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Abstract

We prove that, if a class of operators, which includes singular integral operator with rough kernel, Bochner-Riesz operator
and Marcinkiewicz integral operator, are bounded on weighted Lebesgue spaces and satisfy some local pointwise control, then
these operators and associated commutators, formed by a BMO function and these operators, are also bounded on generalized
weighted Morrey spaces. (©2017 All rights reserved.
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1. Introduction and results

The classical Morrey space was introduced by Morrey [10] in 1938. It plays an important role in the
theory of partial differential equations. Morrey space is defined by

LPAR™) = {f € L (R™) : [[f]|Lpa < o0},

loc

where

[flltpagny = sup T MP|fllie(px)) < 00 (1.1)
x€R™,r>0
Note that LPO(R™) = LP(R") and [P (R") = L®°(R™). If A < 0 or A > n, then LP*(R™) = ©, where
O is the set of all functions equivalent to 0 on R™.
Let @(r),r > 0 be a growth function, that is, a positive increasing function in (0, c0), which satisfies
doubling condition

O2r) < DO(r), Vr>0,
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where D = D(®) > 1 is a doubling constant independent of r. In [9] Mizuhara gave a generalization
Morrey space PP (R™) considering ®(r) instead of ™ in (1.1).

Komori and Shirai [8] introduced a version of the weighted Morrey space LP*(w, R™), which is a
natural generalization of the weighted Lebesgue space LP(w, R™).

Let1 <p <oo, 0<k<1and w be a weight function. Then the space LP*(w,R™) is defined by

LP K((U Rn) _{f € LlOC ||f||]_'p|< (w,R™) < OO}

where

1 J ’
fllpx (o rm) XeRnE>0< B Jopr

Let 1 < p < 0o, ¢ be a positive measurable function on R™ x (0, c0) and w be a non-negative measur-
able function on R™. We denote by M, (w, R™) the generalized weighted Morrey space, the space of all
functions f € LE) .(w) with finite norm

] : < ! Il >1/p
fllmr n) = Su f ’
M3 () Xe]RnE.>O o(x,7) w(B(x,r))‘ [P (w,B(xr))

where

1/p
\fumw,m,ﬂ):(j |f(y)|vw(y)dy) .
B(x,1)

Ifw=1and @(x,1) = 5 with 0 < A < n, then MY, (w, R™) = LPA(IR™) is the classical Morrey space.

If p(x, 1) = w(B(x,r))%l, then MY, (w, R™) = LP*(w, R"™) is the weighted Morrey space.

In this paper, we prove that, if a class of operators are bounded on weighted Lebesgue space and
satisfy some local pointwise control, then these operators and associated commutators, formed by a BMO
function and these operators, are also bounded on generalized weighted Morrey space. Our main results
can be formulated as follows.

Theorem 1.1. Let 1 < s’ <p < oo,w € Ay, /s and T be a sublinear operator which satisfies
1 , 1/s
sup [T (fx(s < C <J If(z)I° dZ) , (1.2)
XGB(EO,U T (e oans) ()] < Z B(x0, 2711 Jg (xo,2+11)

forany xg € R™ and 1 > 0.

(i) Suppose (@1, @2) satisfies the condition

r<t<oo

< cop2(xo, 1), (1.3)

00 ess1nf(p1(xo,t) (B(xp, t ))% d
L w(B(xo,1))7

where co does not depend on x and v. If T is bounded on LP (w, R™) for p > 1, then T is also bounded from
MY, (w, R™) to MY, (w, R™) and

ITfllms, (wre) < CliflIMmE, (wRr)-
(ii) Suppose (@1, @2) satisfies the condition
ess inf 1 (xo, )w(B(xo, )7 g

o0 T\ r<t<oo
J (1 +1In 7> - — < co@2(xo, 1), (1.4)
L L w(B(xg,7))? T
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where cg does not depend on xg and 1. If b € BMO(IR™), and [b, T] is bounded on LP (w, R™) for 1 < p < oo,
then [b, T] is also bounded from MY, (w, R™) to M§,, (w, R™) and

116, TIFlIpp, (w,rn) < ClIBIFlIMm, (wrR)-

n

Remark 1.2. Let @q(x,t) = (CD(t)t_“)%, let @o(x,t) = (CD(t))% g,and let w = 1. If 1 < D(®) < 2™, it is
easy to prove (@1, @2) satisfies the conditions (1.3) and (1.4).

