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Abstract
In this paper, by using Fϕ-type real functions, some common fixed point for fuzzy mappings satisfying an implicit ϕ-

contractive conditions in complete metric spaces are established. Our results extend, generalize, and improve some existing
results. Moreover, some applications and two examples are given here to illustrate the validity of the hypotheses of our main
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1. Introduction and preliminaries

Fixed point theorems and their applications for fuzzy contraction mappings in a metric linear space
were first studied in 1981 by Heilpern [8]. In recent years, some authors have obtained fixed point
results for various classes of fuzzy contraction mappings in a metric space and a metric linear space (for
examples, see [1–7, 10, 12–15, 17, 18]).

Recently, Beg and Ahmed [5] proved two common fixed point theorems for fuzzy mappings satisfying
an implicit relation in complete metric spaces. On the other hand, Chen and Huang [6] proved some fixed
point theorems for fuzzy mappings under a G-distance function and a G ′-distance function in complete
metric spaces. These theorems extended the known contractive-type conditions.

Inspired by the work of [5, 6], in this paper we discuss the existence of common fixed point for fuzzy
mappings satisfying an implicit ϕ-contractive conditions in complete metric spaces. In Sections 2 and 3,
we first introduce the new real function class Fϕ satisfying an implicit ϕ-contractive conditions. Then,
by using Fϕ-type real functions, some common fixed point theorems for fuzzy mappings satisfying an
implicit ϕ-contractive conditions in complete metric spaces are established. Our main results extend, gen-
eralize and improve the results of [1–8, 13, 14]. In Section 4, as applications, we obtain the corresponding
common fixed point theorems for multi-valued mappings in complete metric spaces. Also, two examples,
which show the validity of the hypotheses of our main results, are given.
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Throughout this paper we shall use the following notations and lemmas which have been recorded
from [5, 6, 8, 10, 11].

Let X and Y be nonempty sets. A multi-valued mapping T from X to Y, denoted by T : X → 2Y , is
defined to be a function that assigns to each element of X, a nonempty subset of Y. Fixed points of the
multi-valued mapping T : X→ 2X will be the points x ∈ X such that x ∈ T(x).

Let (X,d) be a metric space. Let C B(X) denote the set of all nonempty closed and bounded subsets
of X, and C (X) denote the set of all nonempty compact subsets of X. For A,B ∈ C B(X) define

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(A,y)},

where d(x,A) = infy∈A d(x,y).
A fuzzy set in X is a function with domain X and values in [0, 1]. If A is a fuzzy set and x ∈ X, then

the function values A(x) is called the grade of membership of x in A. The α-level set of A is denoted by
[A]α, and is defined as follows:

[A]α = {x : A(x) > α} if α ∈ (0, 1], [A]0 = {x : A(x) > 0}.

Here, B denotes the closure of the set B. Let F (X) be the collection of all fuzzy sets in a metric space X.
For A,B ∈ F (X), A ⊂ B means A(x) 6 B(x) for each x ∈ X.

A mapping T from X to F (Y) is called a fuzzy mapping if for each x ∈ X, T(x) (sometimes denoted
by Tx) is a fuzzy set on Y and Tx(y) denotes the degree of membership of y in Tx. A fuzzy point xα in X
is called a fixed fuzzy point of the fuzzy mapping T if xα ⊂ Tx. If {x} ⊂ Tx, then x is a fixed point of T .

Let Wα(X) denote the set of all fuzzy sets on X such that each of its α-level is a nonempty compact
subset of X. For x ∈ X,A,B ∈ Wα(X) define

D(A,B) = sup
α∈(0,1]

H(Aα,Bα), d(x,A) = sup
α∈(0,1]

d(x,Aα).

Lemma 1.1 (Nadler [11]). Let (X,d) be a metric space and A,B ∈ C (X), then

(1) for each x ∈ A, d(x,B) 6 H(A,B);
(2) for each y ∈ X, d(x,A) 6 d(x,y) + d(y,A).

Lemma 1.2 (Nadler [11]). Let (X,d) be a metric space and A,B ∈ C (X), then for each x ∈ A, there exists an
element y ∈ B such that d(x,y) 6 H(A,B).

Lemma 1.3 (Heilpern [8]). Let x ∈ X and A ∈ Wα(X). Then xα ⊂ A if d(x,Aα) = 0 for all α ∈ [0, 1].

Lemma 1.4 (Lee and Cho [10]). Let (X,d) be a metric space and T be a fuzzy mapping from X into Wα(X) with
x0 ∈ X. Then there exists x1 ∈ X such that {x1} ⊂ Tx0.

2. The real functions satisfying an implicit ϕ-contractive conditions

Definition 2.1. Let ϕ : R+ = [0,+∞)→ R+ be a function and ϕn(t) denote the nth iteration of ϕ(t).

(1) ϕ is said to satisfy the condition (Φ) if it is nondecreasing, and there exists a constant M > 0 such
that ϕ(t) < Mt for all t > 0.

(2) ϕ is said to satisfy the condition (Φ0) if it is nondecreasing, lower semi-continuous, and
∑∞
n=0ϕ

n(t) <
+∞ for all t > 0.

Remark 2.2. Obviously, if ϕ(t) satisfies the condition (Φ0), then ϕ(t) < t for all t > 0, i.e., (Φ0) ⊂ (Φ).
Since ϕ(t) = t

1+t satisfies the condition (Φ) and does not satisfy the condition (Φ0), (Φ0) does not imply
(Φ), i.e., (Φ) 6⊂ (Φ0). Also, if ϕ(t) satisfies the condition (Φ), then ϕ(0) = 0.
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Definition 2.3. A function F : R+
6 → R = (−∞,+∞) is called a real function satisfying an implicit

ϕ-contractive condition, if the following conditions are satisfied:

(F -1) F is lower semi-continuous;
(F -2) F is nondecreasing in 1st coordinate variable and nonincreasing in 3rd, 4th, 5th, 6th coordinate

variable;
(F -3) there exist ϕ1,ϕ2 ∈ (Φ) with ϕ = ϕ2 ◦ϕ1 ∈ (Φ0) such that for all u, v > 0, we have

(F -3a) u 6 ϕ1(v), whenever F(u, v, v,u,u+ v, 0) 6 0;
(F -3b) u 6 ϕ2(v), whenever F(u, v,u, v, 0,u+ v) 6 0.

