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Abstract
In this paper, we introduce and analyze implicit and explicit iteration methods for solving a variational inequality problem

over the set of common fixed points of an infinite family of nonexpansive mappings on a real reflexive and strictly convex Banach
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corresponding results in the literature. c©2017 All rights reserved.

Keywords: Nonexpansive mapping, fixed point, variational inequality, global convergence.
2010 MSC: 49J30, 47H09, 47J20, 49M05.

1. Introduction

Let X be a real Banach space with its topological dual X∗, and C be a nonempty closed convex subset
of X. Let T : C→ X be a nonlinear mapping. We denote by Fix(T) the set of fixed points of T . A mapping
T : C→ X is called L-Lipschitz continuous if there exists a constant L > 0 such that

‖Tx− Ty‖ 6 L‖x− y‖, ∀x,y ∈ C.

T is called nonexpansive provided L = 1 and T is called contractive provided L ∈ [0, 1).
The normalized dual mapping J : X→ 2X

∗
is defined by

J(x) := {ϕ ∈ X∗ : 〈x,ϕ〉 = ‖x‖2 = ‖ϕ‖2}, ∀x ∈ X,

where 〈·, ·〉 denotes the dual pairing between X and X∗, see e.g., [11] for further details.
Let U := {x ∈ X : ‖x‖ = 1} denote the unit sphere of X. The space X is said to have a Gâteaux

differentiable norm, if the limit

lim
t→0+

‖x+ ty‖− ‖x‖
t

, (1.1)
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exists for each x,y ∈ U. The space X is said to have a uniformly Gâteaux differentiable norm, if the
limit (1.1) is attained uniformly for x ∈ U. The space X is said to be strictly convex if and only if for
x,y ∈ U with x 6= y, we have ‖(1 − λ)x + λy‖ < 1, for all λ ∈ (0, 1). It is well-known in [11] that if
X is smooth, then the normalized duality mapping is single-valued; and if the norm of X is uniformly
Gâteaux differentiable, then the normalized duality mapping is norm to weak∗ uniformly continuous on
every bounded subset of X. In the sequel, we shall denote the single-valued normalized duality mapping
by j.

Recall that the so-called classical variational inequality (VI) in Hilbert spaces is to find a point x∗ ∈ C
such that

〈Ax∗, x− x∗〉 > 0, ∀x ∈ C.

This problem is a fundamental problem in the variational analysis; in particular, in the optimization
theory and mechanics; see e.g., [13, 18–21, 33–38] and the references therein. A popular algorithm for
solving this problem is extragradient method introduced by Korpelevich [22]. This method has been
improved by several researchers; see e.g., [9, 12, 14, 27] and the references therein.

In case of Banach space setting, the VI is to find a point x∗ ∈ C such that

〈Ax∗, j(x− x∗)〉 > 0, ∀x ∈ C. (1.2)

It is known ([1]) that (1.2) in a smooth Banach space is equivalent to a fixed-point equation, containing a
sunny nonexpansive retraction from any point of the space onto the feasible set, which is usually assumed
to be closed and convex. The sunny nonexpansive retraction is not easy to compute, due to the complexity
of the feasible set. To overcome this drawback in a Hilbert space, where the retraction is a metric pro-
jection, in [32], Yamada assumed that the feasible set is the set of common fixed points of a finite family
of nonexpansive mappings and introduced an explicit hybrid steepest-descent method. In this case, the
variational inequality defined on such feasible set is also called a hierarchical variational inequality (HVI).
Yamada’s method is subsequently extended and modified to solve more complex problems, containing
finite or infinite nonexpansive mappings (see, e.g., [3, 6, 40] and references therein). In [40], based on
the Yamada result, Zeng and Yao introduced an implicit method that converges weakly to a solution of
a variational inequality, involving a Lipschitz continuous and strongly monotone mapping in a Hilbert
space H, where the feasible set is that of common fixed points of a finite family of nonexpansive mappings
on H. In [7], Ceng et al. extended this result from nonexpansive mappings to Lipschitz pseudocontractive
mappings and strictly pseudocontractive mappings on H. Recently, in [4], Buong and Anh proposed a
strongly convergent implicit method, which is a modification of Yamada’s result.

In the case where the feasible set is that of common fixed points of an infinite family of nonexpansive
mappings on H, based on the W-mapping (see [29]) and Moudafi’s viscosity approximation method (see
[23]), in [16, 17], Kikkawa and Takahashi studied an implicit iteration scheme that converges strongly to a
solution of the stated problem. Recently, by using the W-mappings, Ceng and Yao [8] introduced relaxed
viscosity approximation methods for finding a common fixed point of an infinite family of nonexpansive
mapping in a Banach space. It was proven in [8] that the sequences generated by the proposed methods
converge strongly to a common fixed point, which solves some variational inequalities. In the meantime,
in [30], Wang et al. proposed a new implicit iteration method, which converges strongly to a common
fixed point for solving some variational inequalities in a Banach space with a weakly continuous duality
mapping. Very recently, motivated by the ideas above and based on a V-mapping, which is simpler
than the W-mapping, Buong and Phuong [3] introduced two new implicit iterative algorithms, which
converge strongly in Banach spaces without weakly continuous duality mapping. These methods are two
different combinations of the steepest-descent method with the V-mapping, a composition, and a convex
combination.

Our purpose in this paper is to solve a HVI for an infinite family of nonexpansive mappings on
a real reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable norm. We
introduce implicit and explicit iterative algorithms for finding a solution of the problem, and derive the
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strong convergence of the proposed algorithms to a unique solution of the problem, by using V-mappings
instead of W-ones. Our results improve and extend the corresponding results announced by some others,
e.g., Ceng and Yao [8] and Buong and Phuong [3].

2. Preliminaries and algorithms

Let X be a real Banach space with the dual space X∗ and 〈·, ·〉 be the dual pairing between X and X∗.
For simplicity, the norms of X and X∗ are denoted by the symbol ‖ · ‖. A mapping J : X→ 2X

∗
, satisfying

the condition
J(x) = {ϕ ∈ X∗ : 〈x,ϕ〉 = ‖ϕ‖2 and ‖ϕ‖ = ‖x‖}, ∀x ∈ X,

is called the normalized duality mapping of X. We know that J(tx) = tJ(x) for all t > 0 and x ∈ X, and
J(−x) = −J(x). Throughout this paper, we denote the single-valued normalized duality mapping by j and
denote the fixed point set of a mapping T by Fix(T). In addition, we shall use the notations: “⇀”, “⇀∗”,
and “→” stand for the weak convergence, weak∗ convergence, and strong convergence, respectively.

Let U := {x ∈ X : ‖x‖ = 1} denote the unit sphere of x. Recall that a Banach space X is said to be strictly
convex if (‖x+ y‖)/2 < 1 for each x,y ∈ U with x 6= y. If for each ε ∈ (0, 2], there exists δ > 0 such that
for any x,y ∈ U, ‖x+y2 ‖ > 1 − δ implies ‖x− y‖ < ε. It is known that a uniformly convex Banach space
is reflexive and strictly convex. Also, it is known that if a Banach space X is reflexive, then X is strictly
convex if and only if X∗ is smooth as well as X is smooth if and only if X∗ is strictly convex.

