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Abstract
In this paper, the stability problem is studied for a class of stochastic neutral-type neural networks with Markovian jumping

parameters. By using fixed point theorem, the existence and uniqueness of solution for the neural networks system are obtained.
Furthermore, based on the Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish
sufficient conditions to guarantee the mean square stability of the neural networks. An example is given to show the effectiveness
of the proposed stability criterion. c©2017 All rights reserved.
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1. Introduction

In the past decades, neural networks have received considerable attention due to a variety of ap-
plications, such as system recognition, signal processing, static image processing, target tracking and
associative memory [1, 6, 15, 16]. Particularly, the work on time-delay neural networks has received
great attention due to time-delay is an inherent feature of many processes, such as physical and chemical
processes, biological systems and nuclear reactors may lead to instability or poor performances for the
corresponding closed-loop systems, see, e.g., [3, 9, 10, 18]. Recently, many results have been obtained
for neutral-type neural networks. For example, Liu et al. [7] concerned a class of Markovian jumping
neutral-type neural networks with mode-dependent mixed time-delays:

ẋ(t) = E(r(t))ẋ(t− τ1,r(t)) −A(r(t))x(t) −B(r(t))f(x(t))

+ c(r(t))g(x(t− τ2,r(t))) +D(r(t))

∫t−τ4,r(t)

t−τ3,r(t)

h(x(s))ds.

The authors ([5, 12]) investigated the following neutral-type neural systems:{
(xi)

′(t) = −ai(t)xi(t) +
∑n
j=1[bij(t)fj(t, xj(t)) + dij(t)gj(t, x

′
j(t− τij(t)))] + Ii(t),

xi(t) = φi(t), t ∈ [−τ, 0], i = 1, 2, · · · ,n,
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and
y ′(t) = −Ay(t) +Bg(y(t)) +Cg(y(t− τ(t))) +Dy ′(t− h(t)), t 6= tk,
∆y(t) = Ik(y(t)), t = tk,

y(t+0 + s) = φ(s), s ∈ [t0 − ρ, t0], k ∈N.

More detailed results on neural networks could be found in [11, 14, 17] and the references therein.
So far, to the best of the authors’ knowledge, there is few results for the stability problems to neutral-

type neural networks with Markovian parameters and mixed time delays. The major challenge lists as
follows: (1) in order to construct a feasible Lyapunov-Krasovskii functional, the properties of neutral
operator A (defined in (2.2)) can be considered. So, studying the properties of the operator A seems
very important; (2) when the non-constant delays exist in neural networks, the corresponding stability
problems become more complicated since a new Lyapunov functional is required to reflect variable delay’s
influence; and (3) it is non-trivial to establish a unified framework to handle the Markovian parameters,
neutral terms and variable delays influence. It is, therefore, the main purpose of this paper to make the
first attempt to handle the listed challenges.

In this paper, we consider the stability problems for a neutral-type neural networks with Markovian
parameters and mixed delays. Note that neural system includes Markovian parameters, the neutral term
and variable delays that are all dependent on the properties of neutral operator. The purpose of this
paper is to obtain some existence, asymptotically stable and exponential stable results. A numerically
efficient LMI approach is developed to solve the addressed problems. A simulation example is used
to demonstrate the usefulness of the LMI method. The contribution of this paper is threefold. (1) For
obtaining the existence results, the neutral operator is first taken into account in the neural networks with
Markovian parameters and mixed time delays and a non-neutral system can be viewed as the special
cases. (2) Different from most of the existing results, we develop a new unified framework to cope with
the stability problems for the neural networks by a blend of matrix theory, Lyapunov-Krasovskii functional
and LMI approach, which may be of independent interest. It is worth pointing out that our main results
are also valid for the case of non-neutral system. (3) Some new techniques are used in this paper. In
particular, a key inequality and an appropriate Lyapunov-Krasovskii functional will be introduced to
handle the neural networks, and they play a crucial role in the derivation of our main results.

