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Abstract

In this paper, we study a three species predator-prey time-delay chain model with stochastic perturbation. First, we analyze
that this system has a unique positive solution. Then, we deduce the conditions that the system is persistent in time average.
After that, conditions for the system going to be extinction in probability are established. At last, numerical simulations are
carried out to support our results. c©2017 All rights reserved.
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1. Introduction

The most exciting modern application of mathematics is used in biology. As we know, two species
systems such as predator-prey, plant-pest systems etcetera has been one of the dominant theme in the
importance of ecology and mathematics because of its widespread. After that, the predator-prey chain
model is the typical representative.

As we know, until the late 70s, some interest mathematics tritrophic food chain model appeared [5, 6].
One of the most famous population dynamics model on ecological system has received a lot of attention
and extensive research which named Lotka-Volterra predator-prey system, refer to [3, 10, 20]. Especially
the persistence and extinction of this model is very interesting topic.

The three species predator-prey chain model is described as follows:
ẋ1(t) = x1(t) (a1 − b11x1(t) − b12x2(t)) ,
ẋ2(t) = x2(t) (−a2 + b21x1(t) − b22x2(t) − b23x3(t)) ,
ẋ3(t) = x3(t) (−a3 + b32x2(t) − b33x3(t)) ,

(1.1)
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where xi(t)(i,= 1, 2, 3) represent the densities of prey, mid-level predator, and top predator species at
time t, respectively. The parameters a1,a2,a3,bii(i,= 1, 2, 3) are positive constants that stand for intrinsic
growth rate, predator death rate of the second species, predator death rate of the third species, and
coefficient of internal competition, respectively. b21,b32 represent saturated rate of the second and the
third predator, b12,b23 represent the decrement rate of predator to prey. System (1.1) describes a three
species predator-prey chain model in which the latter preys on the former. From a biological viewpoint,
we not only require the positive solution of the system but also require its unexploded property in any
finite time and stability.

We know that the global asymptotic stability of a positive equilibrium x∗ = (x∗1 , x∗2 , x∗3) holds and is
global stable if the following condition holds:

a1 −
b11

b21
a2 −

b11b22 + b12b21

b21b32
a3 > 0,

which could refer to [9].
In a recent period of time, it is easy to understand in the process of both natural and man-made

involve the time delay, such as biology, medicine and so on. Kuang [19] mentioned that animals must
take time to digest their food before further activities and responses take place. So, the dynamic model of
any species lack of delay is an approximate model. Standard for three classes dynamic model of a single
species with independent discrete delay to have global asymptotic stability equilibrium point was set up
by friedman and Gopalsamy [4]. By constructing proper lyapunov functionals, the global stability of the
time-delay systems is studied by Xiaoqing et al. [28]. Hence, we introduce time-delays in system (1.1) and
suppose that the middle carnivore specie needs time τ to have the ability to hunt after birth and it just
captures prey and τ mature adult. Similarly, suppose that the top carnivore specie needs time τ to have
the ability to hunt after birth and it just captures mid-level and τ ([8, 14, 22]) mature adult predator. Then
we get 

ẋ1(t) = x1(t) (a1 − b11x1(t) − b12x2(t− τ)) ,
ẋ2(t) = x2(t) (−a2 + b21x1(t− τ) − b22x2(t) − b23x3(t− τ)) ,
ẋ3(t) = x3(t) (−a3 + b32x2(t− τ) − b33x3(t)) .

(1.2)

However, population dynamic system in the real environment is unavoidable influenced by environ-
mental noise (see, e.g., [7, 8]). The parameters in the system are not absolute constants, they are always
in some near average. So we can not ignore the influence of noise on the system. Recently many authors
have discussed population systems subject to white noise (see, e.g., [12, 13, 15–17, 23, 29]). May (see, e.g.,
[25]) pointed out that due to continuous fluctuation in the environment, the equilibrium distribution does
not reach a stable value, but fluctuates randomly near the average value.

Therefore, Lotka-Volterra predator-prey chain models in random environments are becoming popular.
Ji et al. [15, 16] investigated the asymptotic behavior of the stochastic predator-prey system with pertur-
bation. Polansky [26] and Barra et al. [1] have given some special systems of their invariant distribution.
After that, Gard [9] analysed that under some conditions the stochastic food chain model exists an invari-
ant distribution. Mao et al. [24] have discussed nonexplosion, persistence, and asymptotic stability of the
stochastic delay equations, they pointed out that the noise will not only suppress a potential population
explosion in the delay model but will also make the population to be stochastically ultimately bounded.
However, seldom people investigate the persistent and non-persistent of the food chain time-delay model
with stochastic perturbation. Li et al. have studied the food chain model with stochastic perturbation in
[21], and this paper is a continuation of the previous article.

