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Abstract

The simulation function is defined by Khojasteh et al. [F. Khojasteh, S. Shukla, S. Radenović, Filomat, 29 (2015), 1189–1194].
Khojasteh introduced the notion of Z-contraction which is a new type of nonlinear contractions defined by using a specific
simulation function. Then, they proved existence and uniqueness of fixed points for Z-contraction mappings. After this work,
studies involving simulation functions were performed by various authors [H. H. Alsulami, E. Karapınar, F. Khojasteh, A. F.
Roldán-López-de-Hierro, Discrete Dyn. Nat. Soc., 2014 (2014), 10 pages], [M. Olgun, Ö. Biçer, T. Alyildiz, Turkish J. Math., 40
(2016), 832–837]. In this paper, we introduce generalized simulation function on a quasi metric space and we present a fixed
point theorem. c©2017 All rights reserved.
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1. Introduction and preliminaries

The theory of metric spaces takes an important place in the transition from classical analysis to modern
analysis. Many concepts of topology are transmitted from metric spaces. One of the most remarkable
works on functions defined in metric spaces was done by Banach [3]. Various generalizations of Banach
fixed point theorem were made by numerous mathematicians [4–7, 9, 10, 12, 13, 15, 18, 20]. There exist
many different definitions obtained by removing the symmetry axiom in metric spaces. The “quasi-
metric” concept first introduced by Wilson [21] in 1931. There have been several studies on this area since
then [8, 11, 16, 17, 19].

Definition 1.1. Let X be any set. Then a function d : X×X→ [0,∞) is said to be a quasi metric on X if it
has the following properties for all x,y, z ∈ X;

1) d(x, x) = 0;
2) d(x,y) 6 d(x, z) + d(z,y);
3) d(x,y) = d(y, x) = 0⇒ x = y.
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If a quasi metric d satisfies the additional condition

4) d(x,y) = 0⇒ x = y,

then d is said to be T1-quasi metric.

Remark 1.2. It is clear that, every metric is a T1-quasi metric, every T1-quasi metric is a quasi metric.

Definition 1.3. A quasi (resp. T1-quasi) metric space is a pair (X,d) such that X is a nonempty set and
d is a quasi (resp. T1-quasi) metric on X. Given a quasi metric space (X,d) and any real number ε > 0,
the open ball and closed ball, respectively, of radius ε and center x0 ∈ X are the sets Bd(x0, ε) ⊂ X and
Bd[x0, ε] ⊂ X defined by

Bd(x0, ε) = {y ∈ X : d(x0,y) < ε} ,

and
Bd[x0, ε] = {y ∈ X : d(x0,y) 6 ε} .

Every quasi metric d on X generates a natural topology on X. This topology on X generated by the family
of open balls {Bd(x, ε) : x ∈ X and ε > 0} as base is called the topology τd (or, the topology induced by
the quasi metric d).

Remark 1.4. If (X,d) is a quasi metric space, then τd is a T0 topology, and if (X,d) is a T1-quasi metric
space, then τd is a T1 topology.

Definition 1.5. Let {xn} be a sequence in the quasi metric space (X,d) and x ∈ X. The sequence {xn} is
said to be convergent to x with respect to τd if and only if

lim
n→∞d(xn, x) = lim

n→∞d(x, xn) = 0.

There are many different approaches to Cauchy sequences in quasi-metric spaces. Reilly et al. [16]
defined six different Cauchy sequences, three of them are as follows:

Definition 1.6. A sequence {xn} in a quasi metric space (X,d) is called

• left K-Cauchy if for every ε > 0, there exists n0 ∈N such that

∀n,k, n > k > n0, d(xk, xn) < ε;

• right K-Cauchy if for every ε > 0, there exists n0 ∈N such that

∀n,k, n > k > n0, d(xn, xk) < ε;

• d-Cauchy if for every ε > 0, there exists n0 ∈N such that

∀n,k > n0, d(xn, xk) < ε.

Remark 1.7. It is obvious that a sequence is d-Cauchy if and only if it is both left K-Cauchy and right
K-Cauchy.

In order for a metric space to be complete, the necessary and sufficient condition is that, every Cauchy
sequence in this space is convergent. However, in a quasi-metric space, completeness cannot be uniquely
defined. Altun et al. classified nine different definitions of completeness [2], three of them are the
following:

Definition 1.8. A quasi metric space (X,d) is called
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• left K-complete if every left K-Cauchy sequence is convergent;

• right K-complete if every right K-Cauchy sequence is convergent;

• ζ-complete if every every d-Cauchy sequence is convergent.

In this paper we will use d-Cauchyness and ζ-completeness by simply saying Cauchyness and com-
pleteness respectively.

The simulation function is defined by Khojasteh et al. in 2015 [14].