Throughout the manuscript, Rn and Rn×m denote, respectively, the n-dimensional Euclidean space
and the set of all n×m real matrices. The superscript “T” denotes the matrix transposition. We will
use the notation A > 0 (or A < 0) to denote that A is a symmetric and positive definite (or negative
definite) matrix. If A,B are symmetric matrices, A > B (A > B), then A−B is a positive definite (positive
semi-definite). |z| denotes the Euclidean norm of a vector z and ||A|| denotes the induced norm of the
matrix A, that is ||A|| =

√
λmax(A>A) where λmax(·) means the largest eigenvalue of A. E[x] and E[x|y]

mean the expectation of x and the expectation of x conditional on y, respectively. If their dimensions are
not explicitly stated, are assumed to be compatible for algebraic operations.

The following sections are organized as follows. In Section 2, we give problem formulation, some
useful lemmas, and definitions. In Section 3, sufficient conditions are established for existence results
of system (2.3). The main results of the present paper are given in Section 4. In Section 5, a numerical
example is given to show the feasibility of our results. Finally, some conclusions are given about this
paper.

2. Problem formulation

Let r(t)(t > 0) be a right-continuous Markovian chain taking values in a finite sate space S =
{1, 2, · · · ,n0} with generator Π = {πij} given by

P{r(t+∆) = j|r(t) = i} =

{
πij∆+ o(∆), if i 6= j,
1 + πij∆+ o(∆), if i = j.



S. Guo, B. Du, J. Nonlinear Sci. Appl., 10 (2017), 3409–3418 3411

Here ∆ > 0 and πij > 0 is the transition rate from i to j if i 6= j and πii = −
∑
j6=i πii.

Consider the following neutral-type neural networks with Markovian jumping parameters:

(Apxp)
′(t) = −cp(r(t))xp(t) +

n∑
q=1

apq(r(t))fq(xq(t)) +

n∑
q=1

bpq(r(t))gq(xq(t− τ(r(t)))), (2.1)

where p = 1, 2, · · · ,n, (Apxp)(t) = xp(t) − dpxp(t− γ(r(t))), xp(t) represents the state of the ith neuron
at time t, fp and gp are the activation functions of the pth neuron, cp represents the rate with which
the pth unit will reset its potential to the resting state when disconnected from the network and external
inputs, apq denotes the strength of the qth unit on the pth unit, bpq denotes the strength of the qth unit
on the pth unit, and τ(r(t)) and γ(r(t)) denote the discrete delays of networks in the mode r(t). Denote

Ax(t) = x(t) −Dx(t− γ(r(t))), D = diag(d1,d2, · · · ,dn), (2.2)

Ax(t) = (A1x1(t),A2x2(t), · · · ,Anxn(t))>,
C = diag(c1(r(t)), c2(r(t)), · · · , cn(r(t))),
A = [apq(r(t))]n×n, B = [bpq(r(t))]n×n,

F(x(t)) = (f1(x1(t)), f2(x2(t)), · · · , fn(xn(t)))>,

G(x(t− τ(r(t)))) = (g1(x1(t− τ(r(t)))),g2(x2(t− τ(r(t)))), · · · ,gn(xn(t− τ(r(t)))))>.

Then system (2.1) can be rewritten as

(Ax) ′(t) = −C(r(t))x(t) +A(r(t))F(x(t)) +B(r(t))G(x(t− τ(r(t)))). (2.3)

Remark 2.1. The neural network (2.3) shows the neutral character by the operator A, which is different
from other papers, see, e.g., [11, 12, 17].

Remark 2.2. When D(r(t)) = 0, r(t) ∈ S, system (2.3) is changed into a non-neutral-type discrete neural
networks which has been extensively studied, see, e.g., [1, 3, 5, 9, 10, 14, 16, 18].

For activation functions, we need the following assumptions.

Assumption 2.3. For p ∈ {1, 2, · · · ,n}, the neuron activation functions in (2.1) satisfy

l−p 6
fp(s1) − fp(s2)

s1 − s2
6 l+p , σ−p 6

gp(s1) − gi(s2)

s1 − s2
6 σ+p ,

where l−p , l+p and σ−p ,σ+p are some constants.