In this paper, we introduce the white noise into the intrinsic growth rate of system (1.2), and suppose
ai → ai + σiḂi(t) (i = 1, 2, 3), then we obtain the following stochastic system

dx1(t) = x1(t) (a1 − b11x1(t) − b12x2(t− τ))dt+ σ1x1(t)dB1(t),
dx2(t) = x2(t) (−a2 + b21x1(t− τ) − b22x2(t) − b23x3(t− τ))dt− σ2x2(t)dB2(t),
dx3(t) = x3(t) (−a3 + b32x2(t− τ) − b33x3(t))dt− σ3x3(t)dB3(t),

(1.3)
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where Bi(t) (i = 1, 2, 3) are independent white noises with Bi(0) = 0,σ2
i > 0 (i = 1, 2, 3) representing the

intensities of the noise.
The aim of this paper is to discuss the long time behavior of system (1.3) by stochastic comparison

theorem which is different from Mao et al. [24]. We have mentioned that x∗ = (x∗1 , x∗2 , x∗3) is also the
positive equilibrium of system (1.2). But, when it is suffered stochastic perturbations, there is no positive
equilibrium. Hence, it is impossible that the solution of system (1.3) will tend to a fixed point. In this
paper, we show that system (1.3) is persistent in time average. Furthermore, under certain conditions, we
prove the population of system (1.3) will die out in probability which will not happen in deterministic
system and could reveal that large white noise may lead to extinction.

The rest of this paper is organized as follows. In Section 2, we show that there is a unique non-negative
solution of system (1.3). In Section 3, we show that system (1.3) is persistent in time average. While in
Section 4, we consider three situations when the population of the system will be extinction. In Section 5,
numerical simulations are carried out to support our results.

Throughout this paper, unless otherwise specified, let (Ω, {Ft}t>0,P) be a complete probability space
with a filtration {Ft}t>0 satisfying the usual conditions (i.e., it is right continuous and F0 contains all
P-null sets). Let R3

+ denote the positive cone of R3, namely R3
+ = {x ∈ R3 : xi > 0, 1 6 i 6 3}, R̄3

+ = {x ∈
R3 : xi > 0, 1 6 i 6 3}.

2. Existence and uniqueness of the nonnegative solution

To investigate the dynamical behavior, the first concern thing is whether the solution is global exis-
tence. Moreover, for a population model, whether the solution is nonnegative is also considered. Hence,
in this section we show that the solution of system (1.3) is global and nonnegative. As we have known,
in order for a stochastic differential equation to have a unique global (i.e., no explosion at a finite time)
solution with any given initial value, the coefficients of the equation are generally required to satisfy the
linear growth condition and local Lipschitz condition (see, e.g., [22]). It is easy to see that the coefficients
of system (1.3) are locally Lipschitz continuous, so system (1.3) has a local solution. By Theorem 2.2, we
show the global existence of this solution.

Let N(t) be the solution of the non-autonomous logistic equation with random perturbation

dN(t) = N(t)[(a(t) − b(t)N(t))dt+α(t)dB(t)], (2.1)

where B(t) is one-dimensional standard Brownian motion, N(0) = N0 > 0 and N0 is independent of B(t).

Lemma 2.1 ([18]). There exists a unique continuous solution N(t) of (2.1) for any initial value N(0) = N0 > 0,
which is global and represented by

N(t) =
exp{

∫t
0 [a(s) −

σ2(s)
2 ]ds+ σ(s)dB(s)}

1/N0 +
∫t

0 b(s) exp{
∫s

0 [a(τ) −
σ2(τ)

2 ]dτ+ σ(τ)dB(τ)}ds
, t > 0. (2.2)

In order to get the conclusion, we should introduce two systems first,
dΦ1(t) = Φ1(t) (a1 − b11Φ1(t))dt+ σ1Φ1(t)dB1(t),
dΦ2(t) = Φ2(t) (−a2 + b21Φ1(t− τ) − b22Φ2(t))dt− σ2Φ2(t)dB2(t),
dΦ3(t) = Φ3(t) (−a3 + b32Φ2(t− τ) − b33Φ3(t))dt− σ3Φ3(t)dB3(t),
Φi(t) = ξi(t) ∈ C([−τ, 0];R+), i = 1, 2, 3,

(2.3)

and 
dI1(t) = I1(t) (a1 − b11I1(t) − b12Φ2(t− τ))dt+ σ1I1(t)dB1(t),
dI2(t) = I2(t) (−a2 + b21I1(t− τ) − b22I2(t) − b23Φ3(t− τ))dt− σ2I2(t)dB2(t),
dI3(t) = I3(t) (−a3 + b32I2(t− τ) − b33I3(t))dt− σ3I3(t)dB3(t),
Ii(t) = ξi(t) ∈ C([−τ, 0];R+) i = 1, 2, 3,

(2.4)
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where

Φ(t) = (Φ1(t),Φ2(t),Φ3(t))
ᵀ, I(t) = (I1(t), I2(t), I3(t))ᵀ,

are the solutions of the above stochastic differential equations with time delay.