Definition 2.1. A mapping F with domain D(F) and range R(F) in X is called

(a) accretive if for each x,y ∈ D(F), there exists j(x− y) ∈ J(x− y) such that

〈Fx− Fy, j(x− y)〉 > 0,

where J is the normalized duality mapping;
(b) δ-strongly accretive if for each x,y ∈ D(F), there exists j(x− y) ∈ J(x− y) such that

〈Fx− Fy, j(x− y)〉 > δ‖x− y‖2 for some δ ∈ (0, 1);

(c) α-inverse-strongly accretive if for each x,y ∈ D(F), there exists j(x− y) ∈ J(x− y) such that

〈Fx− Fy, j(x− y)〉 > α‖Fx− Fy‖2 for some α ∈ (0, 1);

(d) ζ-strictly pseudocontractive [2] if for each x,y ∈ D(F), there exists j(x− y) ∈ J(x− y) such that

〈Fx− Fy, j(x− y)〉 6 ‖x− y‖2 − ζ‖x− y− (Fx− Fy)‖2 for some ζ ∈ (0, 1).

It is easy to see that the last inequality can be rewritten as (see [39])

〈(I− F)x− (I− F)y, j(x− y)〉 > ζ‖(I− F)x− (I− F)y‖2,

where I denotes the identity mapping of X. Clearly, if F is ζ-strictly pseudocontractive with ζ = 0, then it is
said to be pseudocontractive. It is not hard to find that every nonexpansive mapping is pseudocontractive.

Let C be a nonempty closed convex subset of a smooth Banach space X and {Ti}
∞
i=1 be an infinite

family of nonexpansive self-mappings on C. Then we set F :=
⋂∞
i=1 Fix(Ti). In 2013, Buong and Phuong

[3] considered the following HVI with C = X: find x∗ ∈ F such that

〈F(x∗), j(x− x∗)〉 > 0, ∀x ∈ F. (2.1)

In the case where X = H, a Hilbert space, we have J = I, and hence problem (2.1) reduces to the HVI: find
x∗ ∈ F such that

〈F(x∗), x− x∗〉 > 0, ∀x ∈ F. (2.2)
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Assume that F =
⋂N
i=1 Fix(Ti) is the set of common fixed points of a family of N nonexpansive mappings

Ti on H, and F is an L-Lipschitz continuous and η-strongly monotone mapping, i.e., ‖Fx− Fy‖ 6 L‖x− y‖
and 〈Fx− Fy, x− y〉 > η‖x− y‖2 for all x,y ∈ H. Zeng and Yao [40] introduced the following implicit
iteration: for an arbitrarily initial point x0 ∈ H, the sequence {xk}

∞
k=1 is generated as follows:

xk = βkxk−1 + (1 −βk)[T[k]xk − λkµF(T[k]xk)], ∀k > 1, (2.3)

where T[n] = TnmodN, for integer n > 1, with the mod function taking values in the set {1, 2, ...,N}. They
proved the following result.

Theorem 2.2 ([40, Theorem 2.1]). Let H be a real Hilbert space and let F : H → H be a mapping such that,
for some positive constants L and η, F is L-Lipschitz continuous and η-strongly monotone. Let {Ti}

N
i=1 be N

nonexpansive mappings on H such that F :
⋂N
i=1 Fix(Ti) 6= ∅. Let µ ∈ (0, 2η/L2), x0 ∈ H, {λk}

∞
k=1 ⊂ [0, 1), and

{βk}
∞
k=1 ⊂ (0, 1) satisfying the condition

∑∞
k=1 λk < ∞, and let a 6 βk 6 b,k > 1 for some a,b ∈ (0, 1). Then

the sequence {xk}∞k=0, defined by (2.3), converges weakly to x∗ ∈ F, solving (2.2).

It is well-known that if
∑∞
k=1 λk <∞, then λk → 0 as k→∞, and the inversion is not right. Recently,

in order to obtain the strong convergence and decrease the strictness of the condition on λk, Buong and
Anh [4] proposed the following implicit iteration method:

xt = T
txt, Tt := Tt0 T

t
N · · · Tt1 , t ∈ (0, 1), (2.4)

where {Tti }
N
i=0 are defined by

Tti x := (1 −βit)x+β
i
tTix, i = 1, . . . ,N, Tt0 y := (I− λtµF)y, x,y ∈ H, (2.5)

and proved that the net {xt}, defined by (2.4)-(2.5), converges strongly to an element x∗ in (2.2) under
the conditions on µ,βit that are similar to Theorem 2.2, and λt → 0 as t → 0+. When N = 1, X is a
real reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable norm and T is a
continuous pseudocontractive mapping, Ceng et al. [5] proved the following result.

Theorem 2.3 ([5, Proposition 4.3]). Let F be a δ-strongly accretive and ζ-strictly pseudocontractive mapping with
δ+ ζ > 1 and let T be a continuous and pseudocontractive mapping on X, which is a real reflexive and strictly
convex Banach space with a uniformly Gâteaux differentiable norm, such that F := Fix(T) 6= ∅. For each t ∈ (0, 1),
choose a number µt ∈ (0, 1) arbitrarily and let {zt} be defined by

zt = t(I− µtF)zt + (1 − t)Tzt. (2.6)

Then, as t→ 0+, {zt} converges strongly to x∗ ∈ F, solving (2.1).

Let C be a nonempty closed convex subset of a real Banach space X, {Tk}∞k=1 be a sequence of nonex-
pansive self-mappings on C, and {ρk}

∞
k=1 be a sequence of nonnegative numbers in [0, 1]. The following

self-mapping Wn on C was considered and studied in [24, 25]:

Uk,k+1 = I,
Uk,k = ρkTkUk,k+1 + (1 − ρk)I,
Uk,k−1 = ρk−1Tk−1Uk,k + (1 − ρk−1)I,

...
Uk,2 = ρ2T2Uk,3 + (1 − ρ2)I,
Wk = Uk,1 = ρ1T1Uk,2 + (1 − ρ1)I.

(2.7)

Such a mapping Wk is called the W-mapping generated by Tk, Tk−1, . . . , T1 and ρk, ρk−1, . . . , ρ1; when
X = H, see Takahashi [29] for more details. To find a common fixed point of an infinite family {Ti}

∞
i=1 of
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nonexpansive self-mappings on a nonempty, closed, and convex subset C in H, Kikkawa, and Takahashi
[16] proved strong convergence of a sequence {xk}

∞
k=1, defined by the following implicit iterative scheme:

xk = γkf(xk) + (1 − γk)Wkxk with 0 < ρ1 6 1 and 0 < ρi 6 b < 1, for i = 2, 3, . . ., where f is a
contractive self-mapping on C. Subsequently, in [17], when C is a nonempty, closed, and convex subset of
a uniformly convex Banach space X with a uniformly Gâteaux differentiable norm, they considered the
following strongly convergent implicit method:

Skx = (1 −
1
k
)Wx+

1
k
f(x), and Wx = lim

k→∞Wkx = lim
k→∞Uk,1x. (2.8)

It is remarkable that the method (2.8) contains the limit mapping W, and hence it is quite difficult to
realize.

