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Abstract

The purpose of this paper is to investigate some convergence theorems in fixed point theory for ρ-quasi-nonexpansive
multivalued mappings in modular function spaces using a faster iterative process. Examples are provided to validate our
results. c©2017 All rights reserved.
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1. Introduction and preliminaries

The fixed point theory in modular function spaces has recently received a good attention of re-
searchers, see for example Khamsi and Kozolowski [5] and the references therein. Dhompongsa et al.
[4] have proved that every ρ-contraction T : C → Fρ(C) has a fixed point where ρ is a convex function
modular satisfying the so-called ∆2-type condition, C is a nonempty ρ-bounded ρ-closed subset of Lρ and
Fρ(C) a family of ρ-closed subsets of C. By using this result, they asserted the existence of fixed points for
multivalued ρ-nonexpansive mappings. Their results are existential in nature. Dehaish and Kozlowski
[3], for the first time, proved results on approximating fixed points in modular function spaces. How-
ever, these results are for single-valued mappings. Keeping in mind the importance and significance of
multivalued mappings, Khan and Abbas [6], recently initiated the study of approximating fixed points of
such mappings in modular function spaces. They approximated fixed points by convergence of a Mann
iterative process (a one-step process) applied on multivalued ρ-nonexpansive mappings in modular func-
tion spaces. Khan et al. [7] constructed a three-step iterative process for multivalued mappings in Banach
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spaces. This process is independent of both Mann and Ishikawa iterative processes in the sense that nei-
ther reduce to the other. Moreover, it is faster than all of Picard, Mann and Ishikawa iterative processes
in case of contractions [1]. In this paper, as an attempt to have a significant advancement in the work
of Khan and Abbas [6], we approximate fixed points of ρ-quasi-nonexpansive multivalued mappings in
modular function spaces using a three step iterative process. This will generalize, unify, and improve
many results in the contemporary literature.

Some basic facts and notations needed in this paper are recalled as follows.
Let Ω be a nonempty set and Σ a nontrivial σ-algebra of subsets of Ω. Let P be a δ-ring of subsets of

Ω, such that E ∩A ∈ P for any E ∈ P and A ∈ Σ. Let us assume that there exists an increasing sequence
of sets Kn ∈ P such that Ω = ∪Kn (for instance, P can be the class of sets of finite measure in a σ-finite
measure space). By 1A, we denote the characteristic function of the set A in Ω. By E we denote the linear
space of all simple functions with supports from P. By M∞ we will denote the space of all extended
measurable functions, i.e., all functions f : Ω → [−∞,∞] such that there exists a sequence {gn} ⊂ E,
|gn| 6 |f| and gn(ω)→ f(ω) for all ω ∈ Ω.

Definition 1.1. Let ρ : M∞ → [0,∞] be a nontrivial, convex, and even function. We say that ρ is a regular
convex function pseudomodular if

1. ρ(0) = 0;
2. ρ is monotone, i.e., |f(ω)| 6 |g(ω)| for any ω ∈ Ω implies ρ(f) 6 ρ(g), where f,g ∈M∞;
3. ρ is orthogonally subadditive, i.e., ρ(f1A∪B) 6 ρ(f1A)+ρ(f1B) for any A,B ∈ Σ such that A∩B 6= φ,
f ∈M∞;

4. ρ has Fatou property, i.e., |fn(ω)| ↑ |f(ω)| for all ω ∈ Ω implies ρ(fn) ↑ ρ(f), where f ∈M∞;
5. ρ is order continuous in E, i.e., gn ∈ E, and |gn(ω)| ↓ 0 implies ρ(gn) ↓ 0.

A set A ∈ Σ is said to be ρ-null if ρ(g1A) = 0 for every g ∈ E. A property p(ω) is said to hold ρ-almost
everywhere (ρ-a.e.) if the set {ω ∈ Ω : p(ω) does not hold} is ρ-null. As usual, we identify any pair of
measurable sets whose symmetric difference is ρ-null as well as any pair of measurable functions differing
only on a ρ-null set. With this in mind, we define

M (Ω,Σ,P, ρ) = {f ∈M∞ : |f(ω)| <∞ ρ-a.e.} ,

where f ∈M (Ω,Σ,P, ρ) is actually an equivalence class of functions equal ρ-a.e. rather than an individual
function. Where no confusion exists, we will write M instead of M(Ω,Σ,P, ρ).