Theorem 2.2. For any initial data x(t) = {(ξ1(t), ξ2(t), ξ3(t)) : −τ 6 t 6 0} ∈ C([−τ, 0];R3
+), the positive

solution of system (1.3) has the property that

I(t) 6 x(t) 6 Φ(t),

i.e.,

Ii(t) 6 xi(t) 6 Φi(t), i = 1, 2, 3,

where

Φ(t) = (Φ1(t),Φ2(t),Φ3(t))
ᵀ, I(t) = (I1(t), I2(t), I3(t))ᵀ,

are solutions of systems (2.3) and (2.4) stochastic differential equations with time delay.

Proof. Let z1(t) =
1

x1(t)
. Then, by Itô’s formula, we have

dz1(t) = d(
1

x1(t)
) =− [(

a1

x1(t)
−
b12x2(t− τ)

x1(t)
− b11)dt+

σ1

x1(t)
dB1(t)] +

σ2
1

x1(t)
dt

=[(σ2
1 − a1)z1(t) + b11 +

b12x2(t− τ)

x1(t)
]dt− σ1z1(t)dB1(t)

=[(σ2
1 − a1)dt− σ1dB1(t)]z1(t) + (b11 +

b12x2(t− τ)

x1(t)
)dt.

That is,

dz1(t) = [(σ2
1 − a1)dt− σ1dB1(t)]z1(t) + (b11 +

b12x2(t− τ)

x1(t)
)dt.

Then

z1(t) =e
∫t

0(
σ2

1
2 −a1)ds−σ1dB1(s)[

1
x1(0)

+

∫t
0
(b11 +

b12x2(t− τ)

x1(t)
)e

∫s
0 (a1−

σ2
1

2 )dτ+σ1dB1(τ)ds]

=e(
σ2

1
2 −a1)t−σ1B1(t)[

1
x1(0)

+

∫t
0
(b11 +

b12x2(t− τ)

x1(t)
)e(a1−

σ2
1

2 )s+σ1B1(s)ds]

>e(
σ2

1
2 −a1)t−σ1B1(t)[

1
x1(0)

+

∫t
0
b11e

(a1−
σ2

1
2 )s+σ1B1(s)ds]

=Φ−1
1 (t).

By Lemma 2.1, we obtain that Φ1(t) is the solution of the following equation

dΦ1(t) = Φ1(t) (a1 − b11Φ1(t))dt+ σ1Φ1(t)dB1(t).

Hence, we have

x1(t) 6 Φ1(t), a.s..
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On the other hand, let z2(t) =
1

x2(t)
. Then, by Itô’s formula, we could derive that

dz2(t) = d(
1

x2(t)
) =− [(−

a2

x2(t)
+
b21x1(t− τ)

x2(t)
− b22 −

b23x3(t− τ)

x2(t)
)dt−

σ2

x2(t)
dB2(t)] +

σ2
2

x2(t)
dt

=[(σ2
2 + a2)z2(t) + b22 − b21x1(t− τ)z2(t) − b23x3(t− τ)z2(t)]dt+ σ2z2(t)dB2(t)

=[(σ2
2 + a2 − b21x1(t− τ) − b23x3(t− τ))dt+ σ2dB2(t)]z2(t) + b22dt,

then

z2(t) =
1

x2(0)
e(
σ2

2
2 +a2)t+σ2B2(s)−b21

∫t
0 x1(s−τ)ds+b23

∫t
0 x3(s−τ)ds

+ b22

∫t
0
e(a2+

σ2
2

2 )(t−s)+σ2(B2(t)−B2(s))−b21
∫t
s x1(µ−τ)dµ+b23

∫t
s x3(µ−τ)dµds

>
1

x2(0)
e(
σ2

2
2 +a2)t+σ2B2(s)−b21

∫t
0 x1(s−τ)ds

+ b22

∫t
0
e(a2+

σ2
2

2 )(t−s)+σ2(B2(t)−B2(s))−b21
∫t
sΦ1(µ−τ)dµds

=Φ−1
2 (t).

Therefore

x2(t) 6 Φ2(t), a.s..

By Lemma 2.1, we obtain that Φ2(t) is the solution of the following equation

dΦ2(t) = Φ2(t) (−a2 + b21Φ1(t− τ) − b22Φ2(t))dt− σ2Φ2(t)dB2(t).