Let X be a real reflexive and strictly convex Banach space X with a uniformly Gâteaux differentiable
norm. Let C be a nonempty closed convex subset of X. Let f : C → C be a contractive mapping, and
let {Tk}

∞
k=1 be a sequence of nonexpansive self-mappings on C such that the common fixed point set

F :=
⋂∞
k=1 Fix(Tk) 6= ∅. Let Wk be the W-mapping defined by (2.7) where {ρk}

∞
k=1 ⊂ (0,b] for some

b ∈ (0, 1). Recently, in order to find a common fixed point of an infinite family {Ti}
∞
i=1 of nonexpansive

mappings, Ceng and Yao [8] introduced a relaxed implicit viscosity approximation method.

Algorithm 2.4 ([8, (2)]). Let {αk}
∞
k=1 be a sequence in (0, 1) such that limk→∞ αk = 0 and {βk}

∞
k=1 be a

sequence in [0, 1] such that limk→∞ βk/αk = 0. The sequence {zk}
∞
k=1 is generated in the implicit manner

xk = αkf((1 −βk)xk +βkWkxk) + (1 −αk)Wk((1 −βk)xk +βkWkxk), ∀k > 1, (2.9)

where f : C→ C is a contractive mapping with a contractive constant α ∈ (0, 1).

It was proven in [8] that the net {xk}∞k=1 converges in norm, as k → ∞, to the unique solution x∗ ∈ F

to the following VI:
〈(I− f)(x∗), j(x− x∗)〉 > 0, ∀x ∈ F. (2.10)

In the meantime, the authors [8] also proposed another relaxed explicit viscosity approximation
method.

Algorithm 2.5 ([8, (14)]). Let {αk}∞k=1 and {βk}
∞
k=1 be two sequence in (0, 1) with αk+βk 6 1, for all k > 1,

and {γk}
∞
k=1 be a sequence in [0, 1]. Assume that limk→∞ αk = 0,

∑∞
k=1 αk = ∞, 0 < lim infk→∞ βk 6

lim supk→∞ βk < 1, limk→∞ |γk+1 − γk| = 0, and lim supk→∞ γk < 1. For arbitrarily given x1 ∈ C, let the
sequence {xk}

∞
k=1 be generated in the explicit manner{

yk = (1 − γk)xk + γkWkxk,
xk+1 = (1 −αk −βk)xk +αkf(yk) +βkWkyk, ∀k > 1,

where f : C→ C is a contractive mapping with a contractive constant α ∈ ( 1
2 , 1).

It was also proven in [8] that the sequence {xk}
∞
k=1 converges in norm, as k→∞, to the unique solution

x∗ ∈ F to the VI (2.10) provided limk→∞ γk = 0 and βk ≡ β for some fixed β ∈ (0, 1).
In [3], motivated by methods (2.4) and (2.6), by introducing a mapping Vk, defined by

Vk = V1
k, Vik = T iT i+1 · · · Tk, T i = (1 −αi)I+αiTi, i = 1, 2, . . . , k, (2.11)

where

αi ∈ (0, 1) and
∞∑
i=1

αi <∞, (2.12)

Buong and Phuong considered two implicit methods. In both methods, the iteration sequence {xk}
∞
k=1 is

defined, respectively, by
xk = Vk(I− λkF)xk, ∀k > 1, (2.13)



L.-C. Ceng, C.-F. Wen, J. Nonlinear Sci. Appl., 10 (2017), 3502–3518 3507

and
xk = γk(I− λkF)xk + (I− γk)Vkxk, ∀k > 1, (2.14)

where λk and γk are the positive parameters, satisfying some additional conditions. The authors [3]
proved the strong convergence theorems for the methods (2.13) and (2.14).

We will make use of the following well-known results.

Lemma 2.6 ([15]). Let X be a real reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable
norm. Suppose that C is a nonempty closed convex subset of X, that T : C → C is a nonexpansive mapping with
Fix(T) 6= ∅ and that f : C → C is a fixed contractive mapping. Let {xt} be defined by xt = tf(xt) + (1 − t)Txt.
Then as t→ 0, {xt} converges strongly to a unique solution x∗ ∈ Fix(T) to the following VI:

〈(I− f)(x∗), j(x− x∗)〉 > 0, ∀x ∈ Fix(T).

Lemma 2.7 ([10]). Let X be a real Banach space. Then for all x,y ∈ X

(i) ‖x+ y‖2 6 ‖x‖2 + 2〈y, j(x+ y)〉 for all j(x+ y) ∈ J(x+ y);
(ii) ‖x+ y‖2 > ‖x‖2 + 2〈y, j(x)〉 for all j(x) ∈ J(x).

Let LIM be a continuous linear functional on l∞ and s = (a1,a2, . . .) ∈ l∞. We write LIMkak instead
of LIM(s). LIM is called a Banach limit if LIM satisfies ‖LIM‖ = LIMk1 = 1 and LIMkak+1 = LIMkak for
all (a1,a2, . . .) ∈ l∞. If LIM is a Banach limit, then there hold the following:

(i) for all k > 1, ak 6 ck implies LIMkak 6 LIMkck;
(ii) LIMkak+m = LIMkak for any fixed positive integer m;

(iii) lim infk→∞ ak 6 LIMkak 6 lim supk→∞ ak for all (a1,a2, . . .) ∈ l∞.

Lemma 2.8 ([41]). Let a ∈ R be a real number and a sequence {ak} ∈ l∞ satisfy the condition LIMkak 6 a for
all Banach limit LIM. If lim supk→∞(ak+m − ak) 6 0, then lim supk→∞ ak 6 a.

In particular, if m = 1 in Lemma 2.8, then we immediately obtain the following corollary.

Corollary 2.9 ([26]). Let a ∈ R be a real number and a sequence {ak} ∈ l∞ satisfy the condition LIMkak 6 a for
all Banach limit LIM. If lim supk→∞(ak+1 − ak) 6 0, then lim supk→∞ ak 6 a.

Lemma 2.10 ([5]). Let X be a real smooth Banach space and F : C→ X be a mapping.

(a) If F is ζ-strictly pseudocontractive, then F is Lipschitz continuous with constant 1 + 1
ζ .

(b) If F is δ-strongly accretive and ζ-strictly pseudocontractive with δ+ ζ > 1, then I− F is contractive with

constant
√

1−δ
ζ ∈ (0, 1).

(c) If F is δ-strongly accretive and ζ-strictly pseudocontractive with δ + ζ > 1, then for any fixed number

λ ∈ (0, 1), I− λF is contractive with constant 1 − λ(1 −
√

1−δ
ζ ) ∈ (0, 1).

3. Iterative algorithms and convergence criteria

In this section, we study iterative methods for computing approximate solutions of a HVI for an
infinite family of nonexpansive mappings. We introduce implicit and explicit iterative algorithms for
solving such a problem, and derive the strong convergence theorems for the sequences generated by the
proposed algorithms.

The following lemmas will be used to prove our main results in the sequel.

Lemma 3.1 ([3, Lemma 3.1]). Let C be a nonempty closed convex subset of a strictly convex Banach space X and let
{Ti}

k
i=1, k > 1 be k nonexpansive self-mappings on C such that the set of common fixed points F :=

⋂k
i=1 Fix(Ti) 6=

∅. Let a,b and αi, i = 1, 2, . . . , k, be real numbers such that 0 < a 6 αi 6 b < 1, and let Vk be a mapping defined
by (2.9) for all k > 1. Then, Fix(Vk) = F.
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Lemma 3.2 ([3, Lemma 3.2]). Let C be a nonempty closed convex subset of a Banach space X and let {Ti}∞i=1 be an
infinite family of nonexpansive self-mappings on C such that the set of common fixed points F :=

⋂∞
i=1 Fix(Ti) 6= ∅.