Definition 1.2. Let ρ be a regular function pseudomodular. We say that ρ is a regular convex function
modular if ρ(f) = 0 implies f = 0 ρ-a.e..

Definition 1.3. The convex function modular ρ defines the modular function space Lρ as

Lρ = {f ∈M : ρ(λf)→ 0 as λ→ 0}.

The class of all nonzero regular convex function modulars defined on Ω is denoted by <. Generally,
the modular ρ is not sub-additive and therefore does not behave as a norm or a distance. However, the
modular space Lρ can be equipped with an F-norm defined by

‖f‖ρ = inf{α > 0 : ρ

(
f

α

)
6 α}.

In case ρ is convex modular,

‖f‖ρ = inf{α > 0 : ρ

(
f

α

)
6 1}

defines a norm on the modular space Lρ, and is called the Luxemburg norm.
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Definition 1.4. Define L0
ρ = {f ∈ Lρ : ρ (f, .) is order continuous} and the linear space Eρ={f ∈ Lρ : λf ∈ L0

ρ

for every λ > 0}.

Definition 1.5. A nonzero regular convex function modular ρ is said to satisfy the ∆2-condition, if
supn>1 ρ(2fn,Dk)→ 0 as k→∞ whenever {Dk} decreases to φ and supn>1 ρ(fn,Dk)→ 0 as k→∞.

If ρ is convex and satisfies the ∆2-condition, then Lρ = Eρ.
The following uniform convexity type properties of ρ can be found in [5].

Definition 1.6. Let ρ be a nonzero regular convex function modular defined on Ω.

(i) Let r > 0, ε > 0. Define

D1(r, ε) = {(f,g) : f,g ∈ Lρ, ρ(f) 6 r, ρ(g) 6 r, ρ(f− g) > εr} .

Let

δ1(r, ε) = inf
{

1 −
1
r
ρ(
f+ g

2
) : (f,g) ∈ D1(r, ε)

}
if D1(r, ε) 6= φ,

and δ1(r, ε) = 1 if D1(r, ε) = φ. We say that ρ satisfies (UC1) if for every r > 0, ε > 0, δ1(r, ε) > 0.
Note that for every r > 0,D1(r, ε) 6= φ for ε > 0 small enough.

(ii) We say that ρ satisfies (UUC1) if for every s > 0, ε > 0, there exists η1(s, ε) > 0 depending only upon
s and ε such that δ1(r, ε) > η1(s, ε) > 0 for any r > s.

Note that (UC1) implies (UUC1).

Definition 1.7. Let Lρ be a modular space. The sequence {fn} ⊂ Lρ is called:

• ρ-convergent to f ∈ Lρ if ρ(fn − f)→ 0 as n→∞;

• ρ-Cauchy, if ρ(fn − fm)→ 0 as n and m→∞.

Note that ρ-convergence does not imply ρ-Cauchy since ρ does not satisfy the triangle inequality. In
fact, one can show that this will happen if and only if ρ satisfies the ∆2-condition.

The ρ-distance from an f ∈ Lρ to a set D ⊂ Lρ is given as follows:

distρ(f,D) = inf{ρ(f− h) : h ∈ D}.

Definition 1.8. A subset D ⊂ Lρ is called

• ρ-closed if the ρ-limit of a ρ-convergent sequence of D always belongs to D;

• ρ-a.e. closed if the ρ-a.e. limit of a ρ-a.e. convergent sequence of D always belongs to D;

• ρ-compact if every sequence in D has a ρ-convergent subsequence in D;

• ρ-a.e. compact if every sequence in D has a ρ-a.e. convergent subsequence in D;

• ρ-bounded if
diamρ(D) = sup{ρ(f− g) : f,g ∈ D} <∞.

A set D ⊂ Lρ is called ρ-proximinal if for each f ∈ Lρ there exists an element g ∈ D such that ρ(f− g) =
distρ(f,D). We shall denote the family of nonempty ρ-bounded ρ-proximinal subsets of D by Pρ(D), the
family of nonempty ρ-closed ρ-bounded subsets of D by Cρ(D) and the family of ρ-compact subsets of D
by Kρ(D). Let Hρ(·, ·) be the ρ-Hausdorff distance on Cρ(Lρ), that is,

Hρ(A,B) = max

{
sup
f∈A

distρ(f,B), sup
g∈B

distρ(g,A)

}
, A,B ∈ Cρ(Lρ).