At last, let z3(t) =
1

x3(t)
. Then, by Itô’s formula, we could derive that

dz3(t) = d(
1

x3(t)
) =− [(−

a3

x3(t)
+
b32x2(t− τ)

x3(t)
− b33)dt−

σ3

x3(t)
dB3(t)] +

σ2
3

x3(t)
dt

=[(σ2
3 + a3)z2(t) + b33 − b32x2(t− τ)z3(t)]dt+ σ3z3(t)dB3(t)

=[(σ2
3 + a3 − b32x2(t− τ))dt+ σ2dB3(t)]z2(t) + b33dt,

then

z3(t) =
1

x3(0)
e(
σ2

3
2 +a3)t+σ3B3(s)−b32

∫t
0 x2(s−τ)ds

+ b33

∫t
0
e(a3+

σ2
3

2 )(t−s)+σ3(B3(t)−B3(s))−b32
∫t
s x2(µ−τ)dµds

>
1

x3(0)
e(
σ2

3
2 +a3)t+σ3B3(s)−b32

∫t
0 Φ2(s−τ)ds

+ b33

∫t
0
e(a3+

σ2
3

2 )(t−s)+σ3(B3(t)−B3(s))−b32
∫t
sΦ2(µ−τ)dµds

=Φ−1
3 (t),

then, it is easy to see that Φ3(t) is the solution of the following equation

dΦ3(t) = Φ3(t) (−a3 + b32Φ2(t− τ) − b33Φ3(t))dt− σ3Φ3(t)dB3(t),
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and

x3(t) 6 Φ3(t), a.s..

In the same method, we could derive that

xi(t) > Ii(t) a.s., i = 1, 2, 3,

where I(t) = (I1(t), I2(t), I3(t))ᵀ is the solution of system (2.4).

Remark 2.3. From Lemma 2.1, we know

1
Φ1(t)

=
1

x1(0)
e(
σ2

1
2 −a1)t−σ1B1(t) + b11

∫t
0
e(
σ2

1
2 −a1)(t−s)−σ1(B1(t)−B1(s))ds,

1
Φ2(t)

=
1

x2(0)
e(
σ2

2
2 +a2)t+σ2B2(t)−b21

∫t
0 Φ1(s−τ)ds + b22

∫t
0
e(
σ2

2
2 +a2)(t−s)+σ2(B2(t)−B2(s))−b21

∫t
sΦ1(µ−τ)dµds,

1
Φ3(t)

=
1

x3(0)
e(
σ2

3
2 +a3)t+σ3B3(t)−b32

∫t
0 Φ2(s−τ)ds + b33

∫t
0
e(
σ2

3
2 +a3)(t−s)+σ3(B3(t)−B3(s))−b32

∫t
sΦ2(µ−τ)dµds;

and

1
I1(t)

=
1

x1(0)
e(
σ2

1
2 −a1)t−σ1B1(t)+b12

∫t
0 Φ2(s−τ)ds + b11

∫t
0
e(
σ2

1
2 −a1)(t−s)−σ1(B1(t)−B1(s))+b12

∫t
0 Φ2(µ−τ)dµds,

1
I2(t)

=
1

x2(0)
e(
σ2

2
2 +a2)t+σ2B2(t)−b21

∫t
0 I1(s−τ)ds+b23

∫t
0 Φ3(s−τ)ds

+ b22

∫t
0
e(
σ2

2
2 +a2)(t−s)+σ2(B2(t)−B2(s))−b21

∫t
s I1(µ−τ)dµ+b23

∫t
0 Φ3(µ−τ)dµds,

1
I3(t)

=
1

x3(0)
e(
σ2

3
2 +a3)t+σ3B3(t)−b32

∫t
0 I2(s−τ)ds + b33

∫t
0
e(
σ2

3
2 +a3)(t−s)+σ3(B3(t)−B3(s))−b32

∫t
s I2(µ−τ)dµds.

From the representations of Φi(t) and Ii(t), (i=1,2,3), Theorem 2.2 tells us the species will not reach zero
in finite time.

From now on, we denote the unique global positive solution of system (1.3) with the given initial data
ξ = {ξ(t) = (ξ1(t), ξ2(t), ξ3(t)) : −τ 6 t 6 0} ∈ C([−τ, 0];R+3 ) by x(t, ξ). In the same way, we define the
solutions of systems (2.3) and (2.4) by Φ(t, ξ), I(t, ξ).

3. Persistent in time average

There is no equilibrium of system (1.3). Hence we can not show the permanence of the system by
proving the stability of the positive equilibrium as the deterministic system. In this section we first show
that this system is persistent in mean. Before we give the result, we should do some preparation work.

Chen et al. in [2] proposed the definition of persistence in mean for the deterministic system. Here,
we also use this definition for the stochastic system.