Let Vk be a mapping defined by (2.9), and let αi satisfy (2.10). Then, for each x ∈ C and i > 1, limk→∞ Vikx exists.

Remark 3.3.

(i) We can define the mappings

Vi∞x := lim
k→∞Vikx and Vx := V1∞x = lim

k→∞Vkx, ∀x ∈ C.

(ii) It can be readily seen from the proof of Lemma 3.2 that if D is a nonempty and bounded subset of
C, then the following holds:

lim
k→∞ sup

x∈D
‖Vikx− Vi∞x‖ = 0, ∀i > 1.

In particular, whenever i = 1, we have

lim
k→∞ sup

x∈D
‖Vkx− Vx‖ = 0.

Lemma 3.4 ([3, Lemma 3.3]). Let C be a nonempty closed convex subset of a strictly convex Banach space X
and let {Ti}∞i=1 be an infinite family of nonexpansive self-mappings on C such that the set of common fixed points
F :=

⋂∞
i=1 Fix(Ti) 6= ∅. Let αi satisfy the first condition in (2.12). Then, Fix(V) = F.

Lemma 3.5 ([28]). Let {xn} and {zn} be bounded sequences in a Banach space X and let {αk} be a sequence in [0, 1]
such that

0 < lim inf
k→∞ αk 6 lim sup

k→∞ αk < 1.

Suppose that xk+1 = αkxk + (1 −αk)zk, for all k > 1, and

lim sup
k→∞ (‖zk+1 − zk‖− ‖xk+1 − xk‖) 6 0.

Then limk→∞ ‖zk − xk‖ = 0.

Lemma 3.6 ([31]). Assume that {ak} is a sequence of nonnegative real numbers such that

ak+1 6 (1 − γk)ak + γkδk, ∀k > 1,

where {γk} is a sequence in [0, 1] and {δk} is a sequence in R such that

(i)
∑∞
k=1 γk =∞;

(ii) lim supk→∞ δk 6 0 or
∑∞
k=1 |γkδk| <∞.

Then, limk→∞ ak = 0.

Now, we are in a position to prove the following main results.

Theorem 3.7. Let X be a real reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable
norm, let F be δ-strongly accretive and ζ-strictly pseudocontractive with δ+ ζ > 1, and let {Ti}∞i=1 be an infinite
family of nonexpansive mappings on X such that F :=

⋂∞
i=1 Fix(Ti) 6= ∅. Let {Vk}∞k=1 be defined by (2.11) and

(2.12). Let {λk}∞k=1 ⊂ (0, 1], {γk}
∞
k=1 ⊂ (0, 1) and {βk}

∞
k=1 ⊂ [0, 1] such that limk→∞ γk = 0, limk→∞ βk = 0

and lim supk→∞ βk/(λkγk) <∞. Let {xk}∞k=1 be defined by

xk = γk(I− λkF)((1 −βk)xk +βkVkxk) + (1 − γk)Vk((1 −βk)xk +βkVkxk), ∀k > 1. (3.1)

Then {xk}
∞
k=1 converges strongly to a unique solution x∗ ∈ F to the following VI:

〈F(x∗), j(x− x∗)〉 > 0, ∀x ∈ F. (3.2)
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Proof. Consider the mapping Ukx = γk(I− λkF)((1−βk)x+βkVkx) + (1−γk)Vk((1−βk)x+βkVkx), for
all k > 1 and x ∈ X. Then, from Lemma 2.10 (c), it follows that for each x,y ∈ X,

‖Ukx−Uky‖ = ‖γk(I− λkF)((1 −βk)x+βkVkx) + (1 − γk)Vk((1 −βk)x+βkVkx)

− [γk(I− λkF)((1 −βk)y+βkVky) + (1 − γk)Vk((1 −βk)y+βkVky)]‖
= ‖γk[(I− λkF)((1 −βk)x+βkVkx) − (I− λkF)((1 −βk)y+βkVky)]

+ (1 − γk)[Vk((1 −βk)x+βkVkx) − Vk((1 −βk)y+βkVky)]

6 γk(1 − λkτ)‖((1 −βk)x+βkVkx) − ((1 −βk)y+βkVky)‖
+ (1 − γk)‖((1 −βk)x+βkVkx) − ((1 −βk)y+βkVky)‖

= (I− γkλkτ)‖((1 −βk)x+βkVkx) − ((1 −βk)y+βkVky)‖
= (I− γkλkτ)‖(1 −βk)(x− y) +βk(Vkx− Vky)‖
6 (I− γkλkτ)[(1 −βk)‖x− y‖+βk‖Vkx− Vky‖]
6 (I− γkλkτ)‖x− y‖,

where τ = 1 −
√

1−δ
ζ ∈ (0, 1) (due to δ+ ζ > 1). Since γkλkτ ∈ (0, 1), Uk is a contraction of X into itself.

By Banach’s contraction principle, there exists a unique element xk ∈ X, satisfying (3.1).
Next, we divide the rest of the proof into several steps.

Step 1. We show that {xk}∞k=1 is bounded. Indeed, take an arbitrarily given p ∈ F. Then, by Lemma 3.1,
we have Vkp = p, and hence ‖Vkxk − p‖ 6 ‖xk − p‖. So, by Lemma 2.10 (c) we get

‖xk − p‖2 6 γk‖(I− λkF)((1 −βk)xk +βkVkxk) − p‖2

+ (1 − γk)‖Vk((1 −βk)xk +βkVkxk) − p‖2

= γk‖(I− λkF)((1 −βk)xk +βkVkxk) − (I− λkF)p− λkF(p)‖2

+ (1 − γk)‖Vk((1 −βk)xk +βkVkxk) − p‖2

6 γk[‖(I− λkF)((1 −βk)xk +βkVkxk) − (I− λkF)p‖+ λk‖F(p)‖]2

+ (1 − γk)‖((1 −βk)xk +βkVkxk) − p‖2

6 γk[(1 − λkτ)‖((1 −βk)xk +βkVkxk) − p‖+ λk‖F(p)‖]2

+ (1 − γk)‖((1 −βk)xk +βkVkxk) − p‖2

= γk[(1 − λkτ)‖((1 −βk)xk +βkVkxk) − p‖+ λkτ · τ−1‖F(p)‖]2

+ (1 − γk)‖((1 −βk)xk +βkVkxk) − p‖2

6 γk[(1 − λkτ)‖((1 −βk)xk +βkVkxk) − p‖2 + λkτ
−1‖F(p)‖2]

+ (1 − γk)‖((1 −βk)xk +βkVkxk) − p‖2

6 γk[(1 − λkτ)‖xk − p‖2 + λkτ
−1‖F(p)‖2] + (1 − γk)‖xk − p‖2

= (1 − γkλkτ)‖xk − p‖2 + γkλkτ
−1‖F(p)‖2.