We denote by Fϕ the collection of all real functions F : R+
6 → R satisfying an implicit ϕ-contractive

conditions.

The following examples show that the Fϕ is a largish class of real functions.

Example 2.4. Let the function F1 : R+
6 → R as follows:

F1(t1, t2, t3, t4, t5, t6) = t1 −φ(max{t2, t3, t4, t5, t6})t2,

where φ : [0,+∞)→ [0, 1), and φ is nondecreasing and lower semi-continuous. Then F1 ∈ Fϕ.
In fact, it is evident that F1 satisfies conditions (F -1) and (F -2) of Definition 2.3. If F1(u, v, v,u,u+

v, 0) 6 0 or F1(u, v,u, v, 0,u+ v) 6 0 with v > 0, then we have u 6 φ(u+ v)v < v. This implies u 6
φ(2v)v. Let ϕ1(t) = ϕ2(t) = φ(2t)t. Note that φ is nondecreasing, then we have ϕ(t) = ϕ2(ϕ1(t)) =
φ(2φ(2t)t)φ(2t)t 6 φ2(2t)t. It follows by induction that ϕn(t) 6 φ2n(2t)t. Since φ(2t) < 1, we have∑∞
n=0ϕ

n(t) < +∞, i.e., ϕ(t) ∈ (Φ0). In addition, if v = 0, then u = 0 6 ϕ(v) = ϕ(0) = 0. This shows that
F1 satisfies condition (F -3) of Definition 2.3. Hence F1 ∈ Fϕ.

Example 2.5. Let a,b, c,d > 0 with a+ b+ c < 1. We define the functions F2, F3 : R+
6 → R by

F2(t1, t2, t3, t4, t5, t6) = t1 − at2 − bt3 − ct4 − d
√
t5t6,

F3(t1, t2, t3, t4, t5, t6) = t1 −
(at2 + bt3 + ct4)t2

1 + t1 + t2
− dt5t6.

It is easy to see that F2, F3 ∈ Fϕ.

Example 2.6. Let φ ∈ (Φ0). The function F4 : R+
6 → R is defined by

F4(t1, t2, t3, t4, t5, t6) = (1 + t2)t1 −φ(max{t3t4, t5t6}) −φ(max{t2, t3, t4}),

then F4 ∈ Fϕ.
In fact, it is evident that F4 satisfies conditions (F -1) and (F -2) of Definition 2.3. Now suppose that

F4(u, v, v,u,u+ v, 0) 6 0 or F4(u, v,u, v, 0,u+ v) 6 0. If u = 0, then u 6 φ(v) holds evidently. If u > 0,
then we have (1 + v)u 6 φ(uv) +φ(max{u, v}) < uv+ max{u, v}, which implies that u < max{u, v}, and so
u < v. Hence, we have (1 + v)u 6 φ(uv) +φ(v) which implies u < φ(v). Let ϕ1(t) = ϕ2(t) = φ(t). Note
that φ ∈ (Φ0), we have ϕ(t) ∈ (Φ0). Therefore F4 ∈ Fϕ.

Example 2.7. Let p > 0,a,b, c,d > 0 with a+ b+ c < 1. The function F5 : R+
6 → R is defined by

F5(t1, t2, t3, t4, t5, t6) = t1 − (atp2 + btp3 + ctp4 )
1
p − dt5t6,

then F5 ∈ Fϕ.
In fact, it is evident that F5 satisfies conditions (F -1) and (F -2) of Definition 2.3. If F5(u, v, v,u,u+

v, 0) 6 0, i.e., u 6 (avp + bvp + cup)
1
p , then we have (1 − c)up 6 (a+ b)vp 6 (1 − c)vp, i.e., u 6 v. Thus,

u 6 (avp + bvp + cvp)
1
p = (a+ b+ c)

1
p v = ϕ1(v).

Similarly, we can prove that F5(u, v,u, v, 0,u+ v) 6 0 implies that u 6 (a+ b+ c)
1
p v = ϕ2(v). Note

that ϕ1(t) = ϕ2(t) ∈ (Φ0), we have ϕ(t) ∈ (Φ0). Therefore F5 ∈ Fϕ.
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Example 2.8. Let φ1, · · · ,φ5: R+ → [0, 1) be five continuous functions, and there exist a > 0,b > 0,C >
0,D > 0 with CD < ab, such that

inf
t>0

{1 −φ2(t) −φ5(t)} = a, inf
t>0

{1 −φ3(t) −φ4(t)} = b,

sup
t>0

{φ1(t) +φ2(t) +φ4(t)} = C, sup
t>0

{φ1(t) +φ3(t) +φ5(t)} = D.

We define the function F6 : R+
6 → R as follows:

F6(t1, t2, t3, t4, t5, t6) = t1 − (φ1(t2)t2 +φ2(t2)t3 +φ3(t2)t4 +φ4(t2)t5 +φ5(t2)t6) .

Then F6 ∈ Fϕ.
In fact, it is easy to see that the conditions (F -1) and (F -2) of Definition 2.3 are satisfied. For any

u, v > 0, if F6(u, v, v,u, v + u, 0) 6 0, then we have u − (φ1(v)v + φ2(v)v + φ3(v)u + φ4(v)(v + u)) 6 0,
which implies that u 6 φ1(v)+φ2(v)+φ4(v)

1−φ3(v)−φ4(v)
v and it yields u 6 C

b v. Similarly, if F6(u, v,u, v, 0, v+ u) 6 0,

then we have u 6 φ1(v)+φ3(v)+φ5(v)
1−φ2(v)−φ5(v)

v 6 D
a v. Let ϕ1(t) =

C
b t,ϕ2(t) =

D
a t. Note that CD < ab, we have

ϕ(t) = CD
ab t ∈ (Φ0) and ϕ1,ϕ2 ∈ (Φ), i.e., (F -3) holds. Hence F6 ∈ Fϕ.