Definition 3.1. System (1.3) is said to be persistent in mean, if

lim inf
t→∞ 1

t

∫t
0
x3(s)ds > 0, a.s..

Before giving the result, we do some preparation work.
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Lemma 3.2 ([27]). Let f ∈ C ([0,+∞)×Ω, (0,+∞)), F ∈ C ([0,+∞)×Ω,R). If there exist positive constants
λ0, λ, such that

log f(t) > λt− λ0

∫t
0
f(s)ds+ F(t), t > 0 a.s.,

and lim
t→∞ F(t)

t = 0 a.s., then

lim inf
t→∞ 1

t

∫t
0
f(s)ds >

λ

λ0
, a.s..

From Lemma 3.2, it is easy to see that we could get Lemmas 3.3 and 3.4 with the same method.

Lemma 3.3. Let f ∈ C ([0,+∞)×Ω, (0,+∞)), F ∈ C ([0,+∞)×Ω,R). If there exist positive constants λ0, λ,
such that

log f(t) 6 λt− λ0

∫t
0
f(s)ds+ F(t), t > 0, a.s.,

and lim
t→∞ F(t)

t = 0, a.s., then

lim sup
t→∞

1
t

∫t
0
f(s)ds 6

λ

λ0
, a.s..

Lemma 3.4. Let f ∈ C ([0,+∞)×Ω, (0,+∞)), F ∈ C ([0,+∞)×Ω,R). If there exist positive constants λ0, λ,
such that

log f(t) = λt− λ0

∫t
0
f(s)ds+ F(t), t > 0, a.s.,

and lim
t→∞ F(t)

t = 0, a.s., then

lim
t→∞ 1

t

∫t
0
f(s)ds =

λ

λ0
, a.s..

Assumption 3.5.

r1 −
b11

b21
r2 −

b11b22 + b12b21

b21b32
r3 > 0, r1 = a1 −

σ2
1

2
> 0, ri = ai +

σ2
i

2
i = 2, 3.

Lemma 3.6. If Assumption 3.5 is satisfied, then the solution Φ(t, ξ) of system (2.2) has the following property:

lim
t→∞ logΦi(t)

t
= 0, lim

t→∞ 1
t

∫t
0
Φi(s)ds =Mi, a.s.,

where

M1 =
r1

b11
, M2 =

r1b21 − r2b11

b11
, M3 =

r1b21b32 − r2b11b32 − r3b11b22

b11b22b33
.

Proof. From the results in [16] and if Assumption 3.5 is satisfied, we know

lim
t→∞ logΦ1(t)

t
= 0, lim

t→∞ 1
t

∫t
0
Φ1(s)ds =

a1 −
σ2

1
2

b11
=
r1

b11
=M1, a.s., (3.1)

besides, according to Itô’s formula, the second population of system (2.2) is changed into

d logΦ2(t) = (−r2 + b21Φ1(t− τ) − b22Φ2(t))dt− σ2dB2(t).

It then follows

logΦ2(t) = logΦ2(0) − r2t+ b21

∫t
0
Φ1(s− τ)ds− b22

∫t
0
Φ2(s)ds− σ2B2(t). (3.2)
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Notice that ∫t
0
Φ1(s− τ)ds =

∫t−τ
−τ

Φ1(s)ds =

∫ 0

−τ
ξ1(s)ds+

∫t
0
Φ1(s)ds−

∫t
t−τ

Φ1(s)ds, (3.3)

and from the second equation of (3.1), we get lim
t→∞ 1

t

∫t
t−τΦ1(s)ds = 0, dividing the equation (3.3) both

sides by t, and taking t→∞, yields

lim
t→∞ 1

t

∫t
0
Φ1(s− τ)ds = lim

t→∞ 1
t

∫t
0
Φ1(s)ds =M1,

so

lim
t→0

logΦ2(0) − r2t+ b21
∫t

0 Φ1(s− τ)ds− σ2B2(t)

t
= −r2 + b21

r1

b11
.

With Lemma 3.4 and Assumption 3.5 we could get

lim
t→∞ 1

t

∫t
0
Φ2(s)ds =

−r2 + b21
r1
b11

b22
=
r1b21 − r2b11

b11b22
=M2 > 0.

Let (3.2) divide t, and t→∞, together with (3.1) and (3.3), consequently

lim
t→∞ logΦ2(t)

t
= 0.

Similarly, according to Ito’s formula, the third population of system (2.2) is changed into

d logΦ3(t) = (−r3 + b32Φ2(t− τ) − b33Φ3(t))dt− σ3dB3(t),

it then follows

logΦ3(t) = logΦ3(0) − r3t+ b32

∫t
0
Φ2(s− τ)ds− b33

∫t
0
Φ3(s)ds− σ3B3(t),

and

lim
t→∞ 1

t

∫t
0
Φ3(s)ds =

−r3 + b32
r1b21−r2b11
b11b22

b33
=M3 > 0, lim

t→∞ logΦ3(t)

t
= 0.