Therefore, ‖xk − p‖ 6 ‖F(p)‖/τ, which implies the boundedness of {xk}∞k=1. So, the sequences {Vkxk}
∞
k=1,

{yk}
∞
k=1, {Vkyk}∞k=1, and {F(yk)}

∞
k=1, where yk = (1 −βk)xk +βkVkxk, are also bounded. Since γk → 0 as

k→∞, and the following relation holds

‖xk − Vkyk‖ = γk‖(I− λkF)yk − Vkyk‖ 6 γk(‖yk − Vkyk‖+ λk‖F(yk)‖) 6 γk(‖yk‖+ ‖Vkyk‖+ ‖F(yk)‖),

we obtain from the boundedness of {yk}∞k=1, {Vkyk}
∞
k=1 and {F(yk)}

∞
k=1 that ‖xk − Vkyk‖ → 0 as k→∞.

Note that ‖yk − xk‖ = βk‖Vkxk − xk‖ and

‖xk − Vkxk‖ 6 ‖xk − Vkyk‖+ ‖Vkyk − Vkxk‖ 6 ‖xk − Vkyk‖+ ‖yk − xk‖
= ‖xk − Vkyk‖+βk‖Vkxk − xk‖.
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So, from ‖xk − Vkyk‖ → 0 and βk → 0 as k→∞, it follows that

lim
k→∞ ‖xk − yk‖ = 0 and lim

k→∞ ‖xk − Vkxk‖ = 0. (3.3)

Step 2. We show that LIMk‖xk − Vzn‖2 6 LIMk‖xk − zn‖2 for any Banach limit LIM, where for each
n > 1, zn is a unique element in X such that zn = 1

n(I− F)zn + (1 − 1
n)Vzn.

Indeed, in terms of Lemma 2.10 (b) we know that I− F is contractive with constant
√

1−δ
ζ ∈ (0, 1).

Utilizing Lemmas 2.6 and 3.4, we conclude that {zn} converges strongly to a unique solution x∗ ∈ Fix(V) =
F to the following VI:

〈(I− (I− F))x∗, j(x− x∗)〉 > 0, ∀x ∈ F. (3.4)

Since the VI (3.4) is equivalent to the VI (3.2), we know that {zn} converges strongly to a unique solution
x∗ ∈ F to the VI (3.2). Moreover, since Vk is a nonexpansive mapping for each k > 1, V is a nonexpansive
mapping on X. Note that xk = γk(I− λkF)yk + (1 − γk)Vkyk, where yk = (1 − βk)xk + βkVkxk. Also,
observe that for each k,n > 1

‖xk − Vzn‖ = ‖γk[(I− λkF)yk − Vzn] + (1 − γk)(Vkyk − Vzn)‖
6 γk‖(I− λkF)yk − Vzn‖+ (1 − γk)‖Vkyk − Vkzn‖+ (1 − γk)‖Vkzn − Vzn‖
6 γk(‖yk − Vzn‖+ λk‖F(yk)‖) + ‖yk − zn‖+ ‖Vkzn − Vzn‖
6 γk(‖yk − Vzn‖+ ‖F(yk)‖) + (1 −βk)‖xk − zn‖+βk‖Vkxk − zn‖+ ‖Vkzn − Vzn‖
6 γk(‖yk − Vzn‖+ ‖F(yk)‖) +βk‖Vkxk − zn‖+ ‖xk − zn‖+ ‖Vkzn − Vzn‖.

(3.5)

Furthermore, from Remark 3.3 (ii), we deduce that if D is a nonempty and bounded subset of X, then, for
ε > 0, there exists k0 > i such that for all k > k0

sup
x∈D
‖Vikx− Vi∞x‖ 6 ε. (3.6)

Taking D = {zn : n > 1}, {xk : k > 1}, respectively, and setting i = 1, from (3.6) we have

‖Vkzn − Vzn‖ 6 sup
x∈D
‖Vkx− Vx‖ 6 ε and ‖Vkxk − Vxk‖ 6 sup

x∈D
‖Vkx− Vx‖ 6 ε,

which immediately imply that

lim
k→∞ ‖Vkxk − Vxk‖ = 0 and lim

k→∞ ‖Vkzn − Vzn‖ = 0, ∀n > 1. (3.7)

Since γk → 0 and βk → 0 as k→∞, from (3.5) and (3.7) we obtain

LIMk‖xk − Vzn‖2 6 LIMk‖xk − zn‖2. (3.8)

Step 3. We show that LIMk〈F(x∗), j(x∗ − xk)〉 6 0. Indeed, since zn = 1
n(I− F)zn + (1 − 1

n)Vzn, we have

xk − zn =
1
n
(xk − (I− F)zn) + (1 −

1
n
)(xk − Vzn),

that is,

(1 −
1
n
)(xk − Vzn) = xk − zn −

1
n
(xk − (I− F)zn). (3.9)

From Lemma 2.7 (ii) and (3.9) it follows that

(1 −
1
n
)2‖xk − Vzn‖2 > ‖xk − zn‖2 −

2
n
〈xk − zn + zn − (I− F)zn, j(xk − zn)〉

= (1 −
2
n
)‖xk − zn‖2 +

2
n
〈F(zn), j(zn − xk)〉.

(3.10)
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Combining (3.8) and (3.10), we have

(1 −
1
n
)2LIMk‖xk − zn‖2 > (1 −

2
n
)LIMk‖xk − zn‖2 +

2
n

LIMk〈F(zn), j(zn − xk)〉,

and hence
1
n2 LIMk‖xk − zn‖2 >

2
n

LIMk〈F(zn), j(zn − xk)〉.

This implies that 1
2nLIMk‖xk − zn‖2 > LIMk〈F(zn), j(zn − xk)〉. Since zn → x∗ ∈ F as n → ∞, by the

uniform Gâteaux differentiability of the norm of X we have

LIMk〈F(x∗), j(x∗ − xk)〉 6 0. (3.11)

Step 4. We show that LIMk‖xk − x∗‖2 = 0. Indeed, since xk = γk(I − λkF)yk + (1 − γk)Vkyk, where
yk = (1 −βk)xk +βkVkxk, we have

xk − (I− λkF)xk = γk[(I− λkF)yk − (I− λkF)xk] + (1 − γk)[Vkyk − (I− λkF)xk]

= γk[(I− λkF)yk − (I− λkF)xk] + (1 − γk)[Vkyk − Vkxk + Vkxk − xk + xk − (I− λkF)xk],

which hence implies that

λkF(xk) = xk − (I− λkF)xk = (I− λkF)yk − (I− λkF)xk +
1 − γk
γk

(Vkyk − Vkxk) −
1 − γk
γk

(I− Vk)xk.

Consequently, for x∗ ∈ F we conclude that

λk〈F(xk), j(xk − x∗)〉 = 〈(I− λkF)yk − (I− λkF)xk, j(xk − x∗)〉+
1 − γk
γk

〈Vkyk − Vkxk), j(xk − x∗)〉

−
1 − γk
γk

〈(I− Vk)xk − (I− Vk)x
∗, j(xk − x∗)〉

6 〈(I− λkF)yk − (I− λkF)xk, j(xk − x∗)〉+
1 − γk
γk

〈Vkyk − Vkxk), j(xk − x∗)〉

6 ‖(I− λkF)yk − (I− λkF)xk‖‖xk − x∗‖+
1 − γk
γk

‖Vkyk − Vkxk‖‖xk − x∗‖

6 (1 − λkτ)‖yk − xk‖‖xk − x∗‖+
1 − γk
γk

‖yk − xk‖‖xk − x∗‖

= (
1
γk

− λkτ)‖yk − xk‖‖xk − x∗‖

6
βk
γk
‖Vkxk − xk‖‖xk − x∗‖,

which immediately leads to

〈F(xk), j(xk − x∗)〉 6
βk
λkγk

‖Vkxk − xk‖‖xk − x∗‖. (3.12)

On the other hand, utilizing Lemma 2.10 (b) we get

〈F(xk), j(xk − x∗)〉 = 〈(I− (I− F))xk, j(xk − x∗)〉
= ‖xk − x∗‖2 + 〈(I− (I− F))x∗, j(xk − x∗)〉+ 〈(I− F)x∗ − (I− F)xk, j(xk − x∗)〉

> (1 −

√
1 − δ

ζ
)‖xk − x∗‖2 + 〈F(x∗), j(xk − x∗)〉

= τ‖xk − x∗‖2 + 〈F(x∗), j(xk − x∗)〉.

