s)dT,
288 = T oA (e Jy €
x—1 __ _ yx—1
t r((t ) s) Cs<t
X
G(tls) = t“_l
-, s>t
I"( o)

Proof. In view of Lemma 2.3, we reduce (2.1) to the following equivalent equation
& €q q
w(t) = —I&x(t) + e t¥ F et 2 4 fent™ ™,
V() = —I&y(t) + e t®  ept® 24 et

!/ .
for some constants ci,c; € R, i=1,2,--- ,n.

2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

The boundary value conditions u0)(0) =v0)(0) =0, j=0,1,2,--- ,n—2 imply thatc; =c; =0, i =

2,3,---,mn,and so

u(t) = _Jt wx(s)ds +ot* L v(t) = — Jt wy(s)ds + c;to‘*l.

o T(ed) o TN«
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Then, we have

t

x(s)ds +cil(«), D& v(t) _—J y(s)ds +c1 ().
0

t

D u(t) = — JO

Thus 1

x(s)ds +cilM(w), D(‘)"flv(l) = —J y(s)ds +ciF(o¢).
0

1
Dg () = - |
0
T2
v(t)dt and Dg‘flv(l) = AZJ u(t)dt, we get
0

1
From the boundary conditions Dg‘flu(l) =M J

0

1

u(t)dt + Jo y(s)ds).

T2

1 M1 1 / 1
C1 = m()\l JO V(t)dt‘i‘L x(s)ds), C1 = TO‘)O\Z JO

So, we obtain

— t (t— 5)06_1 M a1 m I 1 !
u(t) =— L Wx(s)ds + Wt Jo v(t)dt + Wt Jo x(s)ds -

[ ae as+ 5 paiy(
|, Gt sxts1s + D u)

_ [fl—s)! A a1 (™ 1
v(t) = Jo Mo y(s)ds+r((x)t L u(t)dt~|—r((x)t Ly(s)ds .

M6, shyls)as + E et
_Jo S

Integrating (2.7) and (2.8) with respect to t on [0,12] and [0,711] respectively gives

1 M ol
v(t)dt:legilv(l)—l—J’ J G(t, s)y(s)dsdt.

Jmu(t)dt:kzD;;1u(1)+r2rG(t,s)x(s)dsdt, J o

0 0 Jo 0

By simple calculations, it follows that

]_ 2 1 1 1
D& ()= —————— k)\)\J JGt,sxsdsdt—i—)\J JGt,s s)dsdt |, 2.9
& () 1—k1k27\17\2<11200()() | st suls) 29)
Do 1 M2 lG M (1 )
o+ v(l)—m ?\ZL Jo (t,s)x(s)dsdt+k27\1?\2J0 L G(t,s)y(s)dsdt | . (2.10)
Substituting (2.9) and (2.10) into (2.7) and (2.8), respectively, we have
e e o
u(t) = G(T,s)x(s)dsdt
0= ], Tkt S e
ol TN Gt s)x(s)
=+ G(T,s sdsdT—l—J G(t,s)x(s)ds,
Jo Jo (1 —kikaA1A2)T () k 0
M2 rl }\Ztocfl
v(t) = G(T,s)x(s)dsdt
(®) Jo Jo (1—kikaA1A2)T () (T, s)x(s)

1

m 1 kz)\l)\ztail
+ G(T,s sdsdT+J G(t,s)y(s)ds.
Jo L 1 kakahag) (o O SU(S) , Gl Siuts)

In the following, we divide the proof into four cases.
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Casel. t <mp.

1 1

KiA{ A t*—
+ G(T,s dsdt

( > (1 —kikaA1A2)T () (T, s)x(s)

1 AMt* 1 il t > 1
0 (1 — K kaMAg)T )L G(T,S)dT>y(s)ds+<L+J +L2> G(t,s)x(s)ds

t -1 1 1 1

ki A1 At J' t —(t—s)

= G(T,s)dt+ x(s)ds
Jo ((1—k1k27\17\2)r(cx) , 8ws) (s)

2 kl)\l)\ztoc—l 1 -1 1 o1
+L ((1_k1k2)\1)\2)r(a) JO G(t,s)dt+ r(“)> x(s)ds-l—J F(oc)x(s)ds

! ?\1t°‘71 ull
—i—L ((1 —Kyko A AT (o) JO G(T,s)dT> y(s)ds

1 1
:J Gl(t,s)x(s)ds—l-J Hq(t, s)y(s)ds.
0 0

Case 2. t > mp.

. 2 t 1 k17\17\2t“71
u(t) = (Jo —|—L2) L a —k1k27\1?\2)r(oc)G(T’S)X(S)deT

' At ™ ot 1
+JO <(1 —kikaA AT () Jo G(T,S)d’t) y(s)ds + (Jo +L2 +L) G(t,s)x(s)ds

_ n k1>\17\2t(xi1 1 to‘*l _ (t _ S)ocfl
a Jo <(1 —kikoA AT () Jo G(t,s)dT+ Mo ) x(s)ds

topo—1_ (t— s)ocfl T x—1 1 7\1’(0‘71 -
o] S sas | s | (o | stmsar)vsias
1

1
:J Gl(t,S)X(S)derJ Hi(t, s)y(s)ds.
0 0

Case 3. t <m.