From this, together with Theorem 2.2 and Lemma 3.6, the following result is obviously true.

Theorem 3.7. If Assumption 3.5 is satisfied, then the solution x(t, ξ) of system (1.3) has the following property:

lim sup
t→∞

log xi(t)
t

6 0, i = 1, 2, 3.

By above all, we could get the following result.

Theorem 3.8. If Assumption 3.5 is satisfied, then the solution x(t, ξ) of system (1.3) has the following property

lim inf
t→∞ 1

t

∫t
0
x3(s)ds > x̃

∗
3 , a.s.,

where x̃∗ = (x̃∗1 , x̃∗2 , x̃∗3) is the only nonnegative solution of the following equation,
r1 − b11x1 − b12x2 = 0,
− r2 + b21x1 − b22x2 − b23x3 = 0,
− r3 + b32x2 − b33x3 = 0.
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Proof. From system (1.3),

log x1(t) − log x1(0)
t

= r1 − b11
1
t

∫t
0
x1(s)ds− b12

1
t

∫t
0
x2(s− τ)ds+

σ1B1(t)

t

= r1 − b11
1
t

∫t
0
x1(s)ds− b12

1
t
(

∫ 0

−τ
ξ2(s)ds−

∫t
t−τ

x2(s)ds)

− b12
1
t

∫t
0
x2(s)ds+

σ1B1(t)

t
,

similarly,

log x2(t) − log x2(0)
t

= −r2 + b21
1
t

∫t
0
x1(s)ds+ b21(

1
t

∫ 0

−τ
ξ1(s)ds−

1
t

∫t
t−τ

x1(s)ds) − b22
1
t

∫t
0
x2(s)ds

− b23
1
t

∫t
0
x3(s)ds− b23(

1
t

∫ 0

−τ
ξ3(s)ds−

1
t

∫t
t−τ

x3(s)ds) −
σ2B2(t)

t
,

and

log x3(t) − log x3(0)
t

= −r3 + b32
1
t

∫t
0
x2(s)ds+ b32(

1
t

∫ 0

−τ
ξ2(s)ds−

1
t

∫t
t−τ

x2(s)ds)

− b33
1
t

∫t
0
x3(s)ds−

σ3B3(t)

t
.

Hence

c1(log x1(t) − log x1(0)) + c2(log x2(t) − log x2(0)) + c3(log x3(t) − log x3(0))
t

= (r1c1 − r2c2 − r3c3) + (−b11c1 + b21c2)
1
t

∫t
0
x1(s)ds

+ (−b12c1 − b22c2 + b32c3)
1
t

∫t
0
x2(s)ds− (b23c2 + b33c3)

1
t

∫t
0
x3(s)ds

− c1b12
1
t
(

∫ 0

−τ
ξ2(s)ds−

∫t
t−τ

x2(s)ds) + c2b21(
1
t

∫ 0

−τ
ξ1(s)ds−

1
t

∫t
t−τ

x1(s)ds)

− c2b23(
1
t

∫ 0

−τ
ξ3(s)ds−

1
t

∫t
t−τ

x3(s)ds) + c3b32(
1
t

∫ 0

−τ
ξ2(s)ds−

1
t

∫t
t−τ

x2(s)ds)

+
c1σ1B1(t)

t
−
c2σ2B2(t)

t
−
c3σ3B3(t)

t
.

(3.4)

From Theorem 2.2, we get

xi(t) 6 Φi(t), (i = 1, 2, 3),

then

lim
t→∞ 1

t

∫t
t−τ

xi(s)ds = 0. (3.5)

Let c1 = b21, c2 = b11, c3 =
b11b22 + b12b21

b32
, together with Assumption 3.5, we know

r1c1 − r2c2 − r3c3 > 0.
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According to Theorem 3.7 and equation (3.5), together with lim
t→∞ Bi(t)

t = 0, (i = 1, 2, 3), we could get

lim sup
t→∞

c1(log x1(t) − log x1(0)) + c2(log x2(t) − log x2(0)) + c3(log x3(t) − log x3(0))
t

= (r1c1 − r2c2 − r3c3) − (c2b23 + c3b33) lim inf
t→∞ 1

t

∫t
0
x3(s)ds 6 0.

Such that,

lim inf
t→∞ 1

t

∫t
0
x3(s)ds >

r1c1 − r2c2 − r3c3

c2b23 + c3b33
= x̃∗3 ,

where x̃∗ = (x̃∗1 , x̃∗2 , x̃∗3) is the only nonnegative solution of the following equation when Assumption 3.5
is satisfied, 

r1 − b11x1 − b12x2 = 0,
− r2 + b21x1 − b22x2 − b23x3 = 0,
− r3 + b32x2 − b33x3 = 0.