Definition 1.9. A simulation function is a mapping ζ : [0,∞) × [0,∞) → R satisfying the following
conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t, ∀t, s > 0;
(ζ3) If {tn} and {sn} are two sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0 , then

lim supn→∞ ζ(tn, sn) < 0.

Let Z be the family of all simulation functions ζ : [0,∞)× [0,∞)→ R.

Definition 1.10 ([4]). A self-mapping T : X→ X on quasi metric space (X,d) is called

• asymptotically right regular at a point x ∈ X if

lim
n→∞d(Tn−1x, Tnx) = 0;

• asymptotically left regular at a point x ∈ X if

lim
n→∞d(Tnx, Tn−1x) = 0;

• asymptotically regular if it is both asymptotically left regular and right regular.

It is known that every Z contraction on a quasi metric space is asymptotically regular [1].
The aim of this paper is to present a new fixed point result for simulation function contractive map-

pings on complete quasi metric spaces.

2. Fixed point results

First let us define generalized Z contraction inspired by Rhoades type generalizations [17].

Definition 2.1. Let (X,d) be a quasi metric space and T : X → X be a mapping. Then T is said to be a
generalized Z contraction if it satisfies

ζ(d(Tx, Ty),M(x,y)) > 0, (2.1)

for all x,y ∈ X, where ζ ∈ Z and

M(x,y) = max
{
d(x,y),d(Tx, x),d(Ty,y),

1
2
[d(x, Ty) + d(Tx,y)]

}
.

Lemma 2.2. Every generalized Z contraction mapping on a quasi metric space is asymptotically regular.

Proof. Let (X,d) be a quasi metric space and let T : X → X be a generalized Z contraction with respect to
ζ ∈ Z. If Tpx = Tp−1x for some p ∈N, then

y = Tp−1x,

is a fixed point of T . Therefore we have
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d(Tnx, Tn+1x) = d(Tn−p+1Tp−1x, Tn−p+2Tp−1x) = d(Tn−p+1y, Tn−p+2y)

= d(y,y) = 0.

Thus limn→∞ d(Tnx, Tn+1x) = 0 holds. So let Tnx 6= Tn−1x, for all n ∈N . It is known that

ζ(d(Tn+1x, Tnx),M(Tnx, Tn−1x)) > 0,

since T is a generalized Z contraction, where

M(Tnx, Tn−1x) = max{d(Tnx, Tn−1x),d(Tn+1x, Tnx),d(Tnx, Tn−1x),
1
2
(d(Tnx, Tnx) + d(Tn+1x, Tn−1x))}

= max{d(Tnx, Tn−1x),d(Tn+1x, Tnx)},

since
d(Tn+1x, Tn−1x) 6 d(Tn+1x, Tnx) + d(Tnx, Tn−1x).

If max{d(Tnx, Tn−1x),d(Tn+1x, Tnx)} = d(Tn+1x, Tnx), then

ζ(d(Tn+1x, Tnx),M(Tnx, Tn−1x)) = ζ(d(Tn+1x, Tnx),d(Tn+1x, Tnx)) > 0,

contradicts to ζ being a simulation function. So d(Tn+1x, Tnx) < d(Tnx, Tn−1x) holds. This means
{d(Tnx, Tn−1x)} is a monotonically decreasing nonnegative sequence.

Let limn→∞ d(Tnx, Tn−1x) = r . If r > 0 then by (ζ3) and by the contraction condition

0 6 lim sup
n→∞ ζ(d(Tn+1x, Tnx),M(Tnx, Tn−1x))

= lim sup
n→∞ ζ(d(Tn+1x, Tnx),d(Tnx, Tn−1x)) < 0,

which is contradiction. Thus r = 0 and T is asymptotically regular.

Theorem 2.3. Every generalized Z contraction mapping on a complete T1-quasi metric space has a unique fixed
point and every Picard sequence converges to its unique fixed point.

Proof. Let (X,d) be a complete T1-quasi metric space and let T : X → X be a generalized Z contraction
with respect to ζ ∈ Z. First, let us show that if T has a fixed point, then it is unique.

Suppose that there are two fixed points z,w ∈ X of the mapping T , then d(z,w) > 0. By (2.1)

ζ(d((Tz, Tw),M(z,w))) > 0,

where

M(z,w) = max
{
d(z,w),d(z, z),d(w,w),

1
2
(d(z,w) + d(z,w))

}
= d(z,w),

which contradicts to (ζ2). Thus the fixed point is unique.
Now we are going to prove if {xn} is a Picard sequence generated by T , then limn→∞ xn = z is the

unique fixed point of T . Let x0 ∈ X be an arbitrary point and {xn} be the Picard sequence, that is,
xn+1 = Txn, for all n ∈N. To prove D = {d(xn, xm),n,m ∈N} is bounded, let D = D1 ∪D2 ∪ {0} where
D1 = {d(xn, xm),n > m ∈N} and D2 = {d(xn, xm),n < m ∈N}.