Remark 1.3. Let @1(xo,t) = @2(xg,t) = w(B(xo,t))%, 0<k<l andw e Ay,(IR™), then (@1, @;) satisfies
the conditions (1.3) and (1.4).

Then we have the following corollaries.

Corollary 1.4. Let 1 < s’ <p < oo, w € Ay /s, 1 < D(®) < 2™, and let T be a sublinear operator which satisfies
(1.4) for any xo € R™ and 1 > 0. If T is bounded on LP(w,R™) for p > 1, then T is bounded on LP®(R™). If
b € BMO(IR™), and [b, T] is bounded on LP (w, R™) for p > 1, then [b, T] is also bounded on LPP(RM).

Corollary 1.5. Let 1 < s’ <p < oo, w € A, s, 0 < &« <, and let T be a sublinear operator which satisfies
(1.4) for any xp € R™ and l >0.IfTis bounded on LP(w,R™) for p > 1, then T is bounded on LP*(w, R™). If
b € BMO(R™), and [b, T is bounded on LP (w, R™) for p > 1, then [b, T] is also bounded on LP*(w, R™).

This paper is organized as follows. Section 2 is devoted to prove some preliminary results. In Section
3, we prove our main result and in Section 4 we give some applications to our main theorem.

2. Some preliminaries

We begin with some properties of A, weights which play a great role in the proofs of our main results.

A weight w is a nonnegative, locally integrable function on R™. Let B = B(xg, rg) denote the ball with
the center xo and radius rg and let AB = B(xp, Arg). For a given weight function w and a measurable set
E, we also denote the Lebesgue measure of E by |E| and set weighted measure by w(E) = [¢ w(x)dx. For
any given weight function w on R™, X £ R™ and 0 < p < oo, denote by LP (w, X) the space of all funct1ons
f satisfying

1/p
Ifller (w,x) = <Jx |f(x)|pw(x)dx> < 0.

A weight w is said to belong to A, (R™) for 1 < p < oo, if there exists a constant

1 1 o\
(m JB w(x)dx) (Im JB w(x)P dx) <C, 2.1)

where p’ is the dual of p such that 1/p +1/p’ = 1. The class A;(R™) is defined by

1
J w(y)dy < C-essinfw(x), for every ball B C R™.
|B| B xEB

(o
forl <p < 0.
Suppose w € A, (R™),1 < p < oo, by the definition of A,(IR™), we know that w!lP € Ap (R™).
The classical A, (IR™) weight theory was first introduced by Muckenhoupt in the study of weighted
LP-boundedness of Hardy-Littlewood maximal function in [11].

By (2.1), we have

1

81)" = oo ) < CIBIw(B) T, 2)

<.
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Following [7], a locally integrable function b is said to be in BMO(R™) if

1
sup J [b(x) —bgldx = ||b||« < oo,
BCR" |B| B

where

by — |mjgb(y)cw.

Lemma 2.1 ([6]). Suppose w € Ax(R™) and b € BMO(IR™). Then for any 1 < p < oo and 11,72 > 0, we have

B

Lemma 2.2. Suppose that 1 < s’ < p < oo, p > 1,and w € Ay st (R™).If T is bounded on LP(w, R™) and
satisfies (1.2), then for any 1 > 0, there is a constant C independent of f such that

1 1/p .
S b(x) —b Ipwxdx) <C(1+'ln
(w(B(XO/Tl)) JB(XO,‘H) ) B (xo,12) ( ) -

In order to prove Theorem 1.1, we need to prove the following lemmas.

