ISSN: 2008-1898

Journal of Nonlinear Sciences and Applications

Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa

Hardy type estimates for commutators of fractional integrals associated with Schrödinger operators

Yinhong Xia, Min Chen*

School of Mathematics and Statistics, Huanghuai University, Zhumadian 463000, P. R. China.

Communicated by Y. Hu

Abstract

We consider the Schrödinger operator $\mathcal{L}=-\Delta+V$ on \mathbb{R}^n , where $n\geqslant 3$ and the nonnegative potential V belongs to reverse Hölder class RH_{q_1} for some $q_1>\frac{n}{2}$. Let \mathbb{I}_α be the fractional integral associated with \mathcal{L} , and let b belong to a new Campanato space $\Lambda^\theta_\beta(\rho)$. In this paper, we establish the boundedness of the commutators $[b,\mathbb{I}_\alpha]$ from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ whenever $1/q=1/p-(\alpha+\beta)/n, 1< p< n/(\alpha+\beta)$. When $\frac{n}{n+\beta}< p\leqslant 1, 1/q=1/p-(\alpha+\beta)/n$, we show that $[b,\mathbb{I}_\alpha]$ is bounded from $H^p_{\mathcal{L}}(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$. Moreover, we also prove that $[b,\mathbb{I}_\alpha]$ maps $H^n_{\mathcal{L}}(\mathbb{R}^n)$ continuously into weak L^n \mathbb{R}^n . ©2017 All rights reserved.

Keywords: Schrödinger operator, commutator, Campanato space, fractional integral, Hardy space.

2010 MSC: 42B30, 35J10.

1. Introduction and results

Let $\mathcal{L}=-\Delta+V$ be a Schrödinger operator on \mathbb{R}^n , $n\geqslant 3$. The function V is nonnegative, $V\neq 0$, and belongs to a reverse Hölder class RH_{q_1} for some $q_1>\frac{n}{2}$, that is, there exists a constant C such that

$$\left(\frac{1}{|B|}\int_{B}V(y)^{q_{1}}dy\right)^{1/q_{1}}\leqslant\frac{C}{|B|}\int_{B}V(y)dy$$

for every ball $B \subset \mathbb{R}^n$.

Suppose $V \in RH_{q_1}$ with $q_1 > n/2$. The fractional integral associated with $\mathcal L$ is defined by

$$\mathbb{I}_{\alpha} f(x) = \mathcal{L}^{-\alpha/2} f(x) = \int_{0}^{\infty} e^{-t\mathcal{L}} (f)(x) \frac{dt}{t^{-\alpha/2+1}}$$

for $0<\alpha< n.$ If $\mathcal{L}=-\Delta$ is the Laplacian on \mathbb{R}^n , then \mathbb{I}_α is the Riesz potential I_α , that is,

$$I_{\alpha}f(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x - y|^{n - \alpha}} dy.$$

Email addresses: xiayh03@163.com (Yinhong Xia), chenmin2002@yeah.net (Min Chen)

doi:10.22436/jnsa.010.06.29

^{*}Corresponding author

As in [10], for a given potential $V \in RH_{q_1}$ with $q_1 > n/2$, we define the auxiliary function

$$\rho(x) = \sup \left\{ r > 0 : \frac{1}{r^{n-2}} \int_{B(x,r)} V(y) dy \leqslant 1 \right\}, \ x \in \mathbb{R}^n.$$

It is well-known that $0 < \rho(x) < \infty$ for any $x \in \mathbb{R}^n$.

Let $\theta > 0$ and $0 < \beta < 1$, according to [7], the new Campanato class $\Lambda_{\beta}^{\theta}(\rho)$ consists of the locally integrable functions b such that

$$\frac{1}{|B(x,r)|^{1+\beta/n}} \int_{B(x,r)} |b(y) - b_B| dy \leqslant C \left(1 + \frac{r}{\rho(x)}\right)^{\theta}$$

holds for all $x \in \mathbb{R}^n$ and r > 0. A seminorm of $b \in \Lambda_{\beta}^{\theta}(\rho)$, denoted by $[b]_{\beta}^{\theta}$, is given by the infimum of the constants in the inequalities above.