A multivalued mapping T : D→ Cρ(Xρ) is said to be:
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(a) ρ-nonexpansive if
Hρ(Tf, Tg) 6 ρ(f− g) for all f,g ∈ D.

(b) ρ-quasi-nonexpansive mapping if Hρ(Tf,p) 6 ρ (f− p) for all f ∈ D and p ∈ Fρ(T).

Definition 1.9. Let ρ ∈ <. The growth function ωρ of a function modular ρ is defined as:

ωρ(t) = sup
{
ρ(tf)

ρ(f)
, 0 6 ρ(f) <∞} for all 0 6 t <∞.

Observe that ωρ(t) 6 1 for all t ∈ [0, 1]. Some properties of the growth function ω can be found in [5].
Having the fact in mind that triangle inequality is not available in modular function spaces, the fol-

lowing theorem is very useful. It can be found in [2].

Theorem 1.10. Let ρ ∈ < satisfy the ∆2-condition. Let {fn} and {gn} be two sequences in Lρ. Then

lim
n→∞ ρ (gn) = 0 implies lim sup

n→∞ ρ (fn + gn) = lim sup
n→∞ ρ (fn)

and
lim
n→∞ ρ (gn) = 0 implies lim inf

n→∞ ρ (fn + gn) = lim inf
n→∞ ρ (fn) .

A sequence {tn} ⊂ (0, 1) is called bounded away from 0 if there exists a > 0 such that tn > a for every
n ∈ N. Similarly, {tn} ⊂ (0, 1) is called bounded away from 1 if there exists b < 1 such that tn 6 b for
every n ∈N.

The following lemma can be seen as an analogue of a famous lemma due to Schu in Banach spaces. It
can be seen in [5].

Lemma 1.11. Let ρ ∈ < satisfy (UUC1) and let {tk} ⊂ (0, 1) be bounded away from 0 and 1. If there exists R > 0
such that

lim sup
n→∞ ρ(fn) 6 R, lim sup

n→∞ ρ(gn) 6 R, and lim
n→∞ ρ(tnfn + (1 − tn)gn) = R,

then
lim
n→∞ ρ(fn − gn) = 0.

Definition 1.12. A function f ∈ Lρ is called a fixed point of T : Lρ → Pρ(D) if f ∈ Tf. The set of all fixed
points of T will be denoted by Fρ(T).

The proof of the following lemma can be found in Khan and Abbas [6].

Lemma 1.13. Let T : D→ Pρ(D) be a multivalued mapping and

PTρ (f) = {g ∈ Tf : ρ(f− g) = distρ(f, Tf)} .

Then the following are equivalent

(1) f ∈ Fρ(T), that is, f ∈ Tf .
(2) PTρ (f) = {f}, that is, f = g for each g ∈ PTρ (f).
(3) f ∈ F(PTρ (f)), that is, f ∈ PTρ (f). Further Fρ(T) = F(PTρ (f)) where F(PTρ (f)) denotes the set of fixed points of

PTρ (f).

The following definition can also be found in [6].

Definition 1.14. A multivalued mapping T : D → Pρ(D) is said to satisfy condition (I) if there exists a
nondecreasing function l : [0,∞)→ [0,∞) with l(0) = 0, l(r) > 0 for all r ∈ (0,∞) such that distρ(f, Tf) >
l(distρ(f, Fρ(T))) for all f ∈ D.
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We give the following example to show that a mapping T indeed satisfies the condition (I).

Example 1.15. Let the set of real numbers R be the space modulared as ρ(f) = |f|2 . Let D = {f ∈ Lρ : 0 6 f
6 2}, define T : D→ Pρ(D) as:

Tf =

[
0,
f+ 1

2

]
.

Obviously D is a ρ-compact subset of R. Note that Fρ(T) = [0, 1]. Let α = β = γ = 1
2 . Define a continuous

nondecreasing function l : [0,∞) → [0,∞) by l(r) =
r

4
. Note that distρ(f, Tf) > l(distρ(f, Fρ(T))) for all

f ∈ D. Indeed, if f ∈ Fρ(T) = [0, 1] , then obviously

distρ(f, Tf) = 0 = l(distρ(f, Fρ(T))).

If f ∈ (2,∞), then

distρ

(
f,
[

0,
f+ 1

2

])
=

∣∣∣∣f−(
f+ 1

2

)∣∣∣∣ = f− 1
2

and
l(distρ(f, Fρ(T))) = l(distρ(f, [0, 1])) = l(|f− 1|) =

f− 1
4

so distρ(f, Tf) > l(distρ(f, Fρ(T))) for all f ∈ D.