1 [ _1dr
1T e (w,B(xo1)) < Cw(Blxo, 1))P Ll e (B (om0 (Blxo, 7)) 77— (2.3)

Proof. We write f as f = f1 + fz, where f1(y) = f(Y)XB (x,,21) (Y), XB(xo,21) denotes the characteristic function
of B(xg,21). Then

ITE e (w,B(xo1) < ITEDLP (w,B(x0,0)) + ITF2) L (w,B(x0,1))-

Since f; € LP(w, R™), from the boundedness of T on LP(w, R™)(p > 1) it follows that

ITED e (w,Bxxo1)) < ITEFD [ r(w,rM)

<
< Cllf1ller (w,rm)

= C|IflLr (w,B(xp21))-

By Holder’s inequality,

1 _1
B(x0, V)| < Cw(B(x, 1)) ? [[w™? HLP'(B(xo,l))‘

Then, for any p > 1,

< dr

[#llLe (B ixoan) < CIBOo, Vlfllee w21 | mrt
* dr

< C|B(X0'1)|J21 HfHLP(w,B(xo,r))m

oo dr
e (B oo T

1 [ 1 dr
< Cw(B(xp, 1))7 Ll Il (w,B (xom) 0P HLP’(B(XU,T))W‘

1 _1
< Cw(B(xo, )7 |lw PHLP'(Bm,l))L

Then, by (2.2) we get

1 (™ _1dr
ITED e (w,B (xo,1)) < Caw(B(xo,1))? Ll 1L (w,B (xo,r)) W (B(x0,T)) P (2.4)
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When 1< s’ <p <oo,setv=p/s’ > 1. Since T satisfies (1.2), it follows from Holder’s inequality that

1
1 N s’
sup [T(f2)(x)| < C Z (|BXO,2]HU| J (2 2H1) If(y)l dy)

x€B(x,l)

gy T 1

<CZ(ZJ+ 1) 5/HfHLP(w,B(xo,Zi“l))Hw "||Ls'v/(B(XO,zj+11))
j=1
o0 2)+21

+1 +35) _1
CZLHll 2+~ If1lr (w,B (xo,r)) | pHLS’V’(B(XO,r))dr

© 1 dr
¢ 21 Ifllce (w,B(xor lw ”LS/V/(B(XO,T))W.

Note that w € A,, by (2.2) we get

—

_1 n _1
W Pl s (B (xr)) < Crs"w(Blxo, 1)) 7.
Then
o _adr
sup [T(f2)(x)| < CJ If]lLp (w,B (xor)) W(B(X0, 7)) P —. (2.5)
x€B(x,l) 21 T

When s’ = p, then w € Ay. Then for any p > 1,

00 1
. n P
sup  [T(R)() < CY (@+)75 (J | |f(y)|vdy>
x€B(xq,l) j=1 B(X0,21+11]
00 1 _1
<cy @y <J If(y)lpw(x)dy>p < essinf w(x)> ’
i B(x0,2+11) xEB(x,211)
X (P 1dr
CZL i 0l Lp (0,8 (xg.2+11)) @ (B(x0,2711)) P .
> (2 _idr
CZ LH N Il (B (g ry 0 (Blxo, 7)) 7% ==
00 1dr
<C N 1L (w,B (xo,r)) W(B(x0, 1)) P — o (2.6)
By (2.5) and (2.6) we get
1 [ _1 dr
IT(F2) | 1r (w,B (x01)) < Cw(B(xo,1))7 Ll IfllLr (w,B (xor) @ (B(x0, 7)) P Ry (2.7)
Combining (2.4) and (2.7), we complete the proof of Lemma 2.2. O

Lemma 2.3. Suppose that 1 < s’ <p <oo, p>1,and w € Ap /s (R™).If T satisfies (1.2) and [b, T] is bounded
on LP(w,R™), then for any 1 > 0, there is a constant C independent of f such that

dr

1 _1
b, THF) [[tr (w,B(x0,1)) < Clbllcw(B(xo,1))P Ll If1lLp (w,B (xg,r)) W (B(x0, 7)) P . (2.8)