Lemma 2.4. If d+p < 1, then the inverse of difference operator A denoted by A−1, exists and

1
1 − d−p

6 |A−1| 6
1

1 − d+p
,

where d+p = max{|d1|, |d2|, · · · , |dn|}, d−p = min{|d1|, |d2|, · · · , |dn|}.

Proof. Let Bx(t) = Dx(t− γ(r(t))), then |B| = d+p < 1. Thus, A−1 = (I− B)−1 exists and |A−1| = |(I−

B)−1| 6 1
1−d+

p
. Obviously, |A−1| > 1

1−d−
p

.

Lemma 2.5 ([2]). Given constant matrices Ω1,Ω2,Ω3 where Ω1 = Ω>1 and Ω2 > 0, then

Ω1 +Ω
>
3 Ω

−1
2 Ω3 < 0

if only if (
Ω1 Ω>3
Ω3 −Ω2

)
< 0 or

(
−Ω2 Ω3
Ω>3 −Ω1

)
< 0.
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Lemma 2.6 ([8]). Suppose that B = diag{β1,β2, · · · ,βn} is a positive semi-definite matrix. Let

x(t) = (x1, x2, · · · , xn)> ∈ Rn

and H(t) = (h1,h2, · · · ,hn)> be a continuous nonlinear function satisfying

l−i 6
hi(s)

s
6 l+i , s 6= 0, s ∈ R, i = 1, 2, · · · ,n

with l−i and l+i being constant scalars. Then(
x

H(x)

)>(
BL1 −BL2
−BL2 B

)(
x

H(x)

)
6 0, or x>BL1x− 2x>BL2H(x) +H

>(x)BH(x) 6 0,

where

L1 = diag{l+1 l
−
1 , l+2 l

−
2 , · · · , l+nl

−
n} and L2 = diag{(l+1 + l−1 )/2, (l+2 + l−2 )/2, · · · , (l+n + l−n)/2}.

Lemma 2.7 ([4]). For any positive definite matrix M > 0, scalar γ > 0, vector function ω : [0,γ]→ Rn such that
the integrations concerned are well-defined, the following inequality holds:( ∫γ

0
ω(s)ds

)>
M

( ∫γ
0
ω(s)ds

)
6 γ

( ∫γ
0
ω>(s)Mω(s)ds

)
.

Definition 2.8. The neural network (2.3) is said to be asymptotically stable in mean square if, for any
solution x(t) of (2.3), the following holds:

lim
t→∞E[|x(t)|2] = 0.

Furthermore, the network (2.3) is said to be exponentially stable in mean square if, for any solution x(t)
of (2.3), there exist constants α > 0 and µ > 0 such that

E[|x(t)|2] 6 µe−αt.

We need the following denotations:

τ = max{τ(i), i ∈ S}, τ = min{τ(i), i ∈ S}, π = max{πii, i ∈ S},
ν1 = diag{l+1 l

−
1 , l+2 l

−
2 , · · · , l+nl

−
n}, ν2 = diag{(l+1 + l−1 )/2, (l+2 + l−2 )/2, · · · , (l+n + l−n)/2},

ω1 = diag{σ+1 σ
−
1 ,σ+2 σ

−
2 , · · · ,σ+nσ

−
n}, ω2 = diag{(σ+1 + σ−1 )/2, (σ+2 + σ−2 )/2, · · · , (σ+n + σ−n)/2}.

3. Existence of solution of system (2.3)

Theorem 3.1. If d+p < 1 (p = 1, 2, · · · ,n) and Assumption 2.3 hold, furthermore the following condition satisfies:

h

1 − d+p
||A||+

h(l̂p)
+

1 − d+p
||B||+

h(σ̂p)
+

1 − d+p
< 1,

where

l̂p = max
p∈{1,2,··· ,n}

{|l+p |, |l
−
p |}, σ̂p = max

p∈{1,2,··· ,n}
{|σ+p |, |σ

−
p |},

(l̂p)
+ = max{l̂p}, (σ̂p)

+ = max{σ̂p}, p ∈ {1, 2, · · · ,n}.