1 1

koA Apt* ™
+ G(T,s)y(s)dsdt

( ) (1 —KkikaA1A2)T () (%, s)y(s)

1 )\zt(x 1 T2 t Ul 1
0 1 kikoMA )T (@) L G(T,s)dT> x(s)ds + <J0 +J +L1> G(t,s)y(s)ds

t a—1 1 S RV |
0 0
ul

(1 —KkikoA1A2)T (x)

) a1 1 x—1 1 ;a—1
+J koA1 Aot J Gt sttt y(s)dﬁj L y(s)ds
. 0 M(a)

(1 —KkekoA1A2)T (o) (o)

! At 1 M2
+JO <(1—k1k2)\17\2)r( )L G(T,S)d’t> x(s)ds

1 1
Gat ds—i—J Ha(t, s)x(s)ds.
0

0
Case4. t >n;.

! koA At 1
<J +Jﬂ1)J' 1—k1kz7\17\2)F( )G(T's)y(s)deT
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! Apt* ! 2 mo ot ol
—i—JO <(1—k1k27\1?\2)F(oc) Jo G(T,S)d’[?) x(s)ds + (L +L1 —I—L) G(t, s)y(s)ds
m kz)\ﬂ\zt“il 1 o1 _ (t . S)“,1
N Jo ((1 —k1ko A A2)T () JO Glr,s)dr+ M« ) y(s)ds

t tcxfl _ (t _ s)ocfl 1 tocfl 1 7\2’(0‘71 2
+Ll (o) y(s)ds+Jt r((X)y(s)derL <(1_k1k2}\1}\2)r(“) JO G(T,S)d’f) x(s)ds
1

1
0 0

This completes the proof. O
Lemma 2.5. The function G(t,s) defined by (2.6) has the following property:

tcx—l a1 1 o1
Mo (1-(1—5s) )gG(t,s)gm(l—(l—s) )
Proof. For s < t, we have
_ tcxfl _ (t— S)cxfl _ t(xfl S o tocfl o
Glts) = M) =g (- 0=977) 2 g (1= (=957
rrom 06, . (a—Dt*2— (a—1)(t—5)*2
ax—1)t* " —(a—1)(t—s)*"
ﬁ(tls) = F(OC) = 0/
it follows that | ot :
ot —(t—s)*" o o1
G(t,s) = Mo < G(1,s) = Mo (1-(1—9s)>1
For s > t, we know
tocfl socfl 1

Glts) =77 S T S Tl

by means of s* 1 + (1 —s)*"! <1 fors € (0,1].
t(X*l tocfl
On the other hand, G(t,s) =

- 2 -
Mo = T(«)
Summing up the above discussion, the conclusion of this lemma follows. O

(1—(1—s)*1) is obvious.

From Lemma 2.5 together with (2.2), (2.3), (2.4), and (2.5), we can obtain the following.

Lemma 2.6. The functions G1(t,s), Ga(t,s) and Hi(t,s), Ha(t,s) defined respectively by (2.2), (2.3), (2.4), and
(2.5) have the following properties:

(1) ‘Vt(x_l (1 - (1 - S)“_l) < Gi(t/ S) < P (1 - (1 - S)Dc_l) ;1 7 <,
(11) ‘Vt(x_l (1 - (1 - S)“_l) < Hi(t/ S) < Y 1-— (1 - S)(X—l) ;1= 1/ ’
(i) Gi(t,s) < pt*1, Hy(t,s) <pt* !, i=1,2,
where
_ max max{ky, kaJA1 A2 1 max{Ain1, A1z}
P (T— koMM 2 (e0) ' (o)’ (1= kakahA2) P2 () J °

. 1 min{An{, Aans} }
v = min , .
M) (1—KkikoMA)T ()T (x+ 1)
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Let E = C[0,1] be the Banach space with the maximum norm |ju|| = max{Ju(t)| : t € [0,1]} for each
u € E. Obviously, E x E is a Banach space with the norm ||(u, v)||; = max{||u||, |v||}. Denote

P={(wv) € ExE:ult) >yt (wv)|,v(t) = yt* | (wv)|,t€[0,1]},

where y = — € (0,1). It is easy to verify that P is a cone in E x E. Let

v
P
Pr ={(u,v) e P:|(w,v)|1 <7} (r>0).

Fix an interval [£,1] C (0,1). Define several notations:

.. . f(t,u,v) . . Q(t/u;")
foo = liminf min , Joo = liminf min =———,
utvoteote[gn] U+V utvateote[gn] U+V
V= V=0
1?0 =liminf min f(t,u,v), go = liminf min g(t,u,v).
utv=0 te[&n] utv=0 te[En]
u,v>0 u,v=0

We present now the hypotheses that will be used in the sequel.
(H1) f,g € C([0,1] x [0, 4+00) X [0, +00), (—00, +0)) and satisfy

f(t,u,v) > —qi(t), g(t,u,v) > —qa(t), t € (0,1), u,v € [0, +00),

1
where q; € C((0,1),[0,+00)) and 0 < J qi(s)ds < +o0,i=1,2.
0
(H1*) f,g € C((0,1) x [0,400) x [0, 4+00), (—o0, +00)) and satisfy

(tl ulv) + q1 (t)

f pl(t)hl(u/\})r te (0/1)1 u,v e [0/ +OO)/
g(t,w,v) +qa(t)

<
< p2(t)ha(u,v), t € (0,1), u,v € [0,400),

0<
0<
where py, g; € C((0,1), 10, +00)), hi € C([0,+00) x [0, +00), [0, +00)) and

1

1
0< J pi(s)ds < +o0, 0 < J qi(s)ds < +o0, i=1,2.
0 0

(H2) f(t,0,0) >0, g(t,0,0) >0 for all t € [0,1].
(H3) fo = +00 Or goo = +00.