Suppose D1 is not bounded. If there exists some n > 0 and p > 1 such that xn = xn+p then the set
{xn : n ∈N} is finite and D1 is bounded. Hence assume that for all n,m ∈N, if n 6= m, then xn 6= xm. It
is known from Lemma 2.2 that T is asymptotically regular, accordingly we know that

0 < d(xn+1, xn) < d(xn, xn−1),
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0 < d(xn, xn+1) < d(xn−1, xn),
r = lim

n→∞d(xn+1, xn) = lim
n→∞d(xn, xn+1) = 0.

Since the limit equals to 0, there exists an n0 ∈ N such that d(xn+1, xn) < 1 for all n > n0. As D1 is not
bounded, we can find n1 > n0 such that d(xn1 , xn0) > 1. If n1 is the smallest natural number greater
than n0 verifying this property, then we conclude that d(xn1 , xn0) > 1 and d(xp, xn0) 6 1, for all p ∈
{n0,n0 + 1, · · · ,n1 − 1}. Again, since D1 is not bounded, there exists n2 > n1 such that d(xn2 , xn1) > 1 and
d(xp, xn1) 6 1, for all p ∈ {n1,n1 + 1, · · · ,n2 − 1}. Repeating this process, we have a partial subsequence
{xnk

} of {xn} such that for all k > 1

d(xnk+1 , xnk
) > 1,d(xp, xnk

) 6 1, p ∈ {nk,nk + 1, · · · ,nk+1 − 1}.

By triangle inequality we have

1 < d(xnk+1 , xnk
) 6 d(xnk+1 , xnk+1−1) + d(xnk+1−1, xnk

)

1 < d(xnk+1 , xnk
) 6 d(xnk+1 , xnk+1−1) + 1.

As k→∞, by Squeeze Theorem, limn→∞ d(xnk+1 , xnk
) = 1, similarly we have

lim
n→∞d(xnk+1−1, xnk−1) = 1,

M(xnk+1−1, xnk−1) = max{d(xnk+1−1, xnk−1),d(xnk+1 , xnk+1−1),d(xnk
, xnk−1),

1
2
{d(xnk+1−1, xnk

) + d(xnk+1 , xnk−1)}}.

It is obvious that
M(xnk+1−1, xnk−1) 6= d(xnk+1 , xnk+1−1),

or
M(xnk+1−1, xnk−1) 6= d(xnk

, xnk−1),

since limn→∞ d(xn+1, xn) = 0. The other cases are given below:
Case 1: If M(xnk+1−1, xnk−1) = d(xnk+1−1, xnk−1),since we have d(xnk+1−1, xnk−1) 6 d(xnk+1−1, xnk

) +

d(xnk
, xnk−1), where d(xnk+1−1, xnk

) 6 1 and d(xnk
, xnk−1)→ 0 for n→∞ , we conclude that

M(xnk+1−1, xnk−1) 6 1.

Case 2: If M(xnk+1−1, xnk−1) =
1
2 {d(xnk+1−1, xnk

) + d(xnk+1 , xnk−1)},

M(xnk+1−1, xnk−1) 6
1
2
{1 + d(xnk+1 , xnk−1)}

6
1
2
{1 + d(xnk+1 , xnk+1−1) + d(xnk+1−1, xnk

) + d(xnk
, xnk−1)}.

It can be seen that d(xnk+1−1, xnk
) 6 1, both d(xnk+1−1, xnk+1−1) and d(xnk

, xnk−1) → 0 as k → ∞ which
shows M(xnk+1−1, xnk−1) 6 1 in this case. Therefore,

lim
n→∞d(xnk+1−1, xnk−1) 6 lim

k→∞M(xnk+1−1, xnk−1) 6 1,

and
1 6 lim

k→∞M(xnk+1−1, xnk−1) 6 1.



H. Şimşek, M. T. Yalçın, J. Nonlinear Sci. Appl., 10 (2017), 3397–3403 3402

This means limk→∞M(xnk+1−1, xnk−1) = 1. From (ζ3) and the contraction condition, we have

0 6 lim sup
k→∞ ζ(d(xnk+1 , xnk

),M(xnk+1−1, xnk−1)) < 0,

which is a contradiction. This contradiction concludes that D1 is bounded. Similarly, it can be proved that
D2 is also bounded. Therefore D is bounded.