2. Approximating fixed points in modular function spaces

In this section, we prove a very important result which plays a vital role in establishing our result for
approximating fixed points of multivalued ρ-quasi-nonexpansive mappings in modular function spaces.
We will be using a three step faster iterative process [7].

Recall that a multivalued mapping T : D→ Cρ(Lρ) is called ρ-quasi-nonexpansive if

Hρ(Tf,p) 6 ρ (f− p) for all f ∈ D and p ∈ Fρ(T).

Theorem 2.1. Let ρ ∈ < satisfy (UUC1) and ∆2-condition. Let D a nonempty ρ-closed, ρ-bounded, and convex
subset of Lρ. Let T : D → Pρ(D) be a multivalued mapping such that PTρ is a ρ-quasi-nonexpansive mapping.
Suppose that Fρ(T) 6= φ. Let {fn} ⊂ D be defined by three step iterative process as:

fn+1 = (1 −α)vn +αwngn = (1 −β)un +βwnhn = (1 − γ)fn + γun, (2.1)

where un ∈ PTρ (fn), vn ∈ PTρ (gn),wn ∈ PTρ (hn), and 0 < α,β,γ < 1. Then limn→∞ ρ(fn − p) exists for all
p ∈ Fρ(T), and limn→∞ distρ(fn,PTρ (fn)) = 0.

Proof. Let p ∈ Fρ(T). By Lemma 1.13, PTρ (p) = {p}, and Fρ(T) = F(PTρ ). Now

ρ(fn+1 − p) = ρ [(1 −α)vn +αwn − p] = ρ [(1 −α)(vn − p) +α(wn − p)] .

The convexity of ρ implies

ρ(fn+1 − p) 6 (1 −α)ρ(vn − p) +αρ(wn − p) 6 (1 −α)Hρ(P
T
ρ (gn),P

T
ρ (p)) +αHρ(P

T
ρ (hn),P

T
ρ (p))

6 (1 −α)ρ(gn − p) +αρ(hn − p).

Now
ρ(gn − p) = ρ [(1 −β)un +βwn) − p] = ρ [(1 −β)(un − p) +β(wn − p)] .

Again by convexity of ρ, we have

ρ(gn − p) 6 (1 −β)ρ(un − p) +βρ(wn − p)
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6 (1 −β)Hρ(P
T
ρ (fn),P

T
ρ (p)) +βHρ(P

T
ρ (hn),P

T
ρ (p))

6 (1 −β)ρ(fn − p) +βρ(hn − p).

Next,
ρ(hn − p) = ρ [(1 − γ)fn + γun − p)] .

Using convexity of ρ once again, we get

ρ(hn − p) = ρ [(1 − γ)fn + γun − p)] 6 (1 − γ)ρ(fn − p) + γρ(un − p)

6 (1 − γ)ρ(fn − p) + γHρ(P
T
ρ (fn),P

T
ρ (p))

6 (1 − γ)ρ(fn − p) + γρ(fn − p) = ρ(fn − p).

That is,
ρ(hn − p) 6 ρ(fn − p). (2.2)

Thus

ρ(gn − p) 6 (1 −β)ρ(fn − p) +βρ(hn − p) 6 (1 −β)ρ(fn − p) +βρ(fn − p) =ρ(fn − p)

implies
ρ(gn − p) 6 ρ(fn − p). (2.3)

Hence

ρ(fn+1 − p) 6 (1 −α)ρ(gn − p) +αρ(hn − p) 6 (1 −α)ρ(fn − p) +αρ(fn − p) =ρ(fn − p).

This shows that limn→∞ ρ(fn − p) exists for each p ∈ Fρ(T). Suppose that

lim
n→∞ ρ(fn − p) = L, (2.4)

where L > 0. We now prove that limn→∞ distρ(fn,PTρ (fn)) = 0. In view of

distρ(fn,PTρ (fn)) 6 ρ(fn − un),

it suffices to prove that
lim
n→∞ ρ(fn − un) = 0.