[5(qi(s) + qa(s))ds
y2ee1 [T(1— (1—s)*1)ds’

We first consider the system of fractional BVP

(H4) fo > Lor §o > L, where L >

D x(t) + ALf(t, [x(t) — w1 (D], [y (t) — w2 ()]*) + q1(t)] =0, t<(0,1),
Dgy(t) +Alg(t, [x(t) — w1 (O], [y(t) — w2 (1)]*) + q2(8)] =0, t € (0,1),

0
D = [ yna, 1)

where
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m&%umwvz{ymwﬂw y(t) —wa(t) =0,

and
1 1

wi(t) =A Gi(t,s)qi(s)dsjt?\J Hi(t,s)q;j(s)ds, i=1,2, i+j =3,
Jo 0

which is the solution of the fractional BVP
Dg‘fwl( )+7\q1( )=0, te(0,1),1=1,2,
cQWm ag )_a;_012 -2,

Doc—l _a 1
or =M | wo(t)d

DSﬁfl =N\ wq(t

%2
0
Obviously, by Lemma 2.6, one has

1
wi(t) < Aptx ! L (q1(s) +qa(s))ds, i=1,2. (2.12)

We shall prove that there exists a solution (x,y) for fractional BVP (2.11) with x(t) > wi(t) and
y(t) > wy(t) for all t € [0, 1]. If this is true, then the functions u(t) = x(t) — w1 (t) and v(t) = y(t) — wa(t)
represent a nonnegative solution of the SBVP (1.1), which is positive on (0,1]. Indeed, by the definition of
[-]*, for any t € [0, 1], we have

Dgru(t) = Dgax(t) — Dgr w1 (t) = —Af(t, x(t) — wi(t), y(t) — wa(t)) = —Af(t, u(t), v(t)),
DEv(t) = DEy(t) — D& walt) = —Ag(t, x(t) — i (1), y(t) — wa(t)) = —Ag(t,u(t), v(t)),

and

u(0) =x0(0) —wV(0) =0, v (0) =y (0) —w{'(0) =0, j=0,1,2,--- ,n—2,

M1 1
D ul1) = D (1)~ D wall) = | (1)~ waltNat=nu [ “viviat,
D§v(1) = D§y(1) - D wall) =ha | (x(1) — wr(t)at = | “wivjat.

Consequently, in what follows, we shall investigate BVP (2.11).
By means of Lemma 2.3, BVP (2.11) can be reduced to the following equivalent integral equation

1

X(t) = A L Ga(t, $)[(s, [x(s) — wi(s)]*, [y(s) — wa(s)]*) + qu(s)lds

1
+7\L Hi(t,8)[g(s, [x(s) — w1(s)]*, [y(s) — wa(s)]*) 4+ qa(s)lds, t e [0,1],
1

y(t) = 7\J0 Ga(t, s)[g(s, [x(s) — w1(s)]%, [y (s) — wa(s)]") + qa(s)]ds

1
”L Ha(t, 8)[F(s, [x(s) — wr(s)]*, [y(s) — wa(s)]*) + qi(s)]ds, t € [0, 1]

Define an integral operator T: P — E x E by

T(xy) = (lixy), Talx,y))
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with

1

Tilx,y)(t) = ?\L G (t, s)[f(s, [x(s) — w1 ()], [y(s) — wa(s)]) + qu(s)]ds

1
+7\J0 Hi(t, 8)g(s, [x(s) — w1 ()], [y(s) — wa(s)]*) + qa(s)lds, t € [0,1],
1

T(x,y)(t) = AJO Ga(t,s)[g(s, [x(s) —w1(s)]*, y(s) — wa(s)]*) + qa(s)]ds

1
+7\L Ha(t, 8)[f(s, [x(s) — w1 (s)]*, [y(s) — wa(s)]*) +qi(s)lds, t e [0,1].

Lemma 2.7. Suppose (H1) or (H1*) holds, then the operator T : P — P is a completely continuous operator.

Proof. For any fixed (x,y) € P, we can choose a constant C such that
0 < [x(s) —wi(s)I" < x(s) <llx,y)lh <C, s€0,1],

0< lyls) —wa(s)]" <yls) < llxyllh <C s €[0,1].

Take M; = 0<ma>éC hi(u,v)+1, i=1,2. For any t € [0, 1], the condition (H1) or (H1*) and Lemma 2.6
\ulv\

imply that
1
Ti(x,y)(t) < Ap JO [1—(1—s)* (s, [x(s) — wi(s)]*, ly(s) — wa(s)]*) 4+ q1(s)]ds

1
+ )\pJO [1—(1—3s)*Yg(s, [x(s) — wi(s)]*, [y(s) — wa(s)]*) + qa(s)]ds
1

< “’L pr(s)ha (Ix(s) — wi (s)]*, Ty (s) — wa(s)]")ds

1
“"L pa(s)ha([x(s) — wr(s)), [y(s) — wa(s))*)ds

1 1

pi(s)ds —i—?\pMzJ p2(s)ds < +oo,

< AleJ
0

0

1
T2(x,y)(t) < Ap L [1—(1—5)*Mlg(s, x(s) — w1 (s)]*, [y(s) — wa(s)]*) + qa(s)lds

1
+ ?\pL [1— (1—s)* (s, [x(s) — wi(s)]*, [y(s) — wa(s)]*) + q1(s)]ds
1

< “’L pa(s)ha(x(s) — wi (s)]*, fy(s) — wa(s)]*)ds

1
“"L p1 ()R ([x(s) — oy (s)]*, [y(s) — wa(s)]*)ds

1 1

p2(s)ds —|—7\pM1J p1(s)ds < +oo,

< 7\9sz
0

0

which yields that the operator T is well-defined on P.
On the other hand, for any fixed (x,y) € P, t € [0,1], by Lemma 2.6, it follows that