Example 2.9. Let the function F7 : R+
6 → R be defined by

F7(t1, t2, t3, t4, t5, t6) = t1 −

(
t2 + 1

20t2 + 21
t2 +

t2 + 1
20t2 + 21

t3 +
2t2 + 1
5t2 + 6

t4 +
t2 + 1

40t2 + 42
t5 +

t2 + 1
2t2 + 3

t6

)
,

then F7 ∈ Fϕ.
In fact, in Example 2.8, taking φ1(t) = t+1

20t+21 , φ2(t) = t+1
20t+21 , φ3(t) = 2t+1

5t+6 , φ4(t) = t+1
40t+42 , φ5(t)

= t+1
2t+3 , we obtain five continuous functions φ1, · · · ,φ5 from R+ into [0, 1) satisfying the following condi-

tions:

inf
t>0

{1 −φ2(t) −φ5(t)} =
9

20
, inf

t>0
{1 −φ3(t) −φ4(t)} =

23
40

,

sup
t>0

{φ1(t) +φ2(t) +φ4(t)} =
1
8

, sup
t>0

{φ1(t) +φ3(t) +φ5(t)} =
19
20

.

It is evident that 1
8 ·

19
20 = 19

160 <
207
800 = 9

20 ·
23
40 , and so all conditions of Example 2.8 are satisfied. Therefore,

F7 ∈ Fϕ.

Example 2.10. Let a,b, c,d, e ∈ [0, 1) with c + d < 1 and b + e < 1. There exists δ > 0 such that
a+ b+ c+ d+ e = 1 + δ and (c− b)(e− d) > 2δ. We define the function F8 : R+

6 → R as follows:

F8(t1, t2, t3, t4, t5, t6) = t1 − (at2 + bt3 + ct4 + dt5 + et6) ,

then F8 ∈ Fϕ.
Obviously, in Example 2.8, taking φ1(t) = a, φ2(t) = b, φ3(t) = c, φ4(t) = d, φ5(t) = e, we obtain

five continuous functions φ1, · · · ,φ5 from R+ into [0, 1). Moreover, 0 < 1−b− e, 0 < 1− c−d is obvious.
Note that a < 1 and (c− b)(e− d) > 2δ, it follows that

a(1 + δ) + be+ cd < a+ δ+ be+ cd < a− δ+ bd+ ce.

By a+ b+ c+ d+ e = 1 + δ, we obtain

a(a+ b+ c+ d+ e) + be+ cd+ bc+ de < 1 − b− c− d− e+ bd+ ce+ bc+ de,

which implies that (a+ b+ d)(a+ c+ e) < (1 − c− d)(1 − b− e). Hence, the conditions of Example 2.8
are satisfied. Thus, by Example 2.8, we have F8 ∈ Fϕ.
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Remark 2.11. The numbers a,b, c,d, e and δ in Example 2.10 really exist. For example, if we take δ =
1

40 ,a = 1
20 ,b = 1

20 , c = 2
5 ,d = 1

40 , e = 1
2 , then a+ b+ c+ d+ e = 1 + 1

40 ,a+ d+ e = 23
40 < 1, c+ d = 17

40 <

1,b+ e = 11
20 < 1, and (c− b)(e− d) = 133

800 >
1

20 , i.e., the conditions of Example 2.10 are satisfied.

Example 2.12. Define the function F9 : R+
6 → R as follows:

F9(t1, t2, t3, t4, t5, t6) = t1 − (at2 + bt3 + ct4 + dt5 + et6),

where a,b, c,d, e are nonnegative real numbers, with a+ b+ c+ d+ e = 1 and either c > b, e > d or
c < b, e < d. Then F9 ∈ Fϕ.

In fact, we take φ1(t) = a, φ2(t) = b, φ3(t) = c, φ4(t) = d, φ5(t) = e. If c > b, e > d, we have
(a+ b + d)(a+ c+ e) = (1 − c− e)(1 − b − d) < (1 − c− d)(1 − b − e), i.e., the conditions of Example
2.8 are satisfied. Similarly, we can prove the case of c < b, e < d. Therefore, by Example 2.8, we have
F9 ∈ Fϕ.

Definition 2.13 (Beg and Ahmed [5]). A function F : R+
6 → R is called a real function satisfying an

implicit conditions, if the following conditions are satisfied:

(ψ1) F is lower semi-continuous;
(ψ2) F is nondecreasing in 1st coordinate variable and nonincreasing in 3rd, 4th, 5th, 6th coordinate

variable;
(ψ3) there exists h ∈ (0, 1) such that for all u, v > 0, we have

(ψ31) u 6 hv, whenever F(u, v, v,u,u+ v, 0) 6 0;
(ψ32) u 6 hv, whenever F(u, v,u, v, 0,u+ v) 6 0;

(ψ4) for all u > 0, we have F(u,u, 0, 0,u,u) > 0.

We denote by Ψ the collection of all real functions F : R+
6 → R satisfying the conditions of Definition 2.13.

Remark 2.14. A slight difference between the original definition in [5] and Definition 2.3 is that in Definition
2.3, F is nondecreasing in 1st coordinate variable. In fact, in Beg and Ahmed [5], the proof of Theorem
2.6 depends strongly on nondecreasing of F in 1st coordinate variable. This shows that nondecreasing
of F in 1st coordinate variable is necessary. In addition, taking ϕ1(t) = ϕ2(t) = ht,h ∈ (0, 1), t > 0, we
have ϕ1 = ϕ2 ∈ (Φ) and ϕ(t) = h2t ∈ (Φ0). Then it is easy to see that Ψ ⊂ Fϕ. Since F7 ∈ Fϕ and
F7 /∈ Ψ, hence Fϕ 6⊂ Ψ. These show that the implicit relation of Definition 2.3 is a generalization of Beg
and Ahmed [5, implicit relation].

3. Main results

In this section, we prove two common fixed point theorems for fuzzy mappings satisfying an implicit
ϕ-contractive conditions in complete metric spaces, and so also give some corollaries which generalize
the results of [1–8, 13, 14].