4. Non-persistence

In the previous section, we showed the solution x(t, ξ) of system (1.3) is stable in time average, and
in this section, we discuss the dynamics of system (1.3) when the white noise is getting larger. We show
the situation when the population of system (1.3) will be non-persistent of the white noise is large, which
does not happen in the deterministic system in three cases.

Definition 4.1. System (1.3) is said to be non-persistent, if there are positive constants ci, (i = 1, 2, 3) such
that

lim
t→∞

3∏
i=1

xcii (t) = 0, a.s..

Now we present conditions for all species or some species of (1.3) to be extinct. Consider the following
cases.
Case (i): r1 < 0.

According to Itô’s formula, the first population of system (2.3) is changed into

d logΦ1(t) 6 (r1 − b11Φ1(t))dt− σ1dB1(t).

If r1 < 0, we could get

lim sup
t→∞

logΦ1(t)

t
= r1 < 0 a.s.,

from the stochastic comparison theorem, we have

lim sup
t→∞

log x1(t)

t
< 0 a.s.,

hence

lim
t→∞ x1(t) = 0, a.s..



H. Li, H. Li, F. Cong, J. Nonlinear Sci. Appl., 10 (2017), 3273–3287 3283

From the second population of system (2.3) and equation (3.3), we have

logΦ2(t) − logΦ2(0)
t

6 −r2 + b21
1
t

∫t
0
Φ1(s− τ)ds−

σ2dB2(t)

t
a.s., (4.1)

hence

lim sup
t→∞

logΦ2(t)

t
6 −r2 + b21 lim sup

t→∞
1
t

∫t
0
Φ1(s− τ)ds

= −r2 + b21 lim sup
t→∞

1
t

∫t
0
Φ1(s)ds = −r2 6 0, a.s..

Similarly,

lim sup
t→∞

logΦ3(t)

t
= −r3 6 0, a.s.,

and

lim
t→∞ xi(t) = 0, a.s. i = 2, 3.

Case (ii): r1 > 0, r1 −
b11
b21
r2 < 0.

It is clear that from the equations (4.1) and (3.1), we get

lim sup
t→∞

logΦ2(t)

t
6 −r2 + b21

r1

b11
< 0, a.s..

Similarly

lim sup
t→∞

logΦ3(t)

t
6 −r3 + b32 lim sup

t→∞
1
t

∫t
0
Φ2(s)ds = −r3 < 0, a.s.,

thus,

lim
t→∞ xi(t) = 0, a.s., i = 2, 3.

By above all, and from the conclusion in [14], we could easily know that the distribution of x1(t)
converges weekly to the probability measure with density

f∗(ζ) = C0ζ
2r1/σ

2
1−1e−2b11ζ/σ

2
1 ,

where C0 = (2b11/σ
2
1)

2r1/σ
2
1/Γ(2r1/σ

2
1), and

lim
t→∞ 1

t

∫t
0
x1(s)ds =

r1

b11
, a.s..

Case (iii): r1 −
b11

b21
r2 −

b11b22 + b12b21

b21b32
r3 < 0.

It is clear that from (3.4), letting c1 = b21, c2 = b11, c3 =
b11b22 + b12b21

b32
, with lim

t→∞ Bi(t)
t = 0, i = 1, 2, 3,

we get

lim sup
t→∞

c1(log x1(t) − log x1(0)) + c2(log x2(t) − log x2(0)) + c3(log x3(t) − log x3(0))
t

= (r1c1 − r2c2 − r3c3) − (c2b23 + c3b33) lim inf
t→∞ 1

t

∫t
0
x3(s)ds

6 r1c1 − r2c2 − r3c3,
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moreover,

lim sup
t→∞

log xc1
1 (t)xc2

2 (t)xc3
3 (t)

t
6 r1c1 − r2c2 − r3c3 < 0,

then

lim
t→∞ xc1

1 (t)xc2
2 (t)xc3

3 (t) = 0, a.s..

Therefore, by the above arguments, we get the following conclusion.

Theorem 4.2. Let x(t, ξ) be the solution of system (1.3), the following conclusions are founded.

(1) If r1 < 0, then
lim
t→∞ xi(t) = 0, a.s., i = 1, 2, 3.

(2) If r1 > 0, r1 −
b11
b21
r2 < 0, then

lim
t→∞ xi(t) = 0, a.s., i = 2, 3,

and the distribution of x1(t) converges weekly to the probability measure with density

f∗(ζ) = C0ζ
2r1/σ

2
1−1e−2b11ζ/σ

2
1 ,

where C0 = (2b11/σ
2
1)

2r1/σ
2
1/Γ(2r1/σ

2
1), and

lim
t→∞ 1

t

∫t
0
x1(s)ds =

r1

b11
, a.s..