1
Ti(x,y)(t) < Ap L [1—(1—8)* (s, [x(s) — wi(s)]%, [y(s) — wa(s)]*) + qi(s)]ds
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1

+Ap L 1—(1- s)"‘_l][g(s, [x(s) — w1(s)]*, [y(s) — wa(s)]*) + qa(s)lds,
1

T2(x,y)(t) < Ap JO [1—(1—5)*"1lg(s, [x(s) — wi(s)]*, [y(s) — wa(s)]*) + qa(s)]ds
1

+Ap L [1—(1—8)* (s, [x(s) — wi(s)]%, [y(s) — wa(s)]*) + q1(s)]ds,

which shows that

1
[Tyl < Ap L [1— (1—s)* (s, [x(s) — wi(s)]%, [y(s) — wa(s)]*) + q1(s)]ds

1 (2.13)
+Ap L [1—(1—s)*Yg(s, [x(s) — wi(s)]*, [y(s) — wa(s)]*) + qa(s)]ds,
1
T2(x,y)|| < ?\pJ [1—(1—3)*Mlg(s, [x(s) — wi(s)]*, [y(s) — wa(s)]*) + qa(s)lds
° (2.14)
+ ApL [1— (1— )% (s, [x(s) — wi ()17, by(s) — wals)]*) + qu(s)]ds.
From Lemma 2.6, we have
1
Ti(x,y)(t) = Avt* ! L [1—(1—s)* (s, [x(s) — wi(s)]*, [y(s) — wa(s)]*) + qi(s)]ds
(2.15)
1
+Avtx! JO [1—(1—s)*Mlg(s, [x(s) — wi(s)]*, ly(s) — wals)]*) + qa(s)]ds,
1
To(x,y)(t) = Avt* ! J [1—(1—s)*Ylg(s, [x(s) — wi(s)]*, ly(s) — wa(s)]*) + qa(s)]ds
° . (2.16)

+Avtxl JO [1—(1—s)*Yf(s, [x(s) — wi(s)]*, [y(s) — wa(s)]*) + qi(s)]ds.

Then, (2.13), (2.14), (2.15), and (2.16) imply that

Ti06y)(8) = vt T y) 1, T2 y) (1) = vt Talx, y) (B4, t € [0, 1],

which means T(P) C P.
By means of Arzela-Ascoli theorem, it is easy to see that T : P — P is a completely continuous
operator. O

For convenience, we also list the following lemmas which will be used in the next section.

Lemma 2.8 ([2]). Let X be a Banach space, and () C X be closed and convex. Assume that U is a relatively open
subsets of Q with 0 € U. S : U — Q is a compact, continuous map. Then either

(i) S has a fixed point in U; or

(i) there exist uw € OU and v € (0,1) such that u = vSu.
Lemma 2.9 ([8]). Let E be a Banach space, P C E a cone, and Q1, Qp two bounded open balls of E centered at the
origin with Q1 C Q. Suppose that T: PN (Q2\ Q1) — P is a completely continuous operator such that either

1) IITx[| < [Ixll,x € PN0oQy and |[Tx]| > [Ix||,x € PN 0Qy; or
(i) [Tx[| > [IxIl,x € PN0Q and [[Tx]| < [Ix|l,x € PN0Q,

holds. Then T has a fixed point in PN (Qy \ Q1).

Lemma 2.10 ([8]). Let E be a Banach space, P be a cone in E and QO € E is a bounded open set with © € Q. Suppose
that A : QNP — P is completely continuous. Then the following results hold:

(i) Ifu#pAufor p e 0O NPand 0 < u <1, theni(A,QNP,P)=1.

(ii) Ifinfyecpnoa llAUl] > 0and Au # pu for any u € 0O NP and 0 < pn < 1, then i(A,QNP,P) =0.
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3. Main results

The following two theorems are our main results which give sufficient conditions to guarantee the
existence of at least two positive solutions for system (1.1).

Theorem 3.1. Suppose that conditions (H1), (H2), and (H3) hold. Then there exists a constant A* > 0 such that
SBVP (1.1) has at least two positive solutions for any A € (0, A*).

Proof. From (H2), there exists a constant Ry > 0 such that

f(t,u,v) >0, g(t,u,v) >0, Yu,v € [0,Rg]. (3.1)
Define
F(Ro) = max {f(t,u,v)}, G(Ro)= max {g(t,u,v)},
0<t<1 0<t<1
0<u, v<Ry 0<u,v<Ry
and R
A= 0 > 0.

p ((F(Ro) + G(Ro))(1 = 1)+ [5(1 — (1= ) 1)(a(s) + g (5))ds

Let U = {(x,y) € P: [l(x,y)lli < Ro}. Assume that there exist (x,y) € 9U and v € (0,1) such that
(x,y) = vT(x,y). Notice that

0 < [x(s) —wi(s)]" <x(s) <ll(x,y)lli =Ro, 0<[y(s) —awas)]* <yls) <|l(x,y)llh = Ro.
Then, for each A € (0,1), by Lemma 2.6, we have
x(t) = vTi(x,y)(t) < Th(x,y)(t)