Then solution of system (2.3) exists in B = C([0,h], Rn) and is unique which satisfies initial condition x =
φ(s), s ∈ [−τ, 0], where h and τ are positive constants.



S. Guo, B. Du, J. Nonlinear Sci. Appl., 10 (2017), 3409–3418 3413

Proof. Let x ∈ B and Ax(t) = u(t), then x(t) = A−1u(t). Let r(t) = i, i ∈ S, (2.3) transforms to the
following system:

u ′(t) = −C(i)[A−1u(t)] +A(i)F([A−1u(t)]) +B(i)G(A−1u(t− τ(i))). (3.1)

Define T on B by

Tu(t) = u(0) +
∫t

0

{
−A[A−1u(s)] +BF([A−1u(s)]) +DG(A−1u(s− τ(i)))

}
ds.

Obviously, Tu ∈ B. We will show that T : B → B is a contraction mapping. In fact, from Lemma 2.4 and
Assumption 2.3, for any u, v ∈ B we have

|Tu− Tv| 6
∫t

0

{
|A[A−1u(s) −A−1v(s)]|+ |B

[
F([A−1u(s)]) − F([A−1v(s)])

]
|

+ |D
[
G(A−1u(s− τ(i))) −G(A−1v(s− τ(i)))

]
|

6

(
h

1 − d+p
||A||+

h(l̂p)
+

1 − d+p
||B||+

h(σ̂p)
+

1 − d+p

)
|u− v|,

The condition h
1−d+

p
||A||+

h(l̂p)
+

1−d+
p
||B||+

h(σ̂p)
+

1−d+
p
< 1, yields T is contractive on set B. Thus, T possesses a

unique fixed point ψ∗ ∈ B such that Tψ∗ = ψ∗, it follows from (3.1) that x∗ = A−1ψ∗ ∈ B is the unique
solution of (2.3).

4. Stability of solution of system (2.3)

Theorem 4.1. Under the conditions of Theorem 3.1 and F(0) = G(0) = 0, the system (2.3) has a unique solution
which is asymptotically stable in mean square if there exist positive definite matrices Pi, i ∈ S, Q and positive
definite diagonal matrices ν1i and ω1i, i ∈ S such that the following LMI holds:

Φi =

(
Φ̂i M>i Q̂

Q̂Mi −Q̂

)
< 0, (4.1)

where Q̂ = 2(1 + d+p )P(i)C(i),

Mi = [0,B(i), 0,C(i)], Φ̂i =


Ξ11i Ξ12i ω1iω2 PiB(i)
∗ −ν1i 0 0
∗ ∗ Ξ33i 0
∗ ∗ ∗ −Q

 , (4.2)

with P̂i =
∑n0
j=1 πijPj, Ξ11i = P̂i − ν1iν1 −ω1iω1, Ξ12i = P̂i + ν1iν1, Ξ33i = [1 + π(τ− τ)]Q−ω1i.

Proof. Construct the following Lyapunov-Krasovskii functional for the system (2.3):

V(xt, t, r(t)) =
3∑
k=1

Vk(xt, t, r(t)), (4.3)

where

V1(xt, t, r(t)) = (Ax(t))>Pr(t)Ax(t),

V2(xt, t, r(t)) =
∫t
t−τ(r(t))

G>(x(s))QG(x(s))ds, V3(xt, t, r(t)) = π
∫τ
τ

∫t
t−s

G>(x(θ))QG(x(θ))dθds.
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According to the Itô’s rule, the weak infinitesimal operator L(·) of the process {x(t), t > 0, r(t)} for system
(2.3) at the point {x(t), t > 0, i} are given by

LV1(xt, t, i) = 2(Ax(t))>Pi

[
−C(i)x(t) +A(i)F(x(t)) +B(i)G(x(t− τ(i)))