Proof. We represent f as
fly) = f1ly) +f2(y),  f1(y) = F(Y)xXB(xe21) (Y)-
Then
1T, TIF) [ 1p (w,B (x0,1)) < 110, THF 10 (w,B(x0,1)) T 10, THE2) |17 (w0, B (x0,1)) -
Since [b, T] is bounded on LP (w, R™), as the proof of (2.4) we get
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(116, THF [[1r (w,B(x01)) < ClIB[LlIFllLr (w,B (x021))

1 [ _1dr
< C||b||>«w(]3(7<0/1))PLl If11LP (w,B (xo,r)) W (B (X0, 7)) P

We now turn to deal with the term ||[b, TI(f2)||1r (w,B(xy,1))- FOr any given x € B(xq, 1), we have
|[b, TI(f2) (%) < Clb(x) — b (x0T (f2) (x)| + CIT((b — bp (x,1))f2) (x)]
=1+ I
Since T satisfies (1.2), by (2.5) and (2.6),

OO _1dr
I < C|b(y)—b3(xo,1)|L I1f]lLp (w,B (xo,r)) W(B(x0, 7)) P
1

Applying Lemma 2.1 we get

1 (™ _a1dr
1Tl Lp (w,B(x01)) < Clbllscw(B(xo,1))7 Ll If1LP (w,B (xo,r)) W (B(x0,T)) P

On the other hand, it follows from (1.2) that
% o
L<C) @)+ (J (bly) bB(xo,l)))f(y)|8/dy>
i B(xp,21+11)
Setv =p/s’. From w € A, we know w!™" € A,,. By Holder’s inequality

1
7

/ / q
(J ~Ib(y) = byl (Y)Y dU) < CIfllLr (B (xo211)) ||[P() = BB (x|
B(X0,21+1S)

LV (@1 B (x0,2H11))

Consequently,

o0 2i+21

j 17y —(1+ 1) )
I <jZleﬂl(2] 1) SN Lr (w,B (xo211)) [[D() = BB (x0,0) |

o0
< CLI F11Lp (w,B (xo,r) [[P() = BB (x|

dr

Lsv/ (wlf",,B (x,20+11))

dr
]_s’v/(wl—v’,r)) T1+n/s/ .

v
v 1—v/

Since w™ s = w € Ay, we get

n 1
v

(' V'B(xo, 7)) < Cr¥((B(xo, 7)) 7.

By Lemma 2.1 and the fact that w € A,,, we obtain

(J ~Ib(Yy) = byl
B(X0,2]+1l]

1
757
I\,

Y s'v T
V! (y)dy>

< Cloll. (1+In7) (@ (Blxo, 1))

< Clfbl.rs7 1+ln{> w(B(xo, 1)) P,

—_

Then

*° T _1dr
< Clll | (107 Il (Blo )+

21
Therefore
1dr

1 [*° T 1
1 T2l[| L (w, B (x0,1)) < Cllbllcw (B(xo, 1)) 7 Ll <1 +lnf) (1117 (w,B (xo,r)) W(B(x0, 1)) P -
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3. Proof of Theorem 1.1

Proof. For f € MY, (w, R™), from the fact ||f||L» (w,B(x,r)) iS @ non-decreasing function of r, and
. o 1
<e§(s€1g1f f(x)) = es)::;esgpﬁ,
holds for any real-valued nonnegative function f and measurable on E ([14, p.143]), we get

111 (w,B (xo0r)) 1L (w,B(x0r))

T < esssup 1
essinf @1(xp, t)w(B(xg,t))?  O<r<t<oo@q(xg,t)w(B(xg,t))?
O<r<t<oo

f
< esssup MIrienton)

<=

t>0,x0€R™ 1 (x0, t)w(B(xp, 1))