1
= AJ G1(t, s)[f(s, [x(s) — wi(s)]", [y(s) — wa(s)]") + qi(s)lds

0

1
+ AJO Hi(t, s)[g(s, [x(s) — wi(s)]%, [y(s) — wa(s)]*) + qa(s)]ds
1

1
< Apj (1= (1=5)*"")(F(Ro) + qu(s))ds + Ap JO (1= (1=5)*"")(G(Ro) + qa(s))ds

1
< Ao ((F(Ro) FGRL= 1)+ | (1= (1= ) (ar(s) + qz(S))dS>

0
< Rp, Vt €10,1],

y(t) = VTZ(X/U)( ) TZ(X/

=A| Gyt [x(s) — wi(s)]*, [y(s) — wa(s)]*) + qa(s)lds

—_

o

1
+?\J Ha(t, s)[f(s, [x(s) — w1 (s)]™, y(s) — wa(s)]*) + q1(s)]ds

1

(1—(1—s)*" 1)(G(Ro)+QZ(S))dS+7\pJ (1—(1—s)* 1) (F(Ro) + qi(s))ds

<?\pj
0

0

1
<o ((F(Ro) +G(RII— )+ | (1= (15" auls) +q2(8))d5>
< Rp, Vt €[0,1],

which means ||x|| < Ry and |ly|| < Ro. Thusi,Ro = [|(x, y)lli = max{|[x]], [lyll} < Ro. This is a contradiction. By
Lemma 2.8, T has a fixed point (xq,y1) € UW.



D. L. Zhao, Y. S. Liu,, J. Nonlinear Sci. Appl., 10 (2017), 3544-3565 3556

Moreover, by (3.1), it follows that
x1(t) = T1(x1,y1) (1)

1
_ AJO Ga(t, $)[(s, [xa(s) — w1 ()]%, fyr (s) — wa(s)]*) + qa (s)]ds

1
+AL Ha (¢, 8)[g(s, a (s) — o ()]%, ya(s) — wa(s)]*) + qa(s)]ds

1 1
> AJ Gl(t,s)ql(s)ds—H\J Hi(t, s)qa(s)ds
0 0
= wl(t)/ vVt e (01 1]/

y1(t) = Ta(x1,y1)(t)

1
_ AL Galt, 8)lg(s, [xa(s) — wi(s)]*, fur(s) — wa(s)]*) + qa(s)lds

1
“L Ha(t, 8)[£(s, 1 (s) — w1 (s)]*, ya(s) — wa(s)]*) + qa (s)]ds
1

1
> AJ Ga(t,s)qga(s)ds + AJ Hy(t,s)q1(s)ds
0 0

= wo(t), Vt € (0,1].

Thus, x1(t) — w1 (t) > 0 and y1(t) — wa(t) > 0 for all t € (0, 1].
Let uy(t) = xq(t) — wq(t) and vi(t) = y1(t) — w2 (t). Then (uy,vq) is a nonnegative solution (positive
on (0,1]) of the SBVP (1.1).

1
On the other hand, choose R; such that Ry > max {:/)2 J (q1(s) + qa(s))ds, Ro}. Define
0

F(Ry) = max {f(t,u,v)}, G(R;)= max {g(t,u,v)},
o<t o<t
0y, v<Ry 0y, v<Ry

and
R1

A = min 1, N > 0.
P ((F(Rl) +GR))1—2)+ [(1 = (1 —s)*)(qi(s) + qz(S))dS)
Let Q1 ={(x,y) € E: |l(x,y)llh < Ryi}. Then, for any (x,y) € PN 0oQy,s € [0,1], we have

0 < [x(s) —awi(s)]" <x(s) <l(x,y)lh =Ry, 0< [y(s) —wals)]* <yls) <Ill(x,y)llh =Ry.

For each A € (0,7), it follows from Lemma 2.6 that

1

T (x, Yl < Ap L (1= (1—8)% 1) (f(s, x(s) — wi(s)]*, [y(s) — wa(s)]*) + qi(s)) ds

1
+Ap L (1—(1—5)*Nig(s, x(s) — wi(s)]*, ly(s) — wa(s)]*) + qaz(s)lds
1

(1—(1—s)* D(F(Ry) + ql(s))dSJF)\pL(l (1—3)*)(G(Ry) + ga(s))ds

1

<?\pj
0

1
<o <(F(Rl) LR - ) +J (1—(1—)* D) (quls) + qz(S))dS>

& 0

< l(x,y)lh =Ry,
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1

IM2(x, y)ll = Ap L (1—(1—s)* Higls, [x(s) — wi(s)]*, [y(s) — wa(s)]*) + qa(s)lds

1
+Ap Jo (1—(1—s)* D[f(s, [x(s) —wq(s)]*, [y(s) — wa(s)]*) + qq(s)]ds
1 1

(1= (1=8)*"(G(Ry) + qz(S))dSJr?\pJ (1= (1=3)*"")(F(R1) +qu(s))ds

<7\pj
0

0
1

<m<wmn+m&nu—5+]
X

0

(1—(1—8)*N)(qu(s) + qz(S))dS>

< lx,y)lh = Ry.

Therefore,
IT(x, y)llh = max{l[T (x, y)ll, T20x, y)lI} < Ml(x, y)lla, Vx,y) € PNoy. 3.2)
By (H3), if foo = 400, then there exists a constant N for f such that
f(t,u,v) >Mu+v), telE,nl, u=0,v=0 ut+v=N, (3.3)
where M satisfies . N
Zmam—“ymj (1—(1—s)*Hds > 1. (3.4)
£

2N
Let R, = max {2R1, yé"‘_l} and Oy = {(x,y) € E: l[(x,y)lli < Rz}. Then, by (2.12), for any (x,y) €
PNoQq,s € [0,1], we have

1

Mﬂwﬂﬂ>xmkm*4LMNﬂ+mbn®

px(t) (!
> xlt) = 220 | (@) + qals))as
1
>ﬁﬂ—?€%¥m@H@ﬂﬂMs
1 1 1
> x(t) > Evt“‘ln(x,y)lll > Eva"‘—le >N,
and then
() — wi (O + [y(8) — wa (1" > [x(1) — w (1)]* = x(t) — wr(t) > N. (3.5)