Theorem 3.1. Let (X,d) be a complete metric space and S, T : X → F (X) be two fuzzy mappings satisfying the
following conditions:

(a) for each x ∈ X, there exists α(x) ∈ (0, 1] such that [Sx]α(x), [Tx]α(x) ∈ C (X) and
(b) there exists F ∈ Fϕ such that

F(H([Sx]α(x), [Ty]α(y)),d(x,y),d(x, [Sx]α(x)),d(y, [Ty]α(y)),d(x, [Ty]α(y)),d(y, [Sx]α(x))) 6 0 (3.1)

for all x,y ∈ X.

Then there exists z ∈ X such that z ∈ [Sz]α(z) ∩ [Tz]α(z).
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Proof. Let x0 be an arbitrary point in X. For this x0, by condition (a), there exists α(x0) ∈ (0, 1] such that
[Sx0]α(x0) is nonempty compact subset of X. For convenience, we denote α(x0) by α1. Choose x1 ∈ [Sx0]α1 ,
for this x1 there exists α2 ∈ (0, 1] such that [Tx1]α2 is nonempty compact subset of X. Using Lemma 1.2,
we know that there exists x2 ∈ [Tx1]α2 such that

d(x1, x2) 6 H([Sx0]α1 , [Tx1]α2).

Applying the same argument we can find α3 ∈ (0, 1] and x3 ∈ [Sx2]α3 such that

d(x2, x3) 6 H([Sx2]α3 , [Tx1]α2).

By induction we produce a sequence {xn} of points of X,

x2k+1 ∈ [Sx2k]α2k+1 , x2k+2 ∈ [Tx2k+1]α2k+2 , k = 0, 1, 2, · · · , (3.2)

such that

d(x2k+1, x2k+2) 6 H([Sx2k]α2k+1 , [Tx2k+1]α2k+2), d(x2k+2, x2k+3) 6 H([Sx2k+2]α2k+3 , [Tx2k+1]α2k+2).

For k = 0, 1, 2, . . . , applying (3.1) and (3.2), from Lemma 1.1 and the property (F -2) of F, we have

F(d(x2k+1, x2k+2),d(x2k, x2k+1),d(x2k, x2k+1),d(x2k+1, x2k+2),d(x2k, x2k+1) + d(x2k+1, x2k+2), 0)
6 F(d(x2k+1, x2k+2),d(x2k, x2k+1),d(x2k, x2k+1),d(x2k+1, x2k+2),d(x2k, x2k+2),d(x2k+1, x2k+1))

6 F(H([Sx2k]α2k+1 , [Tx2k+1]α2k+2),d(x2k, x2k+1),d(x2k, [Sx2k]α2k+1),d(x2k+1, [Tx2k+1]α2k+2),
d(x2k, [Tx2k+1]α2k+2),d(x2k+1, [Sx2k]α2k+1)) 6 0,

From the property (F -3a) of F, there exists ϕ1 ∈ (Φ) such that

d(x2k+1, x2k+2) 6 ϕ1(d(x2k, x2k+1)). (3.3)

Similarly, applying (3.1) and (3.2), from Lemma 1.1 and the property (F -2) of F, we have

F(d(x2k+3, x2k+2),d(x2k+2, x2k+1),d(x2k+2, x2k+3),d(x2k+1, x2k+2), 0,d(x2k+1, x2k+2) + d(x2k+2, x2k+3))

6 F(d(x2k+3, x2k+2),d(x2k+2, x2k+1),d(x2k+2, x2k+3),d(x2k+1, x2k+2),d(x2k+2, x2k+2),d(x2k+1, x2k+3))

6 F(H([Sx2k+2]α2k+3 , [Tx2k+1]α2k+2),d(x2k+2, x2k+1),d(x2k+2, [Sx2k+2]α2k+3),
d(x2k+1, [Tx2k+1]α2k+2),d(x2k+2, [Tx2k+1]α2k+2),d(x2k+1, [Sx2k+2]α2k+3)) 6 0.

From the property (F -3b) of F, there exists ϕ2 ∈ (Φ) such that

d(x2k+2, x2k+3) 6 ϕ2(d(x2k+1, x2k+2)). (3.4)

Since ϕ1,ϕ2 ∈ (Φ), by the condition (1) of Definition 2.1, (3.3), and (3.4), we can obtain

d(x2k+1, x2k+2) 6 ϕ1(ϕ2(d(x2k−1, x2k))) 6 ϕ1(ϕ(d(x2k−2, x2k−1))), (3.5)

and
d(x2k+2, x2k+3) 6 ϕ2(ϕ1(d(x2k, x2k+1))) = ϕ(d(x2k, x2k+1)), (3.6)

where ϕ = ϕ2 ◦ϕ1. Using inductive method, for k = 0, 1, 2, · · · , by (3.5) and (3.6), we have

d(x2k+1, x2k+2) 6 ϕ1(ϕ
k(d(x0, x1))), (3.7)

and
d(x2k+2, x2k+3) 6 ϕ

k+1(d(x0, x1)). (3.8)
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Next, we show that the sequence {xn} is a Cauchy sequence in X. For any k < p, it follows from (3.7)
and (3.8) that

d(x2k+1, x2p+1) 6 d(x2k+1, x2k+2) + · · ·+ d(x2p, x2p+1)

6
p−1∑
i=k

ϕ1(ϕ
i(d(x0, x1))) +

p∑
i=k+1

ϕi(d(x0, x1)).

Note that ϕ1 ∈ (Φ), by the condition (1) of Definition 2.1, we know that there exists M > 0 such that

d(x2k+1, x2p+1) 6M
p−1∑
i=k

ϕi(d(x0, x1)) +

p∑
i=k+1

ϕi(d(x0, x1)) 6 (M+ 1)
∞∑
i=k

ϕi(d(x0, x1)).

By the similar reasoning process, we have

d(x2k, x2p+1) 6 (M+ 1)
∞∑
i=k

ϕi(d(x0, x1)),

d(x2k, x2p) 6 (M+ 1)
∞∑
i=k

ϕi(d(x0, x1)),

d(x2k+1, x2p) 6 (M+ 1)
∞∑
i=k

ϕi(d(x0, x1)).

Then there exists k with n−1
2 6 k 6 n

2 , for any 0 < n < m, such that

d(xm, xn) 6 (M+ 1)
∞∑
i=k

ϕi(d(x0, x1)).