Note that if $\theta = 0$, $\Lambda_{\beta}^{\theta}(\rho)$ is the classical Campanato space. If $\beta = 0$, $\Lambda_{\beta}^{\theta}(\rho)$ is exactly the space $BMO_{\theta}(\rho)$ introduced in [1].

We recall the Hardy space associated with Schrödinger operator $\mathcal L$ which had been studied by Dziubański and Zienkiewicz in [4] and [5]. Because $V\in L^{q_1}_{loc}(\mathbb R^n)$, the Schrödinger operator $\mathcal L$ generates a (C_0) contraction semigroup $\{T_s^{\mathcal L}:s>0\}=\{e^{-s\mathcal L}:s>0\}$. The maximal function associated with $\{T_s^{\mathcal L}:s>0\}$ is defined by $M^{\mathcal L}f(x)=\sup_{s>0}|T_s^{\mathcal L}f(x)|$. We always denote $\eta=2-n/q_1$ and $\delta'=\min\{1,\eta\}$. For $\frac{n}{n+\delta'}< p\leqslant 1$, the Hardy space $H_{\mathcal L}^p(\mathbb R^n)$ associated with Schrödinger operator $\mathcal L$ is defined as follows.

Definition 1.1. We say that f is an element of $H^p_{\mathcal{L}}(\mathbb{R}^n)$ if the maximal function $M^{\mathcal{L}}f$ belongs to $L^p(\mathbb{R}^n)$. The quasi-norm of f is defined by $\|f\|_{H^p_{\mathcal{L}}(\mathbb{R}^n)} = \|M^{\mathcal{L}}f\|_{L^p(\mathbb{R}^n)}$.

We introduce the concept of $H_L^{p,q}$ -atom.

Definition 1.2. Let $\frac{n}{n+\delta'} . A function <math>a \in L^2(\mathbb{R}^n)$ is called an $H_{\mathcal{L}}^{p,q}$ -atom if $r < \rho(x_0)$ and the following conditions hold:

- (i) supp $a \subset B(x_0, r)$,
- (ii) $\|a\|_{L^q(\mathbb{R}^n)} \le |B(x_0,r)|^{1/q-1/p}$,
- (iii) if $r < \rho(x_0)/4$, then $\int_{B(x_0,r)} a(x) dx = 0$.

We have the following atomic characterization of Hardy space.

Proposition 1.3 ([5]). Let $\frac{n}{n+\delta'} . Then <math>f \in H^p_{\mathcal{L}}(\mathbb{R}^n)$ if and only if f can be written as $f = \sum_j \lambda_j \alpha_j$, where α_j are $H^{p,q}_{\mathcal{L}}$ -atoms, $\sum_j |\lambda_j|^p < \infty$, and the sum converges in the $H^p_{\mathcal{L}}(\mathbb{R}^n)$ quasi-norm. Moreover

$$\|f\|_{H^p_{\mathcal{L}}(\mathbb{R}^n)} pprox \inf \left\{ \left(\sum_j |\lambda_j|^p \right)^{1/p} \right\},$$

where the infimum is taken over all atomic decompositions of f into $H_L^{p,q}$ -atoms.

The above atomic decomposition of $H^p_{\mathcal{L}}(\mathbb{R}^n)$ implies that the Hardy space $H^p_{\mathcal{L}}(\mathbb{R}^n)$ is larger than the classical Hardy space $H^p(\mathbb{R}^n)$. Especially, the Hardy space $H^p_{\mathcal{L}}(\mathbb{R}^n)$ is exactly the local Hardy space $h^p(\mathbb{R}^n)$ introduced by Goldberg in [6] when the potential V is a positive constant.