Hence, for any (x,y) € PN0Qy,t € [E,1], by (3.3) and (3.5), we get
f(t, x(t) — w1 (D], [y(t) — w2 (1)]) = M([x(t) — wq ()" + [y(t) — w2 (t)]"). (3.6)

Therefore, for any (x,y) € PNy, t € [E,1], by (3.4), (3.5), and (3.6), we have

1
Ti(x,y)(t) > ?\L Gi(t, 8)[f(s, [x(s) — wi(s)], ly(s) — wa(s)]*) + qi(s)lds
1
> Avtx ! JO (1—(1—8)* Hf(s, [x(s) — wi(s)]*, [y(s) — wa(s)]*)ds
> At IM([x(s) — wq (s)]* + y(s) — wa(s)]™) F(l —(1—s)*N)ds

g
n

> i)\v&z("‘_l)yMRZJ (1—(1—s)*Nds
&
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> Ry = [[(x,y)lh,

which implies that

IT(x, y)lh = max{[[T1 (x, Il MT20x, y)ll} = [, y)lli, Vix,y) € PNoQ,. (3.7)

Similarly (3.7) is valid if go, = +o0.
It follows from (3.2) and (3.7) that T has a fixed point (x2,y2) € P which satisfies Ry < [[(x2,y2)ll1 < Ra.
We suppose that [[x2|| > Ry without loss of generality. Then, by (2.12) and the choice of Ry, we have

1
x2(t) — w1 (t) > xa(t) —Apt“lj (q1(s) + qa(s))ds

0
> x(t) — F;T|i(2t||) J:(ql(s) + qa(s))ds

> <1 - ::(ql(s) " qz(S))dS> Xa(1)

> <1 — % :Ol(ql(S) + qz(S))dS> vt l(x2, y2)lh

> <1 - y%l ::(ql(s) + qz(S))dS> YRit*1 >0, t € (0,1].

Moreover, noticing (x2,y2) € P, we can obtain yp(t) > Yt* (%2, y2)ll1 = yt* Ry for t € [0,1], and then
Ily2ll = y2(1) > yR;. Similarly, we also have

1
a(t) — wa(t) > ya(t) —Apt“—lj (a1(s) + ga(s))ds

0
Cpya(t) [
> yalt) - 22 L(ql(squ(s))ds

o !
1——— s)+ s))ds
), (@) + a2(s)

=

Ya(t)

Yt Yl(x2,92)ll1
Y?R1 Jo Y

o [

> -
- Y2Rq Jo

1- (q1(s) + qa(s))ds | YRit* ' >0, t € (0,11.

o [
2(1— (g1(s) +qz2(s))ds

N—— N

Let up(t) = x2(t) — w1 (t) and vo(t) = ya(t) — wz(t). Then, (uy, v2) is a nonnegative solution (positive
on (0,1]) of the SBVP (1.1).

Choose A* = min{}, 7\}. Then for any A € (0,A*), the SBVP (1.1) has at least two positive solutions
(ug,v1) and (up,vo). O

Theorem 3.2. Suppose that conditions (H1*), (H3), and (H4) hold. Then there exists a constant A* > 0 such that
SBVP (1.1) has at least two positive solutions for any A € (0, A*).

Proof. We divide the proof into 3 steps.
Step 1. For each v > 0, let

?\—min{ : r , 1 ! 1 },
20 [o(a1(s) +qz(s))ds  per(r) [y p1(s)ds + pea(r) [ pa(s)ds



D. L. Zhao, Y. S. Liu,, J. Nonlinear Sci. Appl., 10 (2017), 3544-3565 3559

where
ei(r) = max hi(x,y) + 1.
(x,y)€lo,r]x[0,7]

For any A € (0,A), we shall prove
(x,y) #uT(x,y), nel01], (x,y) € oPy.
In fact, if not, there exist (xg,yo) € 0Py and yg € [0, 1] such that
(x0,Yo) = HoT(x0,yo), t €[0,1].

Since (xo,yo) € P, one has
xo(t) = vt Yl(xo, o)l = yt*'r, t € 0,1.

On the other hand, from (2.12), we get

1 1
antt) <20t [ fan(s)+ apls))as < PAELEREDE ) e g
Thus, .
Xo(t) _ wl(t) > <1 _ 7\9 f@(ql(s) + qZ(S))dS> > EX()(J[) > Lrtocfll te [0’ 1] (38)
yr 2 2
In addition,
[xo(t) —w1(t)]* =xo(t) — w1 (t) < xo(t) < ll(x0,yolllh = (3.9)
By a similar way, we can obtain
yYr oa—1 1 *
7t < Eyo(t) < [yo(t) —wa(B)]" =yol(t) —wa(t) <, t€[0,1]. (3.10)

Therefore, by (3.8), (3.9), (3.10), and (H1*), we have
xo(t) = HoT1(x0, yo) (t) < Tr(x0,Yo)(t)

1
= )\JO G1(t, s)(f(s, [xo(s) — w1(s)]™, [yo(s) — wa(s)]*) + qi(s))ds

1
+ ?\L Hi(t, s)(g(s, [xo(s) — w1 ()], [yols) — w2(s)]") 4 qa(s))ds
1

<o JO p1(s)ha (xo(s) — wi(s), yols) — wa(s))ds

1
A JO pa(s)ha(xo(s) — wi(s), yols) — wals))ds

1 1

p1(5)d5+7\pez(T)J pa(s)ds, te0,1],

<A
< pel(r)J 0

0

which implies

1 1

Pl(S)dS+7\P€2(f)J pals)ds.