]
+ (Ax(t))>P̂iAx(t), (4.4)

LV2(xt, t, i) = G>(x(t))QG(x(t)) −G>(x(t− τ(i)))QG(x(t− τ(i)))

+

n0∑
j6=i

πij

∫t
t−τ(j)

G>(x(s))QG(x(s))ds+ πii

∫t
t−τ(i)

G>(x(s))QG(x(s))ds

6 G>(x(t))QG(x(t)) −G>(x(t− τ(i)))QG(x(t− τ(i)))

+

n0∑
j6=i

πij

∫t
t−τ(j)

G>(x(s))QG(x(s))ds+ πii

∫t
t−τ

G>(x(s))QG(x(s))ds

= G>(x(t))QG(x(t)) −G>(x(t− τ(i)))QG(x(t− τ(i)))

− πii

∫t
t−τ(j)

G>(x(s))QG(x(s))ds+ πii

∫t
t−τ

G>(x(s))QG(x(s))ds

6 G>(x(t))QG(x(t)) −G>(x(t− τ(i)))QG(x(t− τ(i))) + π
∫t−τ
t−τ

G>(x(s))QG(x(s))ds,

(4.5)

LV3(xt, t, i) = π(τ− τ)G>(x(t))QG(x(t)) − π
∫t−τ
t−τ

G>(x(s))QG(x(s))ds. (4.6)

Substituting (4.4)-(4.6) into (4.3), we obtain

LV(xt, t, i) = 2(Ax(t))>Pi

[
−C(i)x(t) +A(i)F(x(t)) +B(i)G(x(t− τ(i)))

]
+ (Ax(t))>P̂iAx(t)

+G>(x(t))QG(x(t)) −G>(x(t− τ(i)))QG(x(t− τ(i))) + π(τ− τ)G>(x(t))QG(x(t)).
(4.7)

According to Lemma 2.6, we have

(Ax(t))>ν1iν1Ax(t) − 2(Ax(t))>ν1iν2F(x(t)) + F
>(x(t))ν1iF(x(t)) 6 0, (4.8)

(Ax(t))>ω1iω1Ax(t) − 2(Ax(t))>ω1iω2G(x(t)) +G
>(x(t))ω1iG(x(t)) 6 0. (4.9)

From (4.7)-(4.9), we have

LV(xt, t, i) = 2(Ax(t))>Pi

[
A(i)F(x(t)) +B(i)G(x(t− τ(i)))

]
+ (Ax(t))>P̂iAx(t)

+G>(x(t))QG(x(t)) −G>(x(t− τ(i)))QG(x(t− τ(i))) + π(τ− τ)G>(x(t))QG(x(t))

− (Ax(t))>ν1iν1Ax(t) + 2(Ax(t))>ν1iν2F(x(t)) − F
>(x(t))ν1iF(x(t))

− (Ax(t))>ω1iω1Ax(t) + 2(Ax(t))>ω1iω2G(x(t)) −G
>(x(t))ω1iG(x(t))

+ 2(1 + d+p )x
>(t)P(i)C(i)x(t)

6 ξ>i (xt)Ψ̂iξi(xt) + ξ
>
i (xt)M

>
i Q̂Miξi(xt),

(4.10)

where
ξi(xt) = [(Ax(t))>, F>(x(t)),G>(x(t)),G>(x(t− τ(i)))]>,

Ψ̂i and Mi are defined by (4.2). From Lemma 2.5, inequality (4.1) is equivalent to

Ψ̂i +M
>
i Q̂Mi < 0.