Now
ρ(un − p) 6 Hρ(P

T
ρ (fn),P

T
ρ (p)) 6 ρ(fn − p)

implies
lim sup
n→∞ ρ(un − p) 6 lim sup

n→∞ ρ(fn − p)

and so by (2.4) we have
lim sup
n→∞ ρ(un − p) 6 L. (2.5)

Also from (2.2), we have
lim sup
n→∞ ρ(hn − p) 6 lim sup

n→∞ ρ(fn − p),

so that
lim sup
n→∞ ρ(hn − p) 6 L. (2.6)

Similarly, from (2.3) and (2.4)
lim sup
n→∞ ρ(gn − p) 6 L.
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Moving forward, the inequality

ρ(vn − p) 6 Hρ(P
T
ρ (gn),P

T
ρ (p)) 6 ρ(gn − p) 6 ρ(fn − p)

yields
lim sup
n→∞ ρ(vn − p) 6 lim sup

n→∞ ρ(fn − p),

so that
lim sup
n→∞ ρ(vn − p) 6 L. (2.7)

Similarly,
lim sup
n→∞ ρ(wn − p) 6 L. (2.8)

As

lim
n→∞ ρ(fn+1 − p) = lim

n→∞ ρ [(1 −α)vn +αwn) − p] = lim
n→∞ ρ [(1 −αn)(vn − p) +αn(wn − p)] = L, (2.9)

from (2.7), (2.8), (2.9), and Lemma 1.11, we have

lim
n→∞ ρ(vn −wn) = 0. (2.10)

Fix ε > 0. There exists n0 ∈ N such that ρ(vn −wn) < ε for all n > n0. Note that ρ(α(vn −wn)) 6
ωρ(α)ρ(vn −wn) < ρ(vn −wn) < ε and hence

lim
n→∞ ρ(α(vn −wn)) = 0.

Again

ρ(fn+1 − p) = ρ [(1 −α)vn +αwn) − p] = ρ [(vn − p) +α(wn − vn)] .

By using Theorem 1.10, we have

lim inf
n→∞ ρ [(vn − p) +α(wn − vn)] = lim

n→∞ inf ρ(vn − p).

That is,
L = lim

n→∞ inf ρ(vn − p). (2.11)

From (2.7) and (2.11), we have
lim
n→∞ ρ(vn − p) = L.

Again by using (2.10) and Theorem 1.10, we have

L = lim inf
n→∞ ρ(vn − p) = lim inf

n→∞ ρ [(vn −wn) + (wn − p)] = lim inf
n→∞ ρ(wn − p).

But
ρ(wn − p) 6 Hρ

(
PTρ (hn),P

T
ρ (p)

)
6 ρ (hn − p) .

Therefore
L 6 lim

n→∞ inf ρ(hn − p). (2.12)

From (2.6) and (2.12), we have
lim
n→∞ ρ(hn − p) = L.

That is,
lim
n→∞ ρ [(1 − γ)(fn − p) + γ(un − p)] = L.

Thus from (2.4), (2.5), and Lemma 1.11, we have

lim
n→∞ ρ(fn − un) = 0.

Hence limn→∞ distρ(fn,PTρ (fn)) = 0.
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Now we are going to present our convergence result for approximating fixed points of multivalued
ρ-quasi-nonexpansive mappings in modular function spaces using three step iterative process (2.1) as
follows.

Theorem 2.2. Let ρ ∈ < satisfy (UUC1) and ∆2-condition. Let D a nonempty ρ-closed, ρ-bounded, and convex
subset of Lρ. Let T : D → Pρ(D) be a multivalued mapping such that PTρ is ρ-quasi-nonexpansive mapping.
Suppose that Fρ(T) 6= φ. Let {fn} be defined as in Theorem 2.1. Then {fn} ρ-converges to a fixed point of T .

Proof. From ρ-compactness of D, there exists a subsequence {fnk} of {fn} such that lim
k→∞ (fnk − q) = 0 for

some q ∈ D. To prove that q is a fixed point of T , let g be an arbitrary point in PTρ (q) and f in PTρ (fnk).
Note that

ρ(
q− g

3
) 6 ρ(

q− fnk
3

) + ρ(
fnk − f

3
) + ρ(

f− g

3
)

6
1
3
ρ(q− fnk) +

1
3
ρ(fnk − f) +

1
3
ρ(f− g)

6 ρ (q− fnk) + distρ(fnk ,PTρ (fnk)) + distρ(PTρ (fnk),g)

6 ρ (q− fnk) + distρ(fnk ,PTρ (fnk)) +Hρ
(
PTρ (fnk),P

T
ρ (q)

)
6 ρ (q− fnk) + distρ(fnk ,PTρ (fnk)) + ρ (q− fnk) .