holl < Apel(r)j 0

0
In the same way, we can obtain

1 1

Pl(S)dSJr?\pez(T)J pa(s)ds.

yoll < Apel(r)J 0

0
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Then,

1 1

pi(s)ds + Apea(r) | pals)ds

¥ = l(x0,y0)ll1 = max{lixoll, Iyoll} < Apelmj
0

0

which indicates N

> .
per(r) [1pi(s)ds + pea(r) [Lpa(s)ds
This is in contradiction with A € (0,A). By Lemma 2.10, for any A € (0,A), we have

i(T,P,,P) = 1. (3.11)
Step 2. We shall prove that for any A € (0,A), there exists R > r > 0 such that i(T, Pg,P) = 0. First, by
(H3), if fo, = +o00 then there exists a constant N > r for f such that

ul

—1
f(t,u,v) > <;7\v£2(“1)yj (1-(1 —s)“l)ds> (u+v), telEgnl, u,v=0 ut+v>=N. (3.12)

I3
Next, let

1
R > max {%?/pjo(ql(s) + qa(s))ds, yéaN_l} :

Now, we are ready to show

T(X/U) 7é H(X/U)/ V(X/U) € aPR/ ne (O/ 1]

Otherwise, there exist (xg,yo) € 0P and pp € (0, 1] such that T(xg,yo) = wo(xo, yo). Since (xp,yo) € P, one
has
xo(t) = vt* l(xo, yo)lh =vt* 'R, te€[0,1].

This together with (2.12) gives
! 1
xo(t) —wi(t) =t [yR —ApJ (q1(s) + qa(s))ds | > Evi"HR >N, telgml
0

Similarly, yo(t) — w2 (t) > N for any t € [¢, 1], and then

[xo(t) — w1 (t)]" + [yo(t) — wa(t)]" > [xo(t) — wq(t)]" =xo(t) — wq(t) > %YE“_lR > N. (3.13)

Hence, by (3.12) and (3.13), we have

1

xo(t) > AL G1(t, 8)[F(s, [xo(s) — wr(s)]*, lyo(s) — wa(s)]*) + qu(s)lds

-1
> Avtx! Jnu— (1—s)*hds <17\v£2(°‘1)yr(1 — (1—5)“1)(13)
3 2 3
- ((xo0(s) — wi(s)) +yols) — wa(s))
n n -1
> AvEXT! L (1—(1—s)*Nds <;7w£2(“1)y L (1—(1— s)“l)ds> (EyaHR)
=R, te ]

This is in contradiction with (xg,yo) € 0Pr. By Lemma 2.10, for any A € (0,A), we have
i(T,Pg,P) =0. (3.14)

Similarly, (3.14) is valid if go = +00.
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Step 3. We shall prove that there exist A* € (0,A] satisfying that for any A € (0,A*), there exists v € (0, 1)

such that i(T, P/, P) = 0.
It follows from 1?0 > L that there exists 6 > 0 such that

f(t,wv) =L, telgnl, ut+ve(0,5d).

Let
v

A* :min{ 1 , 7\}'
2p [5(q1(s) + qz(s))ds

For every A € (0,A*), it is easy to see that

Ap 1 5
VL(q1(S)+qz(s))ds <3

Ié(ql(s)Jrqz(s))ds

, it foll that
J2ga-1 jg(l—(l—s)‘x—l)ds it follows tha

From L >

1

u—u—ww4m5>$Lmuw+munx.

n
vE,“_lLJ
£

So, we can choose T’ € (0, %) such that

1 , mn
?\pj (qi(s) +qa(s))ds <1 <)\v£°‘_1LJ (1—(1—s)*1ds.
Y Jo g

Now, we are ready to prove that

T(le) 7é H(X/U)z V(X/y) S aPT/, 48 S (O, 1]

(3.15)

(3.16)

Suppose this is false. Then, there exist (xo,yo) € 0P,» and po € (0,1] such that T(xp,yo) = Ko(xo,Yo),

that is, Ty (x0,Yyo) = Hoxo, T2(x0,Y0) = Hoyo. Since (xp,yo) € P, one has
xo(t) = vt* Ul(xo, yo)lh = vt* ', te[0,1].

This together with (2.12) and (3.16) implies

1
xo(t) — wq(t) = t*7! (yr, —Ap L (q1(s) + qz(s))ds> >0, te(0,1].

In addition, xo(t) — w1 (t) < xo(t) < [Ixoll < ll(x0,Yyo)lh = v < g Similarly, we can get 0 < yo(t) —wo(t) <

for t € (0,1], and then
0 < (xo(t) — wi(t)) + (yolt) — wa(t)) < 2r' <5, t€(0,1.
Therefore, by (3.15) and (3.17), we have
xo(t) = Ti(x0,yo)(t)

1
= ?\JO Gi(t,s)[f(s, [xo(s) — wi(s)]*, [yo(s) — wa(s)]*) + qi(s)]ds

1
+ ?\L Hi(t,s)g(s, [xo(s) — wi(s)]*, [yo(s) — wa(s)]*) + qa(s)]ds

N| o

(3.17)
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1
>AJ Gult, 8)[F(s, [xols) — ai(s)]*, yols) — wa(s)]*) + qu(s)ds
0
M
>yLGmﬁﬁumaﬂ—wu@ydﬂ—wﬂQMs
Ul
2)\vt°‘_1LJ (1—(1—s)*1ds
&
m
> )\véo‘_lLJ (1—(1—s)*Nds
&
>7, telgm).
Noticing (xo,yo) € 0P/, we get a contradiction. By Lemma 2.10, we have
i(T,P.,,P) =0. (3.18)

Obviously, (3.18) is still valid if go > L holds. Combining (3.18) with (3.11) and (3.14), we easily get

1'(T/ PR\ﬁT/P) = l(T/ PR/P) - 1(T/ PT/P) =0—-1= _1/
(T, PA\P.,P) = i(T, Py, P) —i(T,P,,,P) =1—0=1.