We need to show that {xn} is a left Cauchy sequence. Let cn = sup{d(xi, xj) : i > j > n}. We know that
{cn} is a monotonically nonincreasing sequence of nonnegative real numbers therefore it is convergent
to a nonnegative real number c = limn→∞ cn. We are going to show that c = 0, assume to the contrary,
c > 0, then by definition of cn,

∀k ∈N ∃mk > nk > k such that ck −
1
k
< d(xmk

, xnk
) 6 ck ⇒ lim

k→∞d(xmk
, xnk

) = c.

We know that

d(xmk
, xnk

) 6 d(xmk−1 , xnk−1)

6 d(xmk−1 , xmk
) + d(xmk

, xnk
) + d(xnk

, xnk−1),

and
d(xmk−1 , xmk

)→ 0, d(xnk
, xnk−1)→ 0,

as k→∞. Then by Squeeze Theorem, we have limk→∞ d(xmk−1 , xnk−1) = c as well.

M(xmk−1 , xnk−1) = max{d(xmk−1 , xnk−1),d(xmk
, xmk−1),d(xnk

, xnk−1),
1
2
{d(xmk−1 , xnk

) + d(xmk
, xnk−1)}}.

We know that d(xmk
, xmk−1)→ 0,d(xnk

, xnk−1)→ 0 as k→∞ . Therefore there are two cases:
Case 1: If M(xmk−1 , xnk−1) = d(xmk−1 , xnk−1), then M(xmk−1 , xnk−1)→ c as k→∞.
Case 2: If M(xmk−1 , xnk−1) =

1
2 {d(xmk−1 , xnk

) + d(xmk
, xnk−1)}, then we have

M(xmk−1 , xnk−1) 6
1
2
{d(xmk−1 , xnk−1) + d(xnk−1 , xnk

) + d(xmk
, xnk

) + d(xnk
, xnk−1)}.

Since d(xmk−1 , xnk−1) → c, d(xnk−1 , xnk
) → 0, d(xmk

, xnk
) → c, d(xnk

, xnk−1) → 0 as k → ∞, we
conclude that M(xmk−1 , xnk−1)→ c.

By (ζ3) and the contraction condition we have

0 6 lim sup
k→∞ ζ(d(xmk

, xnk
),M(xmk−1 , xnk−1)) < 0.

This contradiction proves c = 0. Therefore {xn} is a left Cauchy sequence. Similarly right Cauchyness can
be proved. Since X is complete, there exists z ∈ X such that limn→∞ xn = z. We are going to show that z
is the fixed point of T . Suppose Tz 6= z, then d(Tz, z) > 0, we have

lim
n→∞d(Tz, Txn) = lim

n→∞d(Tz, xn+1) = d(Tz, z) > 0,

and

M(z, xn) = max{d(z, xn),d(Tz, z),d(Txn, xn),
1
2
{d(z, Txn) + d(Tz, xn)}}

= max{d(z, xn),d(Tz, z),d(xn+1, xn),
1
2
{d(z, xn+1) + d(Tz, xn)}}.

Therefore, M(z, xn)→ d(Tz, z) as n→∞. By contraction condition,

0 6 ζ(d(Tz, Txn),M(z, xn))→ ζ(d(Tz, z),d(Tz, z)) as n→∞.

By (ζ2), we have ζ(d(Tz, z),d(Tz, z)) < 0 which contradicts the contraction condition. That means Tz = z
and z is the unique fixed point of T .
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Example 2.4. Let X = [0, 1
3 ] and

d(x,y) =
{
y− x, if x 6 y,
x, if x > y.

Define T : X→ X by Tx = x
2 and the simulation function ζ : [0,∞)× [0,∞)→ R by ζ(t, s) = 1

2s− t.

(i) If x 6 y
2 , then M(x,y) = max

{
y− x, x

2 , y
2 , 1

2(y−
x
2 + y

2 − x)
}
= y− x and ζ(d(Tx, Ty),M(x,y)) =

ζ((y2 − x
2 ),y− x) = 0.

(ii) If y
2 < x 6 y, then M(x,y) = max

{
y− x, x

2 , y
2 , 1

2(y−
x
2 + x)

}
= 2y+x

4 and ζ(d(Tx, Ty),M(x,y)) =
2y+x

8 − (y2 − x
2 ) > 0.

(iii) If y 6 x
2 then M(x,y) = max

{
x, x

2 , y
2 , 1

2(
x
2 + x)

}
= x and ζ(d(Tx, Ty),M(x,y)) = x

2 − x
2 = 0.

(iv) If x
2 < y 6 x then M(x,y) = max

{
x, x

2 , y
2 , 1

2(y−
x
2 + x)

}
= x and ζ(d(Tx, Ty),M(x,y)) = 0.

ζ(d(Tx, Ty),M(x,y)) > 0 holds in any case, therefore T is a generalized Z contraction with respect to
ζ and its obvious unique fixed point is z = 0.
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