< ||f||MPPl (w,R")-

Since p > 1, and (@1, @2) satisfies (1.3), we have

* _idr
L Il (w8 (xo ) 0 (Bxo, 7)) 9 ==
: 1
< JOO [fllLe (B xom) essinfr(xo, t)w(Blxo, )" g,
1 essinf(pl(XO,t)w(B(Xolt))% w(B(xO,T))% T
r<t<oo

00 essinfcpl(xo,t)w(B(xo,t))% d
r<t<oo T
< CHfHME,I(W,]R“)

w(B(xo,7))7 r
< C||f||MEPI(W,Rn)(P2(XO,U-
Then by (2.3) we get
(7 : ( ! TPy )
T(f < C  su J T(f w(y)d )
IOl v xoeIR“I,)l>O ©2(x0,1) \w(B(x0,1)) JB(x,1) k 9%

<C s 1 JOO [kl (Blxo, 1))+ "
X u w X0, P —
xoelR“},)bo @2(x0, 1) 1 L (wB(xor)) T

< ClIfllme, (wrn)-

When f € MY, (w,R™) and (¢4, @2) satisfies (1.4), then for p > 1, we have

e T _1dr
L (1410 7) 1Fllcr (B @0 (Blxo, 7)) 77 <

1

inf t B t))r

gro (1+17) Iflr@pixgry  E5IE@100 D@Blo )T g,
1

essinf; (xo, t)w(B(xo,1))? w(B(xg,1))7 r
r<t<oo

1
o0 essinf1(xg, t)w(B(xg,t))?
< Clflmp, ey | (T+InT) T=t=s ar
Mo (o) w(B(xo, 1)) T
0

l

< Cliflime, (wrn) @2(x0, 1)
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By (2.8) we get

1 1 1/p
0, T It gy < C st ( j b, Tal (0 (y)Pwi )d)
| I, ey roerm=0 0200, 1) \W(B(xo, V) Jp(rgr) 0 MW
1 J'Oo T _1dr
<C su _ 14+In<)||f w(B(xg, 1)) P —
onIR“F,)l>O (pZ(XO/ U s ( l> H HLp(w,B(XO,T)) ( ( 0 )) T

< Clifllme, (wrn)-

4. Some applications

In this section, we shall apply Theorem 1.1 to several particular operators such as singular integral
operators with rough kernel, Bochner-Riesz operators and Marcinkiewicz integral operators.

4.1. Singular integral operators with rough kernels

Suppose that ™! is the unit sphere in R™(n > 2) equipped with the normalized Lebesgue measure
do. Let Q € L*(S™ 1) with 1 < s < oo be homogeneous of degree zero and satisfy the cancellation
condition

J Q(x")do(x") =0,
gn—1

where x’ = x/|x| for any x # 0. The homogeneous singular integral operator T is defined by

J Qly’)

yl>e Y™

Tof(x) = lim

lim f(x—y)dy.

Let b be a locally integrable function on R™, the commutator of b and Tq is defined by
[b, Tolf(x) = b(x)Ta f(x) = Ta(bf)(x).

Following [5], there is a constant C independent of f such that

ITafllie(wrr) < ClIfllie (wrn),

for every s’ < p < coand w € A, /. By the well-known boundedness criterion for the commutators of
linear operators, which was obtained by Alvarez et al. (see [1]), we see that

106, Talfllte (w,rr) < ClIBIfllLe (w,rM),
holds for all b € BMO,s’ <p<ooand w € A, /4.

Theorem 4.1. Suppose Q € LS(S™ 1) with1 < s < co. Let s’ < p < oo,w € A, 5 and b € BMO(R™). If
(@1, @2) satisfies the condition (1.3), then there is a constant C > 0 independent of f such that

ITafllve, (wr) < Clifllvme, (@R
If (@1, @2) satisfies the condition (1.4), then there is a constant C > 0 independent of f such that

16, Talflime, (wrn) < ClIbIlMmE, (R
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Proof. We only need to prove T satisfies (1.2). By Holder’s inequality,