Let us consider the commutator associated with the Riesz potential I_{α} and locally integrable function b, $[b,I_{\alpha}]f(x)=b(x)I_{\alpha}f(x)-I_{\alpha}(bf)(x)$. When $b\in BMO$, Chanillo proved in [3] that $[b,I_{\alpha}]$ is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ with $1/q=1/p-\alpha/n, 1< p< n/\alpha$. When b belongs to the Campanato space $\Lambda_{\beta}, 0<\beta<1$, Paluszyński in [9] showed that $[b,I_{\alpha}]$ is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$, where 1/q=1

 $1/p - (\alpha + \beta)/n$, $1 . Furthermore, Lu et al. in [8] considered the boundedness of <math>[b, I_{\alpha}]$ on the classical Hardy spaces when $b \in \Lambda_{\beta}(0 < \beta \leqslant 1)$. They proved that if $\frac{n}{n+\beta} and <math>1/q = 1/p - (\alpha + \beta)/n$, $[b, I_{\alpha}]$ maps $H^p(\mathbb{R}^n)$ continuously into $L^q(\mathbb{R}^n)$. At the endpoint $p = \frac{n}{n+\beta}$, they also showed that $[b, I_{\alpha}]$ maps $H^p(\mathbb{R}^n)$ continuously into weak $L^{n/(n-\alpha)}(\mathbb{R}^n)$.

When $b \in BMO_{\theta}(\rho)$, Bui in [2] obtained the boundedness of $[b, \mathbb{I}_{\alpha}]$ from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ with $1/q = 1/p - \alpha/n$, 1 .

Inspired by the above results, in this paper, we are interested in the boundedness of $[b, \mathbb{I}_{\alpha}]$ when b belongs to the new Campanato class $\Lambda_{\beta}^{\theta}(\rho)$. The results of this paper are as follows.

Theorem 1.4. Let $0 < \alpha < n$, and let $V \in RH_{q_1}$ with $q_1 > n/2$. Then for any $b \in \Lambda_{\beta}^{\theta}(\rho), 0 < \beta < 1$, the commutator $[b, \mathbb{I}_{\alpha}]$ is bounded from $L^p(\mathbb{R}^n)$ into $L^q(\mathbb{R}^n)$, where $\frac{1}{q} = \frac{1}{p} - \frac{\alpha + \beta}{n}$, 1 .

Theorem 1.5. Let $0 < \alpha < n$, and let $V \in RH_{q_1}$ with $q_1 > n/2$. Suppose $b \in \Lambda_{\beta}^{\theta}(\rho)$, $0 < \beta < \delta'$. If $\frac{n}{n+\beta} and <math>\frac{1}{q} = \frac{1}{p} - \frac{\alpha + \beta}{n}$, then the commutator $[b, \mathbb{I}_{\alpha}]$ is bounded from $H_{\mathcal{L}}^{p}(\mathbb{R}^{n})$ into $L^{q}(\mathbb{R}^{n})$.

Theorem 1.6. Let $0<\alpha< n$, and let $V\in RH_{q_1}$ with $q_1>n/2$. Suppose $b\in \Lambda_{\beta}^{\theta}(\rho), 0<\beta<\delta'$. Then the commutator $[b,\mathbb{I}_{\alpha}]$ is bounded from $H_{\mathcal{L}}^{\frac{n}{n+\beta}}(\mathbb{R}^n)$ into weak $L^{\frac{n}{n-\alpha}}(\mathbb{R}^n)$.

Finally, we make some conventions on the notation. Throughout the whole paper, we always use C to denote a positive constant, that is independent of the main parameters involved but whose value may differ from line to line. We shall use the symbol $A \lesssim B$ to indicate that there exists a constant C such that $A \leqslant CB$. $A \approx B$ means that $A \lesssim B$ and $B \lesssim A$.

2. Some preliminaries

We would like to recall some important properties concerning the auxiliary function which will play an important role to obtain the main results.