Since ϕ = ϕ2 ◦ϕ1 ∈ (Φ0), i.e.,
∞∑
i=1

ϕi(d(x0, x1)) < +∞, then {xn} is a Cauchy sequence in X. From the

completeness of X, there exists z ∈ X such that xn → z as n→∞.
Now, we claim that d(z, [T(z)]α(z)) = 0. If not, then we have d(z, [T(z)]α(z)) > 0. Without loss of

generality, let us assume that n is even. Using (3.1) and (3.2), from Lemma 1.1 and the property (F -2) of
F, we obtain

F(d(x2n+1, [T(z)]α(z)),d(x2n, z),d(x2n, x2n+1),d(z, [T(z)]α(z)),d(x2n, z) + d(z, [T(z)]α(z)),d(z, x2n+1))

6 F(H([Sx2n]α2n+1 , [T(z)]α(z)),d(x2n, z),d(x2n, [Sx2n]α2n+1),d(z, [T(z)]α(z)),

d(x2n, [T(z)]α(z)),d(z, [Sx2n]α2n+1)) 6 0.

Note that d(x2n, z) → 0,d(x2n, x2n+1) → 0, and d(x2n+1, [T(z)]α(z)) → 0 as n → ∞. Let n → ∞, by the
lower semi-continuity of F, we have

F(d(z, [T(z)]α(z)), 0, 0,d(z, [T(z)]α(z)),d(z, [T(z)]α(z)), 0) 6 0. (3.9)

From (3.9) and the property (F -3a) of F, by Remark 2.2, we can obtain

d(z, [T(z)]α(z)) 6 ϕ1(0) = 0,

which is a contradiction. Hence d(z, [T(z)]α(z)) = 0, i.e., z ∈ [Tz]α(z).
Similarly, applying (3.1) and (3.2), from Lemma 1.1 and the properties (F -2) and (F -3b) of F, it is not

difficult to prove that z ∈ [Sz]α(z). Hence z ∈ [Sz]α(z) ∩ [Tz]α(z). This completes the proof.
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Theorem 3.2. Let (X,d) be a complete metric space and S, T : X→ Wα(X) be two fuzzy mappings on X. Suppose
that there exists F ∈ Fϕ such that

F(H([Sx]α, [Ty]α),d(x,y),d(x, [Sx]α),d(y, [Ty]α),d(x, [Ty]α),d(y, [Sx]α)) 6 0 (3.10)

for all x,y ∈ X and α ∈ [0, 1]. Then there exists z ∈ X such that zα ⊂ Sz and zα ⊂ Tz.
Proof. Let x0 be in X. By Lemma 1.4, we know that there exists x1 ∈ X such that {x1} ⊂ Sx0, which implies
that

d(x1, [Sx0]α) = 0 for each α ∈ [0, 1],

which is possible only if x1 ∈ [Sx0]α. Since [Tx1]α is a nonempty compact subset of X, there exists
x2 ∈ [Tx1]α such that

d(x1, x2) 6 H([Sx0]α, [Tx1]α).

Continuing this process, one obtains a sequence {xn} in X such that

x2k+1 ∈ [Sx2k]α, x2k+2 ∈ [Tx2k+1]α, k = 0, 1, 2, · · · ,

and
d(x2k+1, x2k+2) 6 H([Sx2k]α, [Tx2k+1]α), d(x2k+2, x2k+3) 6 H([Sx2k+2]α, [Tx2k+1]α).

As in the proof of Theorem 3.1, we can prove that there exists z ∈ X such that xn → z as n → ∞
and d(z, [S(z)]α) = 0, d(z, [T(z)]α) = 0 for each α ∈ [0, 1]. By Lemma 1.3, we know that zα ⊂ Sz and
zα ⊂ Tz.

Applying Theorem 3.2, we easily obtain the following fixed point theorems for Chen et al. [6] and
Abbas et al. [1, 2] type fuzzy mappings. To this end, we need the following definition.

Definition 3.3 (Chen et al. [6, Definition 2.1]). A function g is said to be a G-distance function if g :
[0,+∞)5 → [0,+∞) is a continuous function and the following properties hold:

(i) g is nondecreasing in the 2nd, 3rd, 4th, and 5th variables;
(ii) if u, v ∈ [0,+∞) are such that u 6 g(v, v,u,u+ v, 0) or u 6 g(v,u, v, 0,u+ v), then u 6 hv, where

0 < h < 1 is a given constant;
(iii) if u ∈ [0,+∞) is such that u 6 g(u, 0, 0,u,u), then u = 0.

Definition 3.4 (Chen et al. [6, Definition 3.1]). A function g is said to be a G′-distance function if g :
[0,+∞)5 → [0,+∞) is a continuous function and the following properties hold:

(i) g is increasing in each co-ordinate variable;
(ii) g(t, t, t,at,bt) 6 t for every t ∈ [0,+∞), where a+ b = 2.

Corollary 3.5 (Chen et al. [6, Theorem 2.1]). Let (X,d) be a complete metric space and g be a G-distance
function. Suppose that S, T : X→ Wα(X) are two fuzzy mappings on X satisfying the following conditions:

φ(H([Sx]α, [Ty]α)) 6 φ(g(d(x,y),d(x, [Sx]α),d(y, [Ty]α),d(x, [Ty]α),d(y, [Sx]α)))
+ Lmin{d(x,y),d(x, [Sx]α),d(y, [Ty]α),d(x, [Ty]α),d(y, [Sx]α)}

for all x,y ∈ X and α ∈ [0, 1], where L > 0, and φ : [0,+∞) → [0,+∞) is a continuous and nondecreasing
function with φ(t) = 0 if and only if t = 0. Then there exists a point z ∈ X such that zα ⊂ Sz and zα ⊂ Tz.
Proof. Let F(t1, t2, t3, t4, t5, t6) = φ(t1) − φ(g(t2, t3, t4, t5, t6)) − Lmin{t2, t3, t4, t5, t6}. It is evident that F
satisfies conditions (F -1) and (F -2) of Definition 2.3.