This gives ρ(q− g) = 0 using Theorem 2.1. Hence q ∈ F
(
PTρ

)
= Fρ(T). That is, {fn} ρ-converges to a

fixed point of T .

Theorem 2.3. Let ρ ∈ < satisfy (UUC1) and ∆2-condition. Let D a nonempty ρ-closed, ρ-bounded, and convex
subset of Lρ. Let T : D→ Pρ(D) be a multivalued mapping with Fρ(T) 6= φ and satisfying condition (I) such that
PTρ is ρ-quasi-nonexpansive mapping. Let {fn} be defined as in Theorem 2.1. Then {fn} ρ-converges to a fixed point
of T .

Proof. From Theorem 2.1, limn→∞ ρ(fn − p) exists for all p ∈ F(PTρ ) = Fρ(T). If lim
n→∞ ρ (fn − p) = 0, there

is nothing to prove. We assume lim
n→∞ ρ (fn − p) = L > 0. Now from Theorem 2.1, ρ (fn+1 − p) 6 ρ (fn − p)

so that
distρ(fn+1, Fρ(T)) 6 distρ(fn, Fρ(T)).

Hence limn→∞ distρ(fn, Fρ(T)) exists. We show that limn→∞ distρ(fn, Fρ(T)) = 0. By using condition (I)
and Theorem 2.1, we have

lim
n→∞ l(distρ(fn, Fρ(T))) 6 lim

n→∞distρ(fn, Tfn) = 0.

That is,
lim
n→∞ l(distρ(fn, Fρ(T))) = 0.

Since l is a nondecreasing function and l(0) = 0, it follows that lim
n→∞distρ(fn, Fρ(T)) = 0.

Next, we show that {fn} is a ρ-Cauchy sequence in D. Let ε > 0 be arbitrarily chosen. Since
limn→∞ distρ(fn, Fρ(T)) = 0, there exists a constant n0 such that for all n > n0, we have

distρ(fn, Fρ(T)) <
ε

2
.

In particular, inf{ρ (fn0 − p) : p ∈ Fρ(T)} <
ε

2
. There must exist a p∗ ∈ Fρ(T) such that

ρ (fn0 − p
∗) < ε.

Now for m,n > n0, we have

ρ

(
fn+m − fn

2

)
6

1
2
ρ (fn+m − p∗) +

1
2
ρ (fn − p∗) 6 ρ (fn0 − p

∗) < ε.

Hence {fn} is a ρ-Cauchy sequence in a ρ-closed subset D of Lρ, and so it must converge in D. Let
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lim
n→∞ fn = q. Finally, q ∈ Fρ( T) now follows from Theorem 2.2.

Example 2.4 ([8]). Let (X, ‖.‖) be a normed space, then ‖.‖ is a modular. But the converse is not true.

Example 2.5 ([8]). Let (X, ‖.‖) be normed space. For any k > 1, ‖.‖k is a modular on X.

In the following example, we verify our Theorem 2.2.

Example 2.6. Let the real number system R be the space modulared as

ρ(f) = |f|k ,k > 1.

Let D = {f ∈ Lρ : 0 6 f 6 1} . Define T : D→ Pρ(D) as:

Tf =

[
0,

2f+ 1
4

]
.

Obviously D is a nonempty ρ-compact, ρ-bounded, and convex subset of Lρ = R which satisfies (UC1)
condition. As ρ(f) = |f|k ,k > 1 is homogeneous of degree k, so (UUC1) holds. Note that Fρ(T) =

[
0, 1

2

]
6=

φ. Let α = β = γ = 1
2 . Observe that PTρ (f) = {f} when f ∈

[
0, 1

2

]
. In case f /∈

[
0, 1

2

]
,

PTρ (f) =

{
g ∈ Tf : ρ(f− g) = distρ(f, Tf) = distρ

(
f,
[

0,
2f+ 1

4

])}
=

{
g ∈ Tf : |f− g|k = distρ

(
f,
[

0,
2f+ 1

4

])}
=

{
g ∈ Tf : |f− g|k =

∣∣∣∣f− 2f+ 1
4

∣∣∣∣k =

∣∣∣∣2f− 1
4

∣∣∣∣k
}

=

{
g ∈ Tf : |f− g| =

∣∣∣∣2f− 1
4

∣∣∣∣}
=

{
g ∈ Tf : f− g =

2f− 1
4

}
because f > g for all g ∈ Tf where f ∈ (

1
2

, 1].

⇒ PTρ (f) =

{
g =

2f+ 1
4

}
.