Proposition 2.1 ([10]). Let $V \in RH_{n/2}$. For the auxiliary function ρ there exist C and $k_0 \geqslant 1$ such that

$$C^{-1}\rho(x)\left(1+\frac{|x-y|}{\rho(x)}\right)^{-k_0}\leqslant \rho(y)\leqslant C\rho(x)\left(1+\frac{|x-y|}{\rho(x)}\right)^{\frac{k_0}{1+k_0}}$$

for all $x, y \in \mathbb{R}^n$.

A ball $B(x, \rho(x))$ is called critical. Assume that $Q = B(x_0, \rho(x_0))$, for $x \in Q$, the inequality above tells us that $\rho(x) \approx \rho(y)$ if $|x - y| < C\rho(x)$.

It is easy to get the following result from Proposition 2.1.

Lemma 2.2. Let $k \in \mathbb{N}$ and $x \in 2^{k+1}B(x_0,r) \setminus 2^kB(x_0,r)$. Then we have

$$\frac{1}{\left(1+\frac{2^kr}{\rho(x)}\right)^N}\lesssim \frac{1}{\left(1+\frac{2^kr}{\rho(x_0)}\right)^{N/(k_0+1)}}.$$

Proposition 2.3 ([4]). There exists a sequence of points $\{x_k\}_{k=1}^{\infty}$ in \mathbb{R}^n , so that the family of critical balls $Q_k = B(x_k, \rho(x_k)), k \geqslant 1$, satisfies

- (i) $\bigcup_k Q_k = \mathbb{R}^n$;
- (ii) there exists $N = N(\rho)$ such that for every $k \in N$, $card\{j : 4Q_j \cap 4Q_k\} \leq N$.

Given $\alpha > 0$, we define the following maximal functions for $g \in L^1_{loc}(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$,

$$\begin{split} M_{\rho,\alpha}g(x) &= \sup_{x \in B \in \mathcal{B}_{\rho,\alpha}} \frac{1}{|B|} \int_{B} |g(y)| dy, \\ M_{\rho,\alpha}^{\sharp}g(x) &= \sup_{x \in B \in \mathcal{B}_{\rho,\alpha}} \frac{1}{|B|} \int_{B} |g(y) - g_{B}| dy, \end{split}$$

where $\mathcal{B}_{\rho,\alpha} = \{B(z,r) : z \in \mathbb{R}^n \text{ and } r \leq \alpha \rho(y)\}.$

We have the following Fefferman-Stein type inequality.

Proposition 2.4 ([1]). For $1 , there exist <math>\eta$ and γ such that if $\{Q_k\}_k$ is a sequence of balls as in Proposition 2.3, then

$$\int_{\mathbb{R}^n} |M_{\rho,\eta} g(x)|^p dx \lesssim \int_{\mathbb{R}^n} |M_{\rho,\gamma}^{\sharp} g(x)|^p dx + \sum_k |Q_k| \left(\frac{1}{|Q_k|} \int_{2Q_k} |g|\right)^p$$

for all $g \in L^1_{loc}(\mathbb{R}^n)$.

Let us recall the property of $b \in \Lambda_{\beta}^{\theta}(\rho)$.

Lemma 2.5 ([7]). Let $1 \le s < \infty$, $b \in \Lambda_B^{\theta}(\rho)$, and B = B(x, r). Then

$$\left(\frac{1}{|2^kB|}\int_{2^kB}|b(y)-b_B|^sdy\right)^{1/s}\leqslant [b]^\theta_\beta(2^kr)^\beta\left(1+\frac{2^kr}{\rho(x)}\right)^{\theta'}$$

for all $k \in \mathbb{N}$, where $\theta' = (k_0 + 1)\theta$, and k_0 is the constant appearing in Proposition 2.1.