J Q((x—y)’)
B(xo2l)e IXx—y[™

o0

sup  [To (FX(B(xo21)c) ()] < sup
x€B(xo,1) x€B(xo1)

f(y)dy‘

1
< sup

[ l0((x—y))*dy)
x€B(xo,l) j=1 B (x0,2 1)\ B (x0,211)

flyls .\
" (J | (y)InS/dy) .
B(x0,2 1)\B(x0,21) X —YI

When x € B(xg, 1) and y € B(xg,2)11) \ B(xq,2/1), by a direct calculation, we can see that DN ly—x<
2J+11. Hence

1
s

- 1
(] Q- y))dy)” < Qs n 1) Blxo, 2D (1)
B (x0,21t11)\B(x0,211)

We also note that if x € B(xg, 1),y € B(xo,21)¢, then [y — x| ~ [y —xo|. Consequently

[f(y)ls’ & 1 ( J N T
SELLY- DI W A N )l dy ) 42
(JB(xo,ziHl)\B(xo,ziu Ix —ylns y) 1B(x0, 21| \UB (xo2+11) 9 *.2)

Combining (4.1) and (4.2), we get

0 . S
sup  [Ta (FX(B(xp21)c) (X)| < CZ(ZJHI)*? (J )i dy) :
x€B(xq,1) i—1 B (xg,21+11)

4.2. Bochner-Riesz operators

Bochner-Riesz operators were first introduced by Bochner [2] in connection with summation of mul-
tiple Fourier series and played an important role in harmonic analysis. The Bochner-Riesz operators of
order 6 > 0 in R™(n > 2) are defined initially for Schwartz functions in terms of Fourier transforms by

2 )
(T8N &) = (1—"”) o),

RZ ),

where f denotes the Fourier transform of f. These operators can be expressed as convolution operators by
the formula

TRF(x) = (fx d1/R)(x),
where ¢4 /g(x) = R™f(Rx), and for all 6 > (n—1)/2,
C

< —
[b(x)I 1 ) s

(4.3)

The associated maximal Bochner-Riesz operator is defined by

T2(f)(x) = sup [T3F(x)|.
R>0

When § > (n—1)/2, it is well-known that ([13])

T2(f)(x) < CM(f)(x).
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By [12],if 6 = (n—1)/2 and w € A}, then there exists a constant C > 0 such that
T2 ()lltr(w) < Cllfllr(w),  for 1 <p < oo.

Then, by the boundedness of maximal function M(f) on LP(w), we know that if w € A, (1 < p < o0),
then forall 6 > (n—1)/2,

T2 (D) lle (@) < Clifllerw)

holds.
Let b be a locally integrable function on R™, for any given R > 0, the commutator of b and T} is

defined as follows
[b, TRIf(x) = b(x) TS f(x) — TS (TF)(x).

Note that T]‘gf(x) < T2(f)(x), then, if w € Ap (1 < p < 00), the equality
ITR(O)ILr (w) < ClIfllLr (w)

holds for all 6 > (n —1)/2. Therefore, by the boundedness criterion for the commutators of linear opera-
tors, we see that if b € BMO, then [b, Tlg] is also bounded on LP(w) forall 1 < p < oo and w € A,.

Theorem 4.2. Suppose 8 > (n—1)/2and 1 < p < co. Let b € BMO, and let w € Ap. If (@1, ¢2) satisfies the
condition (1.3), then there is a constant C > 0 independent of f such that

5
ITflme, (wrn) < ClIflIME, (w,R)-
If (@1, @2) satisfies the condition (1.4), then there is a constant C > 0 independent of f such that
5
1o, TRIfl Mz, (w k) < ClIBINlIME (w,rr)-

Proof. Note that when & > (n—1)/2, then by the estimate (4.3), we have

<
x|

[b(x])] <

We also observe that when x € B(xg, 1),y € (B(xp,21))¢, then |[x —y| ~ |[x — xo|. Hence
sup [TR (fX(B(xo20)e) ()] < sup T2 (FX(B(xp21))¢) (X)
x€B(x,1) xE€B(xo,1)
=C sup sup|(fX(B(xp21))c) * P1/R(X)]
x€B(xq,1) R>0