(3) If r1 −
b11

b21
r2 −

b11b22 + b12b21

b21b32
r3 < 0, then

lim
t→∞ xc1

1 (t)xc2
2 (t)xc3

3 (t) = 0, a.s.,

where c1 = b21, c2 = b11, c3 =
b11b22 + b12b21

b32
.

That is to say, the large white noise will lead to the population system non-persistent.

5. Numerical simulation

In this section, we give out the numerical experiment to support our results. Consider the equation
dx1(t) = x1(t) (a1 − b11x1(t) − b12x2(t− τ))dt+ σ1x1(t)dB1(t),
dx2(t) = x2(t) (−a2 + b21x1(t− τ) − b22x2(t) − b23x3(t− τ))dt− σ2x2(t)dB2(t),
dx3(t) = x3(t) (−a3 + b32x2(t− τ) − b33x3(t))dt− σ3x3(t)dB3(t).

By the method in [11], we have the difference equation

x1,k+1 = x1,k + x1,k[(a1 − b11x1,k − b12x2,k−m)∆t+ σ1ε1,k
√
∆t+

σ2
1

2
(ε2

1,k∆t−∆t)],

x2,k+1 = x2,k + x2,k[(−a2 + b21x1,k−m − b22x2,k − b23x3,k−m)∆t− σ2ε2,k
√
∆t+

σ2
2

2
(ε2

2,k∆t−∆t)],

x3,k+1 = x3,k + x3,k[(−a3 + b32x2,k−m − b33x3,k)∆t− σ3ε3,k
√
∆t+

σ2
3

2
(ε2

3,k∆t−∆t)],
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where ε1,k, ε2,k and ε3,k, i = 1, 2, 3 are the Gaussian random variables N(0, 1), r1 = a1 −
σ2

1
2 > 0, ri = ai+

σ2
i

2 , (i = 2, 3), and m represents the integer part τ/4t− 1. Choose (x1(0), x2(0), x3(0)) ∈ R3
+, t ∈ [−τ, 0],

and suitable parameters, by Matlab, we get Figs. 1, 2, and 3.
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Figure 1: The solutions of system (1.2) and system (1.3) with (x1(0), x2(0), x3(0)) = (0.9, 0.3, 0.2), t ∈ [−τ, 0], a1 = 0.7, a2 =
0.3, a3 = 0.1, b11 = 0.3, b12 = 0.2, b21 = 0.3, b22 = 0.5, b23 = 0.3, b32 = 0.4,b33 = 0.8. The light lines represent the solution of
system (1.2), while the dark lines represent the solution of system (1.3) with σ1 = 0.02,σ2 = 0.01,σ3 = 0.01.
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Figure 2: Two of the species will die out in probability. The solutions of system (1.2) and system (1.3) with (x1(0), x2(0), x3(0)) =
(0.9, 0.3, 0.2), t ∈ [−τ, 0], a1 = 0.5, a2 = 0.3, a3 = 0.1, b11 = 0.6, b12 = 0.2, b21 = 0.3, b22 = 0.5, b23 = 0.3, b32 = 0.4,b33 = 0.8.
The light lines represent the solution of system (1.2), while the dark lines represent the solution of system (1.3) with σ1 =
0.02,σ2 = 0.01,σ3 = 0.01.
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Figure 3: One of the species or both species will die out in probability. The solutions of system (1.2) and system (1.3) with
(x1(0), x2(0), x3(0)) = (0.9, 0.3, 0.2), t ∈ [−τ, 0], a1 = −0.7 a2 = 0.3, a3 = 0.1, b11 = 0.3, b12 = 0.2, b21 = 0.3, b22 = 0.5, b23 =
0.3, b32 = 0.4,b33 = 0.8. The light lines represent the solution of system (1.2), while the dark lines represent the solution of
system (1.3) with σ1 = 0.02,σ2 = 0.01,σ3 = 0.01.

In Fig. 1, when the noise is small, choose parameters satisfying the condition of Theorem 3.7, then the
solution of system (1.2) will persist in time average.

In Fig. 2, we observe Case (iii) in Theorem 4.2 and choose parameters r1 > 0, r1 −
b11
b21
r2 < 0. As

Theorem 4.2 indicated that two predators will die out in probability, then the prey solution of system (1.2)
will persist in time average.

In Fig. 3, we observe Case (i) in Theorem 4.2 and choose parameters r1 < 0. As Theorem 4.2 indicated
that not only predators but also prey will die out in probability when the noise of the prey is large, and
it does not happen in the deterministic system, these simulated results are consistent with our theorems.
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