Proposition 2.6 ([5]). Let $p_t(x,y)$ be the kernels associated with the semigroups $\{e^{-t\mathcal{L}}\}_{t>0}$. If $V \in RH_{q_1}$ with $q_1 > n/2$, then for every $0 < \delta < \delta'$ and every N > 0 there exists a constant C > 0 such that for $|y-z| < \frac{1}{2}|x-y|$, we have

$$|\mathfrak{p}_{\mathsf{t}}(x,y) - \mathfrak{p}_{\mathsf{t}}(x,z)| + |\mathfrak{p}_{\mathsf{t}}(y,x) - \mathfrak{p}_{\mathsf{t}}(z,x)| \lesssim \frac{1}{\mathsf{t}^{n/2}} \left(\frac{|y-z|}{\sqrt{\mathsf{t}}}\right)^{\delta} \exp\left(-\frac{|x-y|^2}{5\mathsf{t}}\right) \left(1 + \frac{\sqrt{\mathsf{t}}}{\rho(x)} + \frac{\sqrt{\mathsf{t}}}{\rho(y)}\right).$$

Let K_{α} be the kernel of \mathbb{I}_{α} . The following results give the estimates on the kernel $K_{\alpha}(x,y)$.

Lemma 2.7. Suppose $V \in RH_{q_1}$ with $q_1 > \frac{n}{2}$.

(i) For every N > 0, there exists a constant C such that

$$|\mathsf{K}_{\alpha}(\mathsf{x},\mathsf{y})| \lesssim \frac{1}{\left(1 + \frac{|\mathsf{x} - \mathsf{y}|}{\rho(\mathsf{x})}\right)^{\mathsf{N}}} \frac{1}{|\mathsf{x} - \mathsf{y}|^{n - \alpha}}.$$

(ii) For every $0 < \delta < \delta'$ there exists a constant C such that for every N > 0, we have

$$|\mathsf{K}_{\alpha}(\mathsf{x},\mathsf{y}) - \mathsf{K}_{\alpha}(\mathsf{x},\mathsf{z})| + |\mathsf{K}_{\alpha}(\mathsf{y},\mathsf{x}) - \mathsf{K}_{\alpha}(\mathsf{z},\mathsf{x})| \lesssim \frac{1}{\left(1 + \frac{|\mathsf{x} - \mathsf{y}|}{\rho(\mathsf{x})}\right)^{N}} \frac{|\mathsf{y} - \mathsf{z}|^{\delta}}{|\mathsf{x} - \mathsf{y}|^{n + \delta - \alpha}},$$

where $|y - z| \le |x - y|/4$.

Proof. We observe that (i) is the result of Proposition 3.3 of [2]. By Proposition 2.4 and the methods used in Proposition 3.3 of [2], we can obtain (ii). \Box

Since $|\mathbb{I}_{\alpha}(f)(x)| \lesssim I_{\alpha}(|f|)(x)$, then we get the following.

Corollary 2.8. Suppose $V \in RH_{q_1}$ with $q_1 > n/2$. Let $0 < \alpha < n$ and let $1 \leqslant p < q < \infty$ satisfy $1/q = 1/p - \alpha/n$. Then for all f in $L^p(\mathbb{R}^n)$ we have

$$\|\mathbb{I}_{\alpha}f\|_{L^{q}(\mathbb{R}^{n})}\lesssim \|f\|_{L^{p}(\mathbb{R}^{n})}$$

when p > 1, and also

$$\|\mathbb{I}_{\alpha}f\|_{WL^{q}(\mathbb{R}^{n})} \lesssim \|f\|_{L^{1}(\mathbb{R}^{n})}$$

when p = 1.

3. Proof of Theorem 1.4

In order to prove Theorem 1.4, we need the following lemmas.

Lemma 3.1. Let $1 < s < p < n/(\alpha + \beta)$, $b \in \Lambda_{\beta}^{\theta}(\rho)$, and $Q = B(x_0, \rho(x_0))$. Then

$$\frac{1}{|Q|} \int_{Q} |[b, \mathbb{I}_{\alpha}] f(y)| dy \lesssim [b]_{\beta}^{\theta} \inf_{x \in Q} M_{\alpha + \beta, s}(f)(x),$$

where

$$M_{\alpha+\beta,s}(f)(x) = \sup_{x \in B} \left(\frac{1}{|B|^{1-(\alpha+\beta)s/n}} \int_{B} |f(y)|^{s} \, dy \right)^{1/s}.$$