Let λ0 = maxi∈S{λmax(Ψ̂i +M
>
i Q̂Mi)}, then λ0 < 0. In view of (4.10), we have

LV(xt, t, i) 6 λ0ξ
>
i (xt)ξi(xt) 6 λ0|Ax(t)|

2. (4.11)

By Lemma 2.4, we have
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|x(t)| = |A−1Ax(t)| 6
1

1 − d+p
|Ax(t)| and |Ax(t)|2 > (1 − d+p )

2|x(t)|2,

which together with (4.11) yields

LV(xt, t, i) 6 λ0(1 − d+p )
2|x(t)|2 := λ1|x(t)|

2, (4.12)

where λ1 = λ0(1 − d+p )
2. Hence, by (4.12) we have

EV(x(t), t, r(t)) = EV(x(0), 0, r(0)) + E

∫t
0
LV(x(s), s, r(s))ds 6 EV(x(0), 0, r(0)) + λ1E

∫t
0
|x(s)|2ds.

In view of λ1 < 0, we know that
∫t

0 E|x(s)|2ds is convergent as t → +∞. Hence, from Barbalat’s Lemma
(see [13]), we have limt→+∞E|x(t)|2 = 0.

Next, we give some exponential stability results for the system (2.3).

Theorem 4.2. Under the conditions of Theorem 4.1, there exists a unique solution for system (2.3) which is expo-
nentially stable in mean square.

Proof. Let α0 = max{|l−p |, |l+p |, |σ−p |, |σ+p |, p = 1, 2 · · · ,n}. Using Assumption 2.3 and F(x) = G(x) = 0, we
have

|F(x)|2 6 α2
0|x|

2, |G(x)|2 6 α2
0|x|

2.

From Ψ̂i +M
>
i Q̂Mi < 0, there exists a sufficient small positive number ε0 such that

Ψ̂i +M
>
i Q̂Mi + ε0I < 0,

where I is the identity matrix. We introduce the following Lyapunov-Krasovskii functional

V̂(xt, t, r(t)) = V(xt, t, r(t)) −
λ1

2τ

∫τ
0

∫t
t−s

(Ax(θ))>Ax(θ)dθds,

where V(xt, t, r(t)) is defined by (4.3). Then we have

LV̂(xt, t, r(t)) = LV(xt, t, r(t)) −
λ1

2
(Ax(t))>Ax(t) +

λ1

2τ

∫t
t−τ

(Ax(s))>Ax(s)ds. (4.13)

In view of LV(xt, t, r(t)) < 0, (4.13), and (4.11), we have

LV̂(xt, t, r(t)) 6 (λ0 −
λ1

2
)(Ax(t))>Ax(t) +

λ1

2τ

∫t
t−τ

(Ax(s))>Ax(s)ds. (4.14)

Let µ > 0. Calculate

L[eµtV̂(xt, t, r(t))] = µeµtV̂(xt, t, r(t)) + eµtL[V̂(xt, t, r(t))]. (4.15)

From the definitions of V̂(xt, t, r(t)) and V(xt, t, r(t)), we have

V̂(xt, t, r(t)) 6 ρ1(Ax(t))
>Ax(t) +α2

0λmax(Q)

∫t
t−τ

x>(s)x(s)ds

+ π(τ− τ)α2
0λmax(Q)

∫t
t−τ

x>(s)x(s)ds

= ρ1(Ax(t))
>Ax(t) + ρ2

∫t
t−τ

x>(s)x(s)ds

6 ρ1(Ax(t))
>Ax(t) +

ρ2

(1 − d+p )2

∫t
t−τ

(Ax(s))>Ax(s)ds,

(4.16)
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where ρ1 = maxi∈S{λmax(Pi)}, ρ2 = α2
0λmax(Q)(1 + π(τ− τ)). From (4.13)-(4.16), we have

L[eµtV̂(xt, t, r(t))] 6 (µρ1 + λ0 −
λ1

2
)eµt(Ax(t))>Ax(t) +

(
λ1

2τ
+

µρ2

(1 − d+p )2

)
eµt
∫t
t−τ

(Ax(s))>Ax(s)ds.

Choosing µ = µ0 and λ1 leads to

µ0ρ1 + λ0 −
λ1

2
6 0,

λ1

2τ
+

µ0ρ2

(1 − d+p )2 6 0.