Consequently, for any A € (0,A*), BVP (2.11) has at least two positive solutions (x1,y1), (x2,Y2) satisfying

v < |l y)lh <7 < ll(x2,y2)llh < R.
Since (x1,Y1), (x2,y2) € P, one has

x1(t) = yt* l(x, y1)lh > yt¥ ' >0, te(0,1],
x2(t) = yt* Y|(x2, y2)llh > yt* >0, te(0,1].

This together with (2.12) and (3.16) implies

1
x1(t) — wq(t) > t* ! (yr/ —?\pJ0 (q1(s) + qz(s))ds> >0, te(0,1],

1
x2(t) — wq(t) > t* ! (yr—)\p L(ql(s) + qﬂs))ds) >0, te(0,1].

By a similar way, we also have y;(t) —wz(t) >0, yo(t) —wa(t) >0, te (0,1].

Let uy(t) = x1(t) — w1 (t), vi(t) = y1(t) — w2(t) and uz(t) = x2(t) — wi(t), va(t) = y2(t) — wa(t). Then,

(u1,v1), (up,v2) are two nonnegative solutions (positive on (0,1]) of the SBVP (1.1).

4. Examples

Example 4.1. Consider the following SBVP of fractional differential equations:

2 2
7 1

DZ.v(t) +A <(u+v)4 —3(u+v)+2+ 3 sin27'ct> =0, te(0,1),

ul(0)=v0(0) =0, j=0,1,2,

7 7
Dgiu(t) +A ((u+v)2— g(u—i—v) + = —|—2cos27rt> =0, te(0,1),

O

(4.1)
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Then there exists a constant A* > 0 such that the SBVP (4.1) has at least two positive solutions for any
A€ (0,A%).

Proof. (4.1) can be regarded as a SBVP of the form (1.1), where

7 1
f(t,u,v) = (u+v)>— g(u—i—v) +§ +2cos2mt, g(t,u,v) = (u+v)*—=3u+v)>+2+ gSiDZTtt,

2
anda=7(m=4), =12, =3, m = §, m2 = 3, Mha(mm2)* = 7v2 < U2 = T(a+1). Take qu(t) =
4, q2(t) =2, p1(t) =p2(t) =1, hy(w,v) = (u+v )2—7(u+v)—|—10 hy(u,v) = (u+v)*—3(u+v)?+5, and
then
0 < f(t,w,v) +qi(t) < p1(t)ha(w,v), t € (0,1), w,v € [0, +00),
0 < g(t,u,v) +qz2(t) < p2(t)he(w,v), t € (0,1), w,v e [0,+00).

Obviously, f(t,0,0) = § +2cos2mnt > 0, ¢(t,0,0) = 2+ }sin2nt > 0. In addition, fix [£,n] C (0,1), it is
easy to see that fo, = 400 and g« = +o0. Thus, by Theorem 3.1, the conclusion follows. O

Example 4.2. Consider the following SBVP of fractional differential equations:

5 162 1 2
D§+u(t)+7\< e COSWW) =0, te(01),
(f5+3u+v)2) vt 8 1t(1—t)
5 wiv 5 Tlu+
D2, v(t) + A 15600 + 1o + 2 coslylutv)y _ 0, te(0,1),
(L +2u+v3)y/tl—1) 10 1—t
ui)(0)=v0)(0)=0, j=0,1, (4.2)

Then there exists a constant A* > 0 such that the SBVP (4.2) has at least two positive solutions for any
A€ (0,A%).

Proof. (4.2) is a SBVP of type (1.1), where

2
ftw,v) = — 16200 1 20wt M/
(15 +3(u+v)?) vt 8 t1_t)
g(t,u,v) = 15600 1 utv %cos(%(u+v))

2w vidy  10° 7 it

and =3 (n=3), M =6 A =3 m =3 m=3 Mhamm)*=§v2 < 2 =T(x+1). Take

2 1 1 1
t) = ——, t) = —, t) = ———, t) = —,
@iy t(1—1t) %{t) 2V1—t pilt] t(1—1) P2(t) t(1—1)
and 1 16200 1 15600
hi(u,v) = *62(u+v)+—+4, hy(u,v :76“7“’4_—_’_1,
e =g 10 T 3(u+v)?2 2wV =14 Ly2(u+v)
and then

0 <f(t,u,v)+qi(t) < p1(t)hi(w,v), t € (0,1), u,v € [0, +00),
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0 < g(t,w,v)+qa(t) < p2(t)hy(uw,v), t € (0,1), u,v € [0,+0o0).

Let [£,n] = [}, 2]. By direct calculation, we get

E pi(s)ds = Jl pa2(s)ds =, J

and

and

In addition,
3.2.

1 1

qi(s)ds =2, J qo(s)ds =1, y = % ~ 0.024 € (0,1),
0

0 0

Ié(ql(s)+qz(s))ds
y2eet [ (1 — (1 —s)*1)ds

~ 186666,

fo A~ 187066 > 186666, go ~ 187200 > 186666.

it is easy to see that fo, = +00 and g« = +o00. Hence, our conclusion follows from Theorem
d
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