Proof. Since

$$[\mathfrak{b},\mathbb{I}_{\alpha}]f(\mathfrak{y})=(\mathfrak{b}(\mathfrak{y})-\mathfrak{b}_{Q})\mathbb{I}_{\alpha}f(\mathfrak{y})-\mathbb{I}_{\alpha}((\mathfrak{b}-\mathfrak{b}_{Q})f)(\mathfrak{y}),$$

we have

$$\frac{1}{|Q|}\int_{Q}|[b,\mathbb{I}_{\alpha}]f(y)|dy\leqslant\frac{1}{|Q|}\int_{Q}|(b(y)-b_{Q})\mathbb{I}_{\alpha}f(y)|dy+\frac{1}{|Q|}\int_{Q}|\mathbb{I}_{\alpha}((b-b_{Q})f)(y)|dy=I_{1}+I_{2}.$$

By Hölder's inequality and Lemma 2.5, for any t > 1 we get

$$\begin{split} I_1 \leqslant & \left(\frac{1}{|Q|} \int_Q |b(y) - b_Q|^{t'} dy\right)^{1/t'} \left(\frac{1}{|Q|} \int_Q |\mathbb{I}_\alpha f(y)|^t dy\right)^{1/t} \\ \lesssim & [b]_\beta^\theta \rho(x_0)^\beta \left(\left(\frac{1}{|Q|} \int_Q |\mathbb{I}_\alpha f_1(y)|^t dy\right)^{1/t} + \left(\frac{1}{|Q|} \int_Q |\mathbb{I}_\alpha f_2(y)|^t dy\right)^{1/t}\right) = I_{11} + I_{12}, \end{split}$$

where $f=f_1+f_2$ with $f_1=f\chi_{2Q}$. Choose t>1 such that $1/s-1/t=\alpha/n$, then by the (L^s,L^t) -boundedness of \mathbb{I}_α (see Corollary 2.8), we have

$$\begin{split} I_{11} &\lesssim [b]_{\beta}^{\theta} \rho(x_0)^{\beta} \frac{1}{|Q|^{1/t}} \left(\int_{2Q} |f(y)|^s dy \right)^{1/s} \\ &\lesssim [b]_{\beta}^{\theta} \left(\frac{1}{|2Q|^{1-(\alpha+\beta)s/\pi}} \int_{2Q} |f(y)|^s dy \right)^{1/s} \lesssim [b]_{\beta}^{\theta} \inf_{x \in Q} M_{\alpha+\beta,s}(f)(x). \end{split}$$

Note that

$$|\mathbb{I}_{\alpha}f_2(y)| \leqslant \int_{(2Q)^c} |K_{\alpha}(y,z)f(z)|dz \lesssim \int_{(2Q)^c} \frac{|f(z)|}{\left(1 + \frac{|y-z|}{\rho(y)}\right)^N |y-z|^{n-\alpha}} dz.$$

In this situation, we have $\rho(y) \approx \rho(x_0)$, $|y-z| \approx |x_0-z|$ for any $y \in Q$ and $z \in (2Q)^c$. So, decomposing $(2Q)^c$ into annuli $2^kQ \setminus 2^{k-1}Q$, $k \geqslant 2$, we get

$$|\mathbb{I}_{\alpha} f_2(y)| \lesssim \sum_{k \geq 2} \frac{2^{-kN}}{|2^k Q|^{1-\alpha/n}} \int_{2^k Q} |f(z)| dz.$$

Then, by Hölder's inequality we get

$$I_{12} \lesssim [b]_{\beta}^{\theta} \rho(x_0)^{\beta} \sum_{k \geqslant 2} \frac{2^{-kN}}{|2^k Q|^{1-\alpha/n}} \int_{2^k Q} |f(z)| dz$$

$$\begin{split} &\lesssim [b]^{\theta}_{\beta} \sum_{k\geqslant 2} \frac{2^{-kN}}{|2^k Q|^{1-(\alpha+\beta)/n}} \int_{2^k Q} |f(z)| dz \\ &\lesssim [b]^{\theta}_{\beta} \sum_{k\geqslant 2} 2^{-kN} \left(\frac{1}{|2^k Q|^{1-(\alpha+\beta)s/n}} \int_{2^k Q} |f(z)|^s dz \right)^{1/s} \\ &\lesssim [b]^{\theta}_{\beta} \inf_{x\in O} M_{\alpha+\beta,s}(f)(x). \end{split}$$