Thus, we have
L[eµ0tV̂(xt, t, r(t))] 6 0

and

E[eµ0tV̂(xt, t, r(t))] = E[eµ0tV̂(x0, 0, r(0))] + E

∫t
0
L[eµ0sV̂(xs, s, r(s))]ds 6 E[eµ0tV̂(x0, 0, r(0))]. (4.17)

On the other hand, from the definition of V̂(xt, t, r(t)), there exits a positive constant ρ3 such that

V̂(xt, t, r(t)) > ρ3(Ax(t))
>Ax(t). (4.18)

From (4.17) and (4.18), we have

E|Ax(t)|2 6
V̂(x0, 0, r(0))

ρ3
e−µ0t. (4.19)

From Lemma 2.4 and (4.19), we have

E|x(t)|2 6
V̂(x0, 0, r(0))
ρ3(1 − d+p )2 e

−µ0t.

The proof is completed.

Remark 4.3. In Theorems 4.1 and 4.2, based on LMI approach, some sufficient conditions are obtained
to guarantee the asymptotically stable in mean square and exponentially stable in mean square for the
system (2.3). We point out that the similar stability results can be obtained as immediate consequences
for special cases (e.g., without Markovian jumping parameters or constant delays). On the other hand,
our arguments can be easily extended the systems with white noises.

5. Numerical example

Example 5.1. In this example, we consider a 2-dimensional neutral-type neural networks with the transi-
tion rate matrix being (

−4 1
2 −3

)
.

The other parameters are given as follows:

γ11 = 6, γ12 = 5, τ11 = 6, τ12 = 7,

D(1) =
(

0.5 0
0 0.5

)
, D(2) =

(
0.3 0
0 0.3

)
,

C(1) =
(

0.25 0
0 0.43

)
, C(2) =

(
1.3 0
0 1.5

)
,

A(1) =
(

0.3 0.3
0.2 −0.5

)
, A(2) =

(
0.3 0.3
0.1 −0.5

)
,
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B(1) =
(

0.4 −0.2
0.1 0.3

)
, B(2) =

(
0.4 0.2
0.6 0.3

)
.

The activation functions are given as

F(x) = G(x) = (tanh(−0.3x1), tanh(−0.5x2))
>.

With the above parameters, by using Matlab LMI Toolbox, we solve the LMIs (4.1) and obtain the feasible
solution as follows:

P(1) =
(

0.3152 −0.0013
−0.0013 0.3012

)
, P(2) =

(
0.20102 −0.0925
−0.0925 2.0149

)
, Q =

(
0.4710 −0.0122
−0.0122 0.4723

)
,

ν11 = 0.4652, ν12 = 0.4683, ν21 = 0.7341, ν22 = 0.7302.

Therefore, it follows from Theorem 4.2 that the system (2.3) with given parameters is globally exponen-
tially stable in mean square, which is further verified by the simulation results given in Figs. 1 and 2
under two different sets of initial values.
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Figure 1: State trajectories of Example 5.1 with initial value
x(0) = (0.2, 0.3).
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Figure 2: State trajectories of Example 5.1 with initial value
x(0) = (0.4, 0.38).

Remark 5.2. In our main results, the stability analysis problems are dealt with for a class of neutral-type
neural networks with Markovian jumping parameters. A LMI-based sufficient condition is derived for
the stability of the neural networks addressed. The exponential stability can be readily checked by the
solvability of a set of LMIs, which can be done by resorting to the Matlab LMI toolbox. Note that the LMI
(4.1) is delay-dependent, hence less conservative than the traditional delay independent conditions.

6. Conclusions

In this paper, we have investigated stability problems for a class of neutral-type neural networks
with Markovian parameters and mixed delays. By utilizing novel Lyapunov-Krasovskii functionals, we
have established a LMI approach to derive the sufficient conditions guaranteeing the global stability in
the mean square of the neural networks. The criteria are expressed in the form of LMIs, which can be
solved effectively by using the matlab LMI toolbox. A simulation example has been provided to show the
usefulness of the derived LMI-based stability conditions.
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