(3.13)
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It follows from (3.12) and (3.13) that

‖xk − x∗‖2 6
1
τ
[〈F(x∗), j(x∗ − xk)〉+

βk
λkγk

‖Vkxk − xk‖‖xk − x∗‖].

This together with (3.3), (3.11), and lim supk→∞ βk
λkγk

<∞, implies that LIMk‖xk − x∗‖2 6 0, that is,

LIMk‖xk − x∗‖2 = 0.

Step 5. We show that limk→∞ ‖xk − x∗‖2 = 0. Indeed, from LIMk‖xk − x∗‖2 = 0, it follows that there
exists a subsequence {xki} of {xk} which converges strongly to x∗ ∈ F. Noting that ‖xk − Vxk‖ 6 ‖xk −
Vkxk‖+ ‖Vkxk − Vxk‖, we deduce from (3.3) and (3.7) that

lim
k→∞ ‖xk − Vxk‖ = 0.

Now assume that there exists another subsequence {xmi
} of {xk} such that xmi

→ x̂ ∈ Fix(V) = F (because
‖xk−Vxk‖ → 0 as k→∞). Then we have that ‖F(xmi

)− F(x̂)‖ → 0 as i→∞. We claim that x̂ is a solution
in F to the VI (3.2). Indeed, since for any p ∈ F the sequences {xmi

− p} and {F(xmi
)} are bounded and j

is norm to weak∗ uniformly continuous on bounded subsets of X, we obtain that as i→∞
|〈F(xmi

), j(xmi
− p)〉− 〈F(x̂), j(x̂− p)〉| 6 ‖F(xmi

) − F(x̂)‖‖xmi
− p‖+ |〈F(x̂), j(xmi

− p) − j(x̂− p)〉|→ 0.

In addition, repeating the same arguments as those of (3.24), we obtain that for any p ∈ F

〈F(xk), j(xk − p)〉 6
βk
λkγk

‖Vkxk − xk‖‖xk − p‖,

which immediately yields

〈F(x̂), j(x̂− p)〉 = lim
i→∞〈F(xmi

), j(xmi
− p)〉 6 0.

That is, x̂ ∈ F is a solution of the VI (3.2) and hence x̂ = x∗ by uniqueness. Therefore, each cluster point
of {xk} equals x∗, and so {xk} converges strongly to x∗, which is the unique solution of the VI (3.2) in F.
This completes the proof.

Whenever βk = 0 for all k > 1, Theorem 3.7 reduces to Buong and Phuong’s Theorem 3.2 in [3].

Corollary 3.8 ([3, Theorem 3.2]). Let X be a real reflexive and strictly convex Banach space with a uniformly
Gâteaux differentiable norm, let F be δ-strongly accretive and ζ-strictly pseudocontractive with δ+ ζ > 1 and let
{Ti}

∞
i=1 be an infinite family of nonexpansive mappings on X such that F :=

⋂∞
i=1 Fix(Ti) 6= ∅. Then, the sequence

{xk}
∞
k=1, defined by (2.11), (2.12), and (2.14) with {γk}

∞
k=1 ⊂ (0, 1) and {λk} ⊂ (0, 1] such that γk → 0, as k→∞,

converges strongly to a unique solution x∗ ∈ F to the VI (3.2).

Proof. Putting βk ≡ 0 in Theorem 3.7, we know that the iterative scheme (3.1) reduces to (2.14). In this
case, lim supk→∞ βk/(λkγk) = 0 <∞. Thus, utilizing Theorem 3.7, we obtain the desired result.

Theorem 3.9. Let X, F, {Ti}∞i=1 and F be as in Theorem 3.7. Let {Vk}
∞
k=1 be defined by (2.11) and (2.12). For

arbitrarily given x1 ∈ X, let {xk}∞k=1 be defined by

yk = (1 −βk)xk +βkVkxk, xk+1 = (1 − γk − δk)xk + γk(I− λkF)yk + δkVkyk, ∀k > 1, (3.14)

where {λk}
∞
k=1 ⊂ (0, 1], {βk}

∞
k=1 ⊂ [0, 1], {γk}

∞
k=1 ⊂ (0, 1), and {δk}

∞
k=1 ⊂ (0, 1) such that γk + δk 6 1, for all

k > 1. Assume that:

(i) limk→∞ γk/λk = 0,
∑∞
k=1 γkλk =∞ and 0 < lim infk→∞ δk 6 lim supk→∞ δk < 1;
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(ii) limk→∞ |βk+1 −βk| = 0 and lim supk→∞ βk < 1.

Then there hold the following:

(I) limk→∞ ‖xk+1 − xk‖ = 0;
(II) the sequence {xk}∞k=1 converges strongly to a unique solution x∗ ∈ F to the VI (3.2) provided lim

k→∞βk/λk= 0

and δk ≡ σ for some fixed σ ∈ (0, 1).

Proof.

Step 1. The proof of conclusion (I). First, we claim that {xk}∞k=1 is bounded. Indeed, take an arbitrarily
given p ∈ F. Then, observe that

‖xk+1 − p‖ = ‖(1 − γk − δk)xk + γk(I− λkF)yk + δkVkyk − p‖
6 (1 − γk − δk)‖xk − p‖+ γk‖(I− λkF)yk − p‖+ δk‖Vkyk − p‖
= (1 − γk − δk)‖xk − p‖+ γk‖(I− λkF)yk − (I− λkF)p− λkF(p)‖+ δk‖Vkyk − p‖
6 (1 − γk − δk)‖xk − p‖+ γk[(1 − λkτ)‖yk − p‖+ λk‖F(p)‖] + δk‖yk − p‖

6 (1 − γk − δk)‖xk − p‖+ γkmax{‖yk − p‖,
‖F(p)‖
τ

}+ δk‖yk − p‖

6 (1 − γk − δk)‖xk − p‖+ (γk + δk)max{‖yk − p‖,
‖F(p)‖
τ

},

and

‖yk − p‖ = ‖(1 −βk)(xk − p) +βk(Vkxk − p)‖ 6 (1 −βk)‖xk − p‖+βk‖Vkxk − p‖
6 (1 −βk)‖xk − p‖+βk‖xk − p‖ = ‖xk − p‖.

Combining these two inequalities, we have

‖xk+1 − p‖ 6 (1 − γk − δk)‖xk − p‖+ (γk + δk)max{‖yk − p‖,
‖F(p)‖
τ

}

6 (1 − γk − δk)‖xk − p‖+ (γk + δk)max{‖xk − p‖,
‖F(p)‖
τ

}

6 max{‖xk − p‖,
‖F(p)‖
τ

}.