Next, we prove that PTρ (f) is ρ-quasi-nonexpansive for all f ∈ D. The case of f ∈
[
0, 1

2

]
is trivial. Thus, we

take f ∈
(1

2 , 1
]
.

Hρ(P
T
ρ (f),P

T
ρ (p)) = Hρ

(
2f+ 1

4
,p

)
=

∣∣∣∣2f+ 1
4

− p

∣∣∣∣ 6 |f− p|

for all f ∈
(1

2 , 1
]
. Finally, we generate the sequence (2.1) and show that it converges strongly to a fixed

point of T . Choose f1 = 1 ∈ D = [0, 1] . Then PTρ (f1) = 2f1+1
4 =

2(1)+1
4 = {1

2 + 1
4 } and u1 ∈ PTρ (f1) =

{1
2 +

1
4 }. That is, u1 = 1

2 +
1
4 . Let h1 = (1 − γ)f1 + γu1. Then

h1 =
1
2
+

1
2
(
1
2
+

1
4
) =

1
2
+

3
8

, PTρ (h1) =

{
2h1 + 1

4

}
=

{
2( 1

2 +
3
8) + 1

4

}
=

{
1
2
+

3
16

}
.

Choose w1 ∈ PTρ (h1) = { 1
2 +

3
16 }, that is, w1 = 1

2 +
3
16 . Let g1 = (1 −β)u1 +βw1. Then

g1 =
1
2
(
1
2
+

1
4
) +

1
2
(
1
2
+

3
16

) =
1
2
+

7
32

, PTρ (g1) =

{
2g1 + 1

4

}
=

{
2( 1

2 +
7
32) + 1
4

}
=

{
1
2
+

7
64

}
.
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Choose v1 ∈ PTρ (g1) = {1
2 +

7
64 }, v1 = 1

2 +
7

64 . Let f2 = (1 −α)v1 +αw1. Then

f2 =
1
2
(
1
2
+

7
64

) +
1
2
(
1
2
+

3
16

) =
1
2
+

19
128

<
1
2
+

1
4

,

PTρ (f2) =

{
2f2 + 1

4

}
=

{
2( 1

2 +
19

128) + 1
4

}
=

{
1
2
+

19
256

}
.

Now choose u2 ∈ PTρ (f2) = { 1
2 +

19
256 }, that is, u2 = 1

2 +
19
256 . Let h2 = (1 − γ)f2 + γu2. Then

h2 =
1
2
(
1
2
+

19
128

) +
1
2
(
1
2
+

19
256

) =
1
2
+

57
512

,

PTρ (h2) =

{
2h2 + 1

4

}
=

{
2( 1

2 +
57

512) + 1
4

}
=

{
1
2
+

57
1024

}
.

Choose w2 ∈ PTρ (h2) = {1
2 +

57
1024 }, that is, w2 = 1

2 +
57

1024 . Let g2 = (1 −β)u2 +βw2. Then

g2 =
1
2
(
1
2
+

19
256

) +
1
2
(
1
2
+

57
1024

) =
1
2
+

133
2048

,

PTρ (g2) =

{
2g2 + 1

4

}
=

{
2( 1

2 +
133
2048) + 1
4

}
=

{
1
2
+

133
4096

}
.

Choose v2 ∈ PTρ (g2) = {1
2 +

133
4096 }, v2 = 1

2 +
133

4096 . Let f3 = (1 −α)v2 +αw2. Then

f3 =
1
2
(
1
2
+

133
4096

) +
1
2
(
1
2
+

57
1024

) =
1
2
+

361
8192

<
1
2
+

1
6

.

Continuing in a similar way, f4 <
1
2 + 1

8 , f5 <
1
2 + 1

10 , . . . , fn < 1
2 + 1

n . This shows that {fn} converges
strongly to a point of Fρ(T) =

[
0, 1

2

]
.

In the following example, we verify our Theorem 2.3.

Example 2.7. Consider the modular space Lρ = R equipped with the norm ‖.‖ , that is, ρ(f) = |f| and
D = {f ∈ Lρ : 1 6 f <∞} . Obviously D is a nonempty ρ-closed and ρ-convex subset of Lρ = R. Define
T : D→ Pρ(D) by

Tf =

[
1, 1 +

f

2

]
.

Then Fρ(T) = [1, 2] . Let α = β = γ = 1
2 .