Now suppose that F(u, v, v,u,u + v, 0) 6 0 or F(u, v,u, v, 0,u + v) 6 0, i.e., φ(u) − φ(g(v, v,u,u +
v, 0)) 6 0 or φ(u) −φ(g(v,u, v, 0,u+ v)) 6 0. From Definition 3.3, we have

φ(u) 6 φ(g(v, v,u,u+ v, 0))⇒ u 6 g(v, v,u,u+ v, 0)⇒ u 6 hv

or
φ(u) 6 φ(g(v,u, v, 0,u+ v))⇒ u 6 g(v,u, v, 0,u+ v)⇒ u 6 hv.

Let ϕ1(t) = ht = ϕ2(t). Note that 0 < h < 1, we have ϕ1 = ϕ2 ∈ (Φ),ϕ(t) = ϕ2(ϕ1(t)) = h2t ∈ (Φ0).
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These show that F ∈ Fϕ, which satisfies inequality (3.10) of Theorem 3.2. Then by Theorem 3.2, the
corollary is proved.

Remark 3.6. From Remarks 2.1-2.3 and Corollaries 2.5-2.6 in Chen et al. [6], we easily know that Theorems
3.2 and 3.3 in Park and Jeong [13], Theorem 3.2 in Arora and Sharma [4], Theorem 3.1 in Estruch and
Vidal [7], and Theorem 3.1 in Heilpern [8] are special cases of Corollary 3.5. Therefore, Corollary 3.5
improves and extends the main results of [4, 6–8, 13].

Corollary 3.7 (Chen et al. [6, Theorem 3.1]). Let (X,d) be a complete metric space and g be a G′-distance
function. Suppose that S, T : X→ Wα(X) are two fuzzy mappings on X satisfying the following conditions:

H([Sx]α, [Ty]α) 6 ψ(g(d(x,y),d(x, [Sx]α),d(y, [Ty]α),d(x, [Ty]α),d(y, [Sx]α)))
+ Lφ(min{d(x, [Sx]α),d(y, [Ty]α),d(x, [Ty]α),d(y, [Sx]α)})

for all x,y ∈ X and α ∈ [0, 1], where L > 0, ψ ∈ (Φ0), and φ : [0,+∞) → [0,+∞) is a lower semi-continuous
function with φ(t) = 0 if and only if t = 0. Then there exists a point z ∈ X such that zα ⊂ Sz and zα ⊂ Tz.

Proof. Let F(t1, t2, t3, t4, t5, t6) = t1 −ψ(g(t2, t3, t4, t5, t6)) − Lφ(min{t3, t4, t5, t6}). It is evident that F satis-
fies conditions (F -1) and (F -2) of Definition 2.3.

Now suppose that F(u, v, v,u,u+ v, 0) 6 0 or F(u, v,u, v, 0,u+ v) 6 0, i.e., u−ψ(g(v, v,u,u+ v, 0)) 6 0
or u−ψ(g(v,u, v, 0,u+ v)) 6 0. From Definition 3.4, if u > v > 0, then we have u 6 ψ(g(v, v,u,u+ v, 0)) 6
ψ(g(u,u,u, 2u, 0 · u)) 6 ψ(u) < u or u 6 ψ(g(v,u, v, 0,u+ v)) 6 ψ(g(u,u,u, 0 · u, 2u) 6 ψ(u) < u, which
is a contradiction. Hence u 6 v, i.e., u 6 ψ(v). Let ϕ1(t) = ψ(t) = ϕ2(t). Note that ψ ∈ (Φ0), we have
ϕ1 = ϕ2 ∈ (Φ),ϕ(t) = ϕ2(ϕ1(t)) = ψ2(t) ∈ (Φ0). These show that F ∈ Fϕ, which satisfies inequality
(3.10) of Theorem 3.2. Then by Theorem 3.2, the corollary is proved.

Remark 3.8. Taking g(t2, t3, t4, t5, t6) = max{t2, t3, t4, t4+t5
2 } in Corollary 3.7, we can obtain Theorems 3 in

Abbas et al. [1]. Taking g(t2, t3, t4, t5, t6) = max{t2, t3, t4, t4+t5
2 } and S = T in Corollary 3.7, we can obtain

Theorems 2.1 in Abbas and Turkoglu [2]. Therefore, Corollary 3.7 improves and extends the main results
of [1, 2, 6].

Corollary 3.9. Let (X,d) be a complete metric space. Suppose that S, T : X → Wα(X) are two fuzzy mappings on
X satisfying the following conditions:

H2([Sx]α, [Ty]α) 6 c1 max{d2(x,y),d2(x, [Sx]α),d2(y, [Ty]α)}
+ c2 max{d(x, [Sx]α)d(x, [Ty]α),d(y, [Sx]α)d(y, [Ty]α)}
+ c3d(x, [Ty]α)d(y, [Sx]α)

(3.11)

for all x,y ∈ X and α ∈ [0, 1], where c1, c2, c3 > 0 with c1 + 2c2 < 1. Then there exists a point z ∈ X such that
zα ⊂ Sz and zα ⊂ Tz.

Proof. Let F(t1, t2, t3, t4, t5, t6) = t
2
1 − c1 max{t2

2, t2
3, t2

4}− c2 max{t3t5, t4t6}− c3t5t6. It is evident that F satis-
fies conditions (F -1) and (F -2) of Definition 2.3.

Now suppose that F(u, v, v,u,u + v, 0) 6 0 or F(u, v,u, v, 0,u + v) 6 0, i.e., u2 6 c1 max{v2,u2} +
c2v(u+ v). If u > v > 0, then we have u2 6 (c1 + 2c2)u

2 < u2, which is a contradiction. Hence u 6 v, i.e.,
u 6

√
c1 + 2c2v. Let ϕ1(t) =

√
c1 + 2c2t = ϕ2(t). Note that c1 + 2c2 < 1, we have ϕ1 = ϕ2 ∈ (Φ),ϕ(t) =

ϕ2(ϕ1(t)) = (c1 + 2c2)t ∈ (Φ0). These show that F ∈ Fϕ, which satisfies inequality (3.10) of Theorem 3.2.
Then by Theorem 3.2, the corollary is proved.