By induction,

‖xk − p‖ 6 max{‖x1 − p‖,
‖F(p)‖
τ

}, ∀k > 1.

Hence it follows that {xk} is bounded, and so are {Vkxk}, {yk}, {Vkyk}, and {F(yk)}.
Second, we claim that limk→∞ ‖xk+1 − xk‖ = 0. Indeed, define a sequence {wn} by

xk+1 = ρkxk + (1 − ρk)wk, ∀k > 1,

where ρk = 1 − γk − δk, for all k > 1. Then we have

wk+1 −wk =
xk+2 − ρk+1xk+1

1 − ρk+1
−
xk+1 − ρkxk

1 − ρk

=
γk+1(I− λk+1F)yk+1 + δk+1Vk+1yk+1

1 − ρk+1
−
γk(I− λkF)yk + δkVkyk

1 − ρk

=
γk+1(I− λk+1F)yk+1

1 − ρk+1
−
γk(I− λkF)yk

1 − ρk
+

δk+1

1 − ρk+1
(Vk+1yk+1 − Vk+1yk)

+ Vk+1yk − Vkyk +
γk

1 − ρk
Vkyk −

γk+1

1 − ρk+1
Vk+1yk,

(3.15)
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and
‖yk+1 − yk‖ = ‖(1 −βk+1)xk+1 +βk+1Vk+1xk+1 − (1 −βk)xk −βkVkxk‖

6 (1 −βk+1)‖xk+1 − xk‖+ |βk+1 −βk|‖xk‖
+βk+1‖Vk+1xk+1 − Vkxk‖+ |βk+1 −βk|‖Vkxk‖

6 (1 −βk+1)‖xk+1 − xk‖+ |βk+1 −βk|‖xk‖
+βk+1(‖Vk+1xk+1 − Vk+1xk‖+ ‖Vk+1xk − Vkxk‖) + |βk+1 −βk|‖Vkxk‖

6 ‖xk+1 − xk‖+ |βk+1 −βk|‖xk‖+βk+1‖Vk+1xk − Vkxk‖+ |βk+1 −βk|‖Vkxk‖
6 ‖xk+1 − xk‖+ |βk+1 −βk|‖xk‖+αk+1βk+1‖Tk+1xk − xk‖+ |βk+1 −βk|‖Vkxk‖
= ‖xk+1 − xk‖+ |βk+1 −βk|(‖xk‖+ ‖Vkxk‖) +αk+1βk+1‖Tk+1xk − xk‖.

(3.16)

Combining (3.15) with (3.16), we obtain

‖wk+1 −wk‖− ‖xk+1 − xk‖

6
γk+1

1 − ρk+1
(‖(I− λk+1F)yk+1‖+ ‖Vk+1yk‖) +

γk
1 − ρk

(‖(I− λkF)yk‖+ ‖Vkyk‖)

+
δk+1

1 − ρk+1
‖Vk+1yk+1 − Vk+1yk‖+ ‖Vk+1yk − Vkyk‖− ‖xk+1 − xk‖

6
γk+1

1 − ρk+1
(‖(I− λk+1F)yk+1‖+ ‖Vk+1yk‖) +

γk
1 − ρk

(‖(I− λkF)yk‖+ ‖Vkyk‖)

+
δk+1

1 − ρk+1
{‖xk+1 − xk‖+ |βk+1 −βk|(‖xk‖+ ‖Vkxk‖)

+αk+1βk+1‖Tk+1xk − xk‖}+αk+1‖Tk+1yk − yk‖− ‖xk+1 − xk‖

6
γk+1

1 − ρk+1
(‖yk+1‖+ ‖F(yk+1)‖+ ‖Vk+1yk‖) +

γk
1 − ρk

(‖yk‖+ ‖F(yk)‖+ ‖Vkyk‖)

+
δk+1

1 − ρk+1
{|βk+1 −βk|(‖xk‖+ ‖Vkxk‖) +αk+1‖Tk+1xk − xk‖}+αk+1‖Tk+1yk − yk‖.

(3.17)

Thus, from (3.17), limk→∞ αk = 0, and conditions (i), (ii), it follows that (noticing the boundedness of
{xk} and {yk})

lim sup
k→∞ (‖wk+1 −wk‖− ‖xk+1 − xk‖) 6 0.

Since limk→∞ γk = 0 and 0 < lim infk→∞ δk 6 lim supk→∞ δk < 1, we have

0 < lim inf
k→∞ ρk 6 lim sup

k→∞ ρk < 1.

Thus by Lemma 3.5 we get limk→∞ ‖wk − xk‖ = 0. Consequently,

lim
k→∞ ‖xk+1 − xk‖ = lim

k→∞(1 − ρk)‖wk − xk‖ = 0. (3.18)

Step 2. The proof of conclusion (II).
Suppose that limk→∞ βk/λk = 0 and δk ≡ σ for some fixed σ ∈ (0, 1). In this case, conditions (i), (ii)

are still satisfied. Let {zn}∞n=1 be defined by zn = 1
n(I− F)zn + (1 − 1

n)Vzn. Then {zn} converges strongly
to a unique solution x∗ ∈ F to the VI (3.2). Observe that for each k,n > 1

‖xk+1 − Vzn‖ = ‖(1 − γk − σ)(xk − Vzn) + γk((I− λkF)yk − Vzn) + σ(Vkyk − Vzn)‖
6 (1 − γk − σ)‖xk − Vzn‖+ γk‖(I− λkF)yk − Vzn‖
+ σ(‖Vkyk − Vkzn‖+ ‖Vkzn − Vzn‖)

6 (1 − γk − σ)‖xk − Vzn‖+ γk‖(I− λkF)yk − Vzn‖
+ σ(‖yk − zn‖+ ‖Vkzn − Vzn‖)

6 (1 − γk − σ)‖xk − Vzn‖+ γk‖(I− λkF)yk − Vzn‖
+ σ(‖xk − zn‖+ ‖yk − xk‖+ ‖Vkzn − Vzn‖)

= (1 − γk − σ)‖xk − Vzn‖+ γk‖(I− λkF)yk − Vzn‖
+ σ(‖xk − zn‖+βk‖Vkxk − xk‖+ ‖Vkzn − Vzn‖)

6 εk + (1 − σ)‖xk − Vzn‖+ σ‖xk − zn‖,

(3.19)
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where εk = γk‖(I− λkF)yk −Vzn‖+ σ(βk‖Vkxk − xk‖+ ‖Vkzn −Vzn‖). Repeating the same arguments
as those of (3.7) in the proof of Theorem 3.7, we obtain limk→∞ ‖Vkzn − Vzn‖ = 0. Since limk→∞ γk =
limk→∞ βk = 0, we know that εk → 0 as k→∞. From (3.19) we get

‖xk+1 − Vzn‖2 6 ((1 − σ)‖xk − Vzn‖+ σ‖xk − zn‖)2

+ εk[2((1 − σ)‖xk − Vzn‖+ σ‖xk − zn‖) + εk]
= (1 − σ)2‖xk − Vzn‖2 + σ2‖xk − zn‖2 + 2σ(1 − σ)‖xk − Vzn‖‖xk − zn‖+ rk
6 (1 − σ)2‖xk − Vzn‖2 + σ2‖xk − zn‖2 + σ(1 − σ)(‖xk − Vzn‖2 + ‖xk − zn‖2) + rk

= (1 − σ)‖xk − Vzn‖2 + σ‖xk − zn‖2 + rk,

(3.20)

where rk = εk[2((1 − σ)‖xk − Vzn‖+ σ‖xk − zn‖) + εk]→ 0 as k→∞.
Repeating the same arguments as those of (3.8) in the proof of Theorem 3.7, we obtain LIMk‖xk −

Vzn‖2 6 LIMk‖xk − zn‖2. For any Banach limit LIM, from (3.20) we derive

LIMk‖xk − Vzn‖2 = LIMk‖xk+1 − Vzn‖2 6 LIMk‖xk − zn‖2.