Define a continuous nondecreasing function l : [0,∞) → [0,∞) by l(r) =
r

4
. Note that distρ(f, Tf) >

l(distρ(f, Fρ(T))) for all f ∈ D as follows.
If f ∈ Fρ(T) = [1, 2], then obviously

distρ(f, Tf) = 0 = l(distρ(f, Fρ(T))).

If f ∈ (2,∞), then we have

distρ (f, Tf) = distρ

(
f,
[

1, 1 +
f

2

])
=

∣∣∣∣f−(
1 +

f

2

)∣∣∣∣ = f− 2
2

,

and
l(distρ(f, Fρ(T))) = l(distρ(f, [1, 2])) = l(|f− 2|) =

f− 2
4

.

So distρ(f, Tf) > l(distρ(f, Fρ(T))) for all f ∈ D and hence the condition (I) is satisfied. Next note that
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PTρ (f) = {f} when f ∈ [1, 2]. If f ∈ (2,∞), then

PTρ (f) = {g ∈ Tf : ρ(f− g) = distρ(f, Tf)}

= distρ

(
f,
[

1, 1 +
f

2

])
= inf{ρ(f− h) : h ∈

[
1, 1 +

f

2

]
}

= {g ∈ Tf : |g− f| =
∣∣∣∣f− (1 +

f

2
)

∣∣∣∣ = ∣∣∣∣ f2 − 1
∣∣∣∣}

= {g ∈ Tf : |g− f| = f

2
− 1}

= {g = 1 +
f

2
} because f > g for all g ∈ Tf where f ∈ (2,∞).

Now PTρ is ρ-quasi-nonexpansive because

Hρ(P
T
ρ (f),P

T
ρ (p)) = Hρ({1 +

f

2
}, {p}) =

∣∣∣∣1 +
f

2
− p

∣∣∣∣ 6 |f− p| , as f > 2.

To generate the sequence {fn} of Theorem 2.3, we proceed as follows.
Choose f1 = 3 ∈ D = [1,∞),PTρ (f1) = 1 + 3

2 = { 5
2 } and u1 ∈ PTρ (f1) = { 5

2 }. That is, u1 = 5
2 . Let

h1 = (1 − γ)f1 + γu1. Then

h1 =
1
2
(3) +

1
2
(
5
2
) =

11
4

, PTρ (h1) = 1 +
h1

2
= 1 +

11
4
2

= {
19
8
}.

Choose w1 ∈ PTρ (h1) = { 19
8 }, that is, w1 = 19

8 . Let g1 = (1 −β)u1 +βw1. Then

g1 =
1
2
(
5
2
) +

1
2
(
19
8
) =

39
16

, PTρ (g1) = 1 +
g1

2
= 1 +

39
16
2

= {
71
32

}.

Choose v1 ∈ PTρ (g1) = {71
32 }, that is, v1 = 71

32 . Let f2 = (1 −α)v1 +αw1. Then

f2 =
1
2
(
71
32

) +
1
2
(
19
8
) =

147
64

= 2 +
19
64
< 2 +

1
2

, PTρ (f2) = 1 +
f2

2
= 1 +

147
64
2

=
275
128

= {
275
128

}.

Choose u2 ∈ PTρ (f2) = {275
128 }, that is, u2 = 275

128 . Let h2 = (1 − γ)f2 + γu2. Then

h2 =
1
2
(
147
64

) +
1
2
(
275
128

) =
569
256

, PTρ (h2) = 1 +
569
256
2

= {
1081
512

}.

Choose w2 ∈ PTρ (h1) = { 1081
512 }, that is, w2 = 1081

512 . Let g2 = (1 −β)u2 +βw2. Then

g2 =
1
2
(
275
128

) +
1
2
(
1081
512

) =
2181
1024

, PTρ (g2) = 1 +
g2

2
= 1 +

2181
1024
2

= {
4229
2048

}.

Choose v2 ∈ PTρ (g2) = {4229
2048 }, that is, v2 = 4229

2048 . Let f3 = (1 −α)v2 +αw2. Then

f3 =
1
2
(
4229
2048

) +
1
2
(
1081
512

) =
8553
4096

= 2 +
361
4096

< 2 +
1
3

.

In a similar way,

f4 = 2 +
6859

262144
< 2 +

1
4

,
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f5 = 2 +
130221

16777216
< 2 +

1
5

,

...

fn < 2 +
1
n

.

This gives that limn→∞ fn = 2 ∈ Fρ(T) = [1, 2]. Hence we have the result.
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