Remark 3.10. Note that D(Sx, Ty) = supαH([Sx]α, [Ty]α) and d(x,Sx) = supα d(x, [Sx]α), from (3.11), we
can prove that for all x,y ∈ X,

D2(Sx, Ty) 6 c1 max{d2(x,y),d2(x,Sx),d2(y, Ty)}+ c2 max{d(x,Sx)d(x, Ty),d(y,Sx)d(y, Ty)}
+ c3d(x, Ty)d(y,Sx).
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Then the conclusion of Corollary 3.9 remains valid. Moreover, this result generalizes Theorem 3.3 in
Ahmed [3]. Our result shows that the condition c2 + c3 < 1 in Theorem 3.3 in Ahmed [3] is unnecessary.
Further, by Remark 3.2 (II) in Ahmed [3], we can see that Corollary 3.9 also generalizes Theorem 3.3 of
Park and Jeong [13].

Corollary 3.11. Let (X,d) be a complete metric space. Suppose that S, T : X→ Wα(X) are two fuzzy mappings on
X satisfying the following conditions:

H2([Sx]α, [Ty]α) 6 a1d
2(x,y) + a2d(x, [Sx]α)d(y, [Ty]α) + a3d(x, [Ty]α)d(y, [Sx]α)

+ a4d(x,y)d(x, [Sx]α) + a5d(x,y)d(y, [Ty]α)

for all x,y ∈ X and α ∈ [0, 1], where a1,a2,a3,a4,a5 > 0 and a1 + a2 + a4 + a5 < 1. Then there exists a point
z ∈ X such that zα ⊂ Sz and zα ⊂ Tz.

Proof. We can consider the function F(t1, t2, t3, t4, t5, t6) = t2
1 − a1t

2
2 − a2t3t4 − a3t5t6 − a4t2t3 − a5t2t4. It

is evident that F satisfies conditions (F -1) and (F -2) of Definition 2.3.
Now suppose that F(u, v, v,u,u+ v, 0) 6 0 or F(u, v,u, v, 0,u+ v) 6 0, i.e., u2 − a1v

2 − a2vu− a4v
2 −

a5uv 6 0 or u2 − a1v
2 − a2uv − a4vu − a5v

2 6 0. If u > v > 0, then we have u2 6 (a1 + a2 + a4 +
a5)u

2 < u2, which is a contradiction. Hence u 6 v, i.e., u 6
√
a1 + a2 + a4 + a5v. Let ϕ1(t) =√

a1 + a2 + a4 + a5t = ϕ2(t). Note that
√
a1 + a2 + a4 + a5 < 1, we have ϕ1 = ϕ2 ∈ (Φ),ϕ(t) =

ϕ2(ϕ1(t)) ∈ (Φ0). These show that F ∈ Fϕ, which satisfies inequality (3.10) of Theorem 3.2. Then
by Theorem 3.2, the corollary is proved.

Remark 3.12. Our result shows that the condition a1 + a3 < 1 in Theorem 4.1 in Chen et al. [6] is unneces-
sary, which implies that Corollary 3.11 generalizes Theorem 4.1 of Chen et al. [6].

Note that Ψ ⊂ Fϕ, in Theorem 3.2, taking F ∈ Ψ, we obtain the following corollary.

Corollary 3.13. Let (X,d) be a complete metric space and S, T : X→ Wα(X) be two fuzzy mappings on X. Suppose
that there exists F ∈ Fϕ such that

F(H([Sx]α, [Ty]α),d(x,y),d(x, [Sx]α),d(y, [Ty]α),d(x, [Ty]α),d(y, [Sx]α)) 6 0

for all x,y ∈ X and α ∈ [0, 1]. Then there exists z ∈ X such that zα ⊂ Sz and zα ⊂ Tz.

Remark 3.14. This result generalizes Theorem 2.6 in Beg and Ahmed [5]. Moreover, by Remark 2.8 in Beg
and Ahmed [5], we can see that Corollary 3.13 also generalizes Theorem 2.1 of Rashwan and Ahmed [14].

4. Applications and examples

In this section, we first establish a common fixed point theorem for multi-valued mappings satisfying
an implicit ϕ-contractive conditions in complete metric spaces. After that, we give two examples to
discuss the validity of the hypotheses of Theorem 3.1, by which we can claim that our results improve
and extend several known results in the existing literature.

Theorem 4.1. Let (X,d) be a complete metric space and S, T : X→ C (X) be two multi-valued mappings. Suppose
that there exists F ∈ Fϕ such that for all x,y ∈ X

F(H(Sx, Ty),d(x,y),d(x,Sx),d(y, Ty),d(x, Ty),d(y,Sx)) 6 0.

Then there exists z ∈ X such that z ∈ Sz∩ Tz.

Proof. Let the fuzzy mappings S, T : X→ F (X) be defined as S(x) = χS(x) and T(x) = χT(x), where χA is
the characteristic function on any subset A of X. Using the facts [Sx]α(x) = S(x), [Tx]α(x) = T(x) for any
α(x) ∈ [0, 1], it is evident that S and T satisfy the conditions of Theorem 3.1. Then, by Theorem 3.1, the
theorem is proved.
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Corollary 4.2 (Iseki [9]). Let (X,d) be a complete metric space and S, T : X→ C (X) be two multi-valued mappings.
Suppose that for all x,y ∈ X

H(Sx, Ty) 6 ad(x,y) + b[d(x,Sx) + d(y, Ty)] + c[d(x, Ty) + d(y,Sx)],

where a,b, c > 0 with a+ 2b+ 2c < 1. Then there exists z ∈ X such that z ∈ Sz∩ Tz.

Proof. We consider the function F : R+
6 → R defined by

F(t1, t2, t3, t4, t5, t6) = t1 − at2 − b(t3 + t4) − c(t5 + t6).

Since F ∈ Fϕ we can apply Theorem 4.1 and obtain Corollary 4.2.

Corollary 4.3 (Singh and Whitfield [16]). Let (X,d) be a complete metric space and S, T : X → C (X) be two
multi-valued mappings. Suppose that for all x,y ∈ X

H(Sx, Ty) 6 amax{d(x,y),
1
2
[d(x,Sx) + d(y, Ty)],

1
2
[d(x, Ty) + d(y,Sx)]},

where a ∈ [0, 1). Then there exists z ∈ X such that z ∈ Sz∩ Tz.