Observe that xk − zn = 1
n(xk − (I− F)zn) + (1 − 1

n)(xk − Vzn). By the same arguments as those of (3.11)
in the proof of Theorem 3.7, we can get

LIMk〈F(x∗), j(x∗ − xk)〉 6 0. (3.21)

On the other hand, from (3.18), it follows that

lim
k→∞ |〈F(x∗), j(x∗ − xk+1)〉− 〈F(x∗), j(x∗ − xk)〉| = 0,

which together with (3.21) and Lemma 2.8, yields

lim sup
k→∞ 〈F(x

∗), j(x∗ − xk)〉 6 0. (3.22)

Finally we show that xk → x∗ as k→∞. From Lemma 2.7 (i) and (3.14) with δk = σ, we have

‖xk+1 − x
∗‖2 = ‖(1 − γk − σ)(xk − x

∗) + γk((I− λkF)yk − x
∗) + σ(Vkyk − x

∗)‖2

6 ‖(1 − γk − σ)(xk − x
∗) + σ(Vkyk − x

∗)‖2 + 2γk〈(I− λkF)yk − x∗, j(xk+1 − x
∗)〉

6 [(1 − γk − σ)‖xk − x∗‖+ σ‖yk − x∗‖]2 + 2γk〈(I− λkF)yk − x∗, j(xk+1 − x
∗)〉

6 (1 − γk)
2‖xk − x∗‖2 + 2γk[〈(I− λkF)yk − (I− λkF)xk, j(xk+1 − x

∗)〉
+ 〈(I− λkF)xk − (I− λkF)x

∗, j(xk+1 − x
∗)〉+ 〈(I− λkF)x∗ − x∗, j(xk+1 − x

∗)〉]
6 (1 − γk)

2‖xk − x∗‖2 + 2γk[(1 − λkτ)‖yk − xk‖‖xk+1 − x
∗‖

+ (1 − λkτ)‖xk − x∗‖‖xk+1 − x
∗‖+ 〈(I− λkF)x∗ − x∗, j(xk+1 − x

∗)〉]
6 (1 − γk)

2‖xk − x∗‖2 + γk(1 − λkτ)[‖xk − x∗‖2 + ‖xk+1 − x
∗‖2]

+ 2γk[(1 − λkτ)βk‖Vkxk − xk‖‖xk+1 − x
∗‖+ λk〈F(x∗), j(x∗ − xk+1)〉],

which implies that

‖xk+1 − x
∗‖2 6

(1 − γk)
2 + γk(1 − λkτ)

1 − γk(1 − λkτ)
‖xk − x∗‖2

+
2γk

1 − γk(1 − λkτ)
[(1 − λkτ)βk‖Vkxk − xk‖‖xk+1 − x

∗‖+ λk〈F(x∗), j(x∗ − xk+1)〉].
(3.23)

Observe that for all k > 1

(1 − γk)
2 + γk(1 − λkτ)

1 − γk(1 − λkτ)
=

1 − (1 − λkτ)γk + γk − 2γk[1 − (1 − λkτ)] + γ
2
k

1 − γk(1 − λkτ)
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= 1 −
2γk[1 − (1 − λkτ)]

1 − γk(1 − λkτ)
+

γ2
k

1 − γk(1 − λkτ)

6 1 − 2γk[1 − (1 − λkτ)] +
γ2
k

1 − γk(1 − λkτ)

= 1 − 2γkλkτ+
γ2
k

1 − γk(1 − λkτ)
.

Then it follows from (3.23) that

‖xk+1 − x
∗‖2 6 (1 − 2γkλkτ)‖xk − x∗‖2 +

2γk
1 − γk(1 − λkτ)

[
γk
2
‖xk − x∗‖2

+ (1 − λkτ)βk‖Vkxk − xk‖‖xk+1 − x
∗‖+ λk〈F(x∗), j(x∗ − xk+1)〉]

= (1 − 2γkλkτ)‖xk − x∗‖2 + 2γkλkτ ·
1

τ− τγk(1 − λkτ)
[
γk
2λk
‖xk − x∗‖2

+
βk
λk
· (1 − λkτ)‖Vkxk − xk‖‖xk+1 − x

∗‖+ 〈F(x∗), j(x∗ − xk+1)〉].

(3.24)

Since limk→∞ γk/λk = limk→∞ βk/λk = 0, we deduce from (3.22) that

lim sup
k→∞

γk
2λk
‖xk − x∗‖2 + βk

λk
· (1 − λkτ)‖Vkxk − xk‖‖xk+1 − x

∗‖+ 〈F(x∗), j(x∗ − xk+1)〉
τ− τγk(1 − λkτ)

6 0.

Noticing
∑∞
k=1 γkλk = ∞, we get

∑∞
k=1 2γkλkτ = ∞. Therefore, according to Lemma 3.6 we conclude

from (3.24) that limk→∞ ‖xk − x∗‖ = 0. This completes the proof.

Whenever βk = 0 for all k > 1, Theorem 3.9 reduces to the following.

Corollary 3.10. Let X, F, {Ti}∞i=1, and F be as in Theorem 3.7. Let {Vk}∞k=1 be defined by (2.11) and (2.12). For
arbitrarily given x1 ∈ X, let {xk}∞k=1 be defined by

xk+1 = (1 − γk − δk)xk + γk(I− λkF)xk + δkVkxk, ∀k > 1, (3.25)

where {λk}
∞
k=1 ⊂ (0, 1], {γk}∞k=1 ⊂ (0, 1), and {δk}

∞
k=1 ⊂ (0, 1) such that γk + δk 6 1, for all k > 1. Assume

that limk→∞ γk/λk = 0,
∑∞
k=1 γkλk =∞, and 0 < lim infk→∞ δk 6 lim supk→∞ δk < 1. Then there hold the

following:

(I) limk→∞ ‖xk+1 − xk‖ = 0;
(II) the sequence {xk}

∞
k=1 converges strongly to a unique solution x∗ ∈ F to the VI (3.2) provided δk ≡ σ for

some fixed σ ∈ (0, 1).

Proof. Putting βk ≡ 0 in Theorem 3.9, we know that the iterative scheme (3.14) reduces to (3.25). In this
case, we have that limk→∞ |βk+1 −βk| = 0 and lim supk→∞ βk < 1. Thus the condition (ii) in Theorem 3.9
is satisfied. In the meantime, it is easy to see that limk→∞ βk/λk = 0. Consequently, utilizing Theorem
3.9, we derive the desired result.
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[22] G. M. Korpelevič, An extragradient method for finding saddle points and for other problems, (Russian) Ékonom. i Mat.
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