RT\.
<C sup sup If(y)ldy

x€B(xp,1) R>0 J(B (xo20))e (RPk—y[)™

= 1
<cy ——~ f(y)|dy.
].; |B(Xo,21“1)|JB( fly)idy

X0,2i+1].)
This means that ng and T? satisfy (1.2). O

4.3. Marcinkiewicz integral operators

Suppose that ™! is the unit sphere in R™(n > 2) equipped with the normalized Lebesgue measure
do. Let Q € L*(S™1) with 1 < s < oo be homogeneous of degree zero and satisfy the cancellation
condition

J Q(x")do(x") =0,
Snfl

where x’ = x/|x| for any x # 0. The Marcinkiewicz integral of higher dimension pg is defined by
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00 1/2
ua(f)(x)zq |FQ,t(X)|2dt> ,

0 3

where

Qx—y)
F X :J —=—f(y)duy.
Q,t( ) |X7y‘<t |X_y|n_1 (y) y

We will also consider the commutator generated by Marcinkiewcz integral uo and b is defined as follows

1
J»oo 2 E 2
0 t3

Suppose O € L¥(S™ 1) with 1 < s < co and b € BMO. Then by [3], for every s’ < p < coand w € A, ¢/,
there is a constant C independent of f such that

[b, nol(f)(x) = (

J W(b(x)b(y))f(y)dy

x—yl<t [X—Y

o (OllLe (wrm) < ClIflle (@, rm)-
By [4], for every s’ <p < coand w € A, ¢/, there is a constant C independent of f such that
1B, 1l () Lr (w,rm) < ClIBJLIlLe (w,rm)-

Theorem 4.3. Suppose that Q € L5(S™ 1) with 1 < s < co. Let s’ < p < oo, w € A, s and b € BMO. If
(@1, ©2) satisfies the condition (1.3), then there is a constant C > 0 independent of f such that

o flime (wrn) < Cllfllme, (@ rn)-
If (@1, @2) satisfies the condition (1.4), then there is a constant C > 0 independent of f such that
ITb, kalflimy, (wrn) < ClIPILFIME, (wrm)-
Proof. Observe that when x € B(xo, 1) and y € B(xg,211) \ B(x0,2/1)(j = 1), then
t>x—yl >y —xol —Ix—xol =271

Then, by Minkowski’s inequality we have

1
o0 Qx—vy) dt\’
alfx a0 = (]| D0 Y) g ay| &
(B(xo2L)) 0 B (xp,2l)¢N{y:Ix—yl<t} |X_y|n_1 vy t3
2 3
| & Q(x—y) dt
- 1Z] | S Vay) 5| @9
0 |17 J(Bxo2UNB (x02L))en{yix—y| <t} Ix —yl
1
Q 00 t) 2
e e 2500 .2
= \UB (02T 1U\B(x 21 Ix —y[n— 9ji-1p t
(oe]
Q(x—y)|
<C) (@) J 0=yl g1y,
; B (02 11\ B (x0,211) X —yI™ 1 vy
When Q € L*®(S"1), then
sup o (s )00 S CY 27U ey, (45)
x€B(xg,1) j=1 B (x0,2111)
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When Q € L5(S™1),1 < s < o0, then by Holder’s inequality,

JB (x0, 2T\ B (x021) X —y[™ 1

A Wy jay

N ay) [yl 1/’
<c(| lolx-y)ra) (] ") I
B (x0,2+11\B (x0,2'1) B(x0,2H11)\B(x0,21) IX — Yl

It follows from (4.1), (4.4) and (4.6) that

ad : n ’ 1/s!
sup 1o (FX(B(xpe)e)(X) < C Y (2H1) 7+ <J L) dy> : (4.7)
x€B(xq,1) j=1 B (x0,21+11)
Combining (4.5) with (4.7), the proof of Theorem 4.3 is completed. O
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