Proof. We consider the function F : R+
6 → R defined by

F(t1, t2, t3, t4, t5, t6) = t1 − amax{t2,
1
2
(t3 + t4),

1
2
(t5 + t6)}.

Since F ∈ Fϕ, we can apply Theorem 4.1 and obtain Corollary 4.3.

Example 4.4. Let X = [0, 2] endowed with the metric d defined by d(x,y) = |x− y|. It is clear that (X,d) is
a complete metric space. Assume that F(t1, t2, t3, t4, t5, t6) = t1 −

1
2t2 −

3
8t6 for all t1, t2, t3, t4, t5, t6 ∈ R+. It

is obvious that F ∈ Fϕ, where ϕ1(t) =
1
2t,ϕ2(t) =

7
5t and ϕ(t) = 7

10t. Let S = T . Define a fuzzy mapping
S on X such that

(Sx)(z) =

{
1, z = 0,
0, z 6= 0, for all x ∈ [0, 1];

and

(Sx)(z) =

{
1, z = 1/8,
0, z 6= 1/8, for all x ∈ (1, 2].

Then we have
[Sx]1 = [Sx]α = {0} for all x ∈ [0, 1] and α ∈ (0, 1];

and
[Sx]1 = [Sx]α = {

1
8
} for all x ∈ (1, 2] and α ∈ (0, 1].

For x,y ∈ X, we only need to consider the following two cases.

Case 1. If x ∈ [0, 1] and y ∈ (1, 2], then for all α ∈ (0, 1] we have

1
8
−

1
2
|x− y|−

3
8
|y− 0| 6 0,

which implies that (3.1) holds.
Case 2. If x ∈ (1, 2] and y ∈ [0, 1], then for all α ∈ (0, 1] we have

1
8
−

1
2
|x− y|−

3
8
|y−

1
8
| 6

{ 1
8 −

3
8

∣∣11
24 −

1
8

∣∣ = 0, y ∈ [ 11
24 , 1],

1
8 −

1
2

∣∣1 − 11
24

∣∣ < 0, y ∈ [0, 11
24),

which implies that (3.1) also holds.
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Thus, the conditions of Theorem 3.1 are satisfied, and there exists 0 ∈ X such that 0 ∈ [S0]α for all
α ∈ (0, 1]. This shows the validity of the hypotheses of our main results.

Example 4.5. Let X = [0,+∞) and d be a discrete metric, then (X,d) is a complete metric space. Assume
that F(t1, t2, t3, t4, t5, t6) = t1 −

1
40t2 −

1
40t3 −

19
40t4 −

1
40t5 −

1
2t6 for all t1, t2, t3, t4, t5, t6 ∈ R+. By Example

2.9, we can see that F ∈ Fϕ, where ϕ1(t) = 3
20t,ϕ2(t) = 40

19t ∈ (Φ) and ϕ(t) = 6
19 ∈ (Φ0). Define two

fuzzy mappings S, T : X→ Wα(X) as follows:

(Sx)(z) =

{
1, z = 0,
0, z 6= 0, for all x ∈ [0,+∞),

(T3)(z) =
{

1, z = 1,
0, z 6= 1, (Tx)(z) =

{
1, z = 0,
0, z 6= 0, for all x ∈ [0,+∞)\{3}.

Then we have
[Sx]1 = [Sx]α = {0} for all x ∈ [0, 1] and α ∈ [0,+∞);

and

[Ty]1 = [Ty]α =

{
{1}, y = 3,
{0}, y 6= 3, for all α ∈ (0, 1].

For x,y ∈ X, we need to consider the following five cases.

Case 1. If x ∈ [0,+∞) and y ∈ [0,+∞)\{3}, then for all α ∈ (0, 1] we have

H({0}, {0}) −
1
40
d(x,y) −

1
40
d(x, {0}) −

19
40
d(y, {0}) −

1
40
d(x, {0}) −

1
2
d(y, {0}) 6 0,

which implies that (3.1) holds.
Case 2. If x = 0 and y = 3, then for all α ∈ (0, 1] we have

H({0}, {1}) −
1
40
d(0, 3) −

1
40
d(0, {0}) −

19
40
d(3, {1}) −

1
40
d(0, {1}) −

1
2
d(3, {0}) = −

1
40

6 0,

which implies that (3.1) also holds.
Case 3. If x = 1 and y = 3, then for all α ∈ (0, 1] we have

H({0}, {1}) −
1
40
d(1, 3) −

1
40
d(1, {0}) −

19
40
d(3, {1}) −

1
40
d(1, {1}) −

1
2
d(3, {0}) = −

1
40

6 0.

Case 4. If x = 3 and y = 3, then for all α ∈ (0, 1] we have

H({0}, {1}) −
1
40
d(3, 3) −

1
40
d(3, {0}) −

19
40
d(3, {1}) −

1
40
d(3, {1}) −

1
2
d(3, {0}) = −

1
40

6 0.

Case 5. If x = [0,+∞)\{0, 1, 3} and y = 3, then for all α ∈ (0, 1] we have

H({0}, {1}) −
1
40
d(x, 3) −

1
40
d(x, {0}) −

19
40
d(3, {1}) −

1
40
d(x, {1}) −

1
2
d(3, {0}) = −

1
20

6 0.

Thus, the conditions of Theorem 3.1 are satisfied, and there exists 0 ∈ X such that 0 ∈ {0} = [S0]α ∩ [T0]α
for all α ∈ (0, 1]. But for any ai > 0 (i = 1, 2, · · · , 5) with

∑5
i=1 ai < 1, we have

H([S3]α, [T3]α) = H({0}, {1}) = 1 > a1 + a2 + a3 + a4 + a5

> a1d(3, 3) + a2
1
40
d(3, {0}) + a3d(3, {1}) + a4d(3, {1}) + a5d(3, {0})

for all α ∈ (0, 1]. Thus S, T cannot satisfy the general contractive condition
∑5
i=1 ai < 1. This shows that

our results improve and extend several known results in the existing literature.
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