The estimate for I_2 can be proceeded in the same way of I_1 . The decomposition $f = f_1 + f_2$ gives

$$I_{2} \leqslant \frac{1}{|Q|} \int_{Q} |\mathbb{I}_{\alpha}((b-b_{Q})f_{1})(y)| dy + \frac{1}{|Q|} \int_{Q} |\mathbb{I}_{\alpha}((b-b_{Q})f_{2})(y)| dy = I_{21} + I_{22}.$$

Choose r such that 1 < r < s < p and $1/r - 1/r_0 = \alpha/n$. By Hölder's inequality, Lemma 2.5 and (L^r, L^{r_0}) -boundedness of \mathbb{I}_{α} , for some u > r we have

$$\begin{split} I_{21} \lesssim & \left(\frac{1}{|Q|} \int_{Q} |\mathbb{I}_{\alpha}((b-b_Q)f_1)(y)|^{r_0} dy\right)^{1/r_0} \\ \lesssim & \frac{1}{|Q|^{-\alpha/n}} \left(\frac{1}{|Q|} \int_{2Q} |((b-b_Q)f_1)(y)|^r dy\right)^{1/r} \\ \lesssim & \frac{1}{|Q|^{-\alpha/n}} \left(\frac{1}{|Q|} \int_{2Q} |f(y)|^s dy\right)^{1/s} \left(\frac{1}{|Q|} \int_{2Q} |b(y)-b_Q|^u dy\right)^{1/u} \\ \lesssim & [b]_{\beta}^{\theta} \inf_{x \in Q} M_{\alpha+\beta,s}(f)(x). \end{split}$$

The estimate $I_{22} \lesssim [b]_{\beta}^{\theta} \inf_{x \in Q} M_{\alpha+\beta,s}(f)(x)$ can be obtained by the similar approach to ones of I_{12} and I_{21} . Then we omit the details here.

Lemma 3.2. Let $B = B(x_0, r)$ with $r \le \gamma \rho(x_0)$ and let $x \in B$, then for any $y, z \in B$ we have

$$\int_{(2B)^c} |\mathsf{K}_{\alpha}(y,\mathfrak{u}) - \mathsf{K}_{\alpha}(z,\mathfrak{u})||b(\mathfrak{u}) - b_B||f(\mathfrak{u})|d\mathfrak{u} \lesssim [b]_{\beta}^{\theta} \mathsf{M}_{\alpha+\beta,s}(f)(x).$$

Proof. Setting $Q = B(x_0, \gamma \rho(x_0))$, due to the facts that $\rho(y) \approx \rho(z) \approx \rho(x_0)$ and $|y - u| \approx |z - u| \approx |x_0 - u|$, then by Lemma 2.7 we get

$$\int_{(2B)^c} |K_{\alpha}(y, u) - K_{\alpha}(z, u)| |b(u) - b_B| |f(u)| du \lesssim K_1 + K_2,$$

where

$$\mathsf{K}_1 = \mathsf{r}^{\delta} \int_{Q \setminus 2B} \frac{|\mathsf{f}(\mathsf{u})(\mathsf{b}(\mathsf{u}) - \mathsf{b}_B)|}{|\mathsf{x}_0 - \mathsf{u}|^{n + \delta - \alpha}} \mathsf{d}\mathsf{u}$$

and

$$K_2 = r^\delta \rho(x_0)^N \int_{O^c} \frac{|f(u)(b(u)-b_B)|}{|x_0-u|^{n+N+\delta-\alpha}} du.$$

Let j_0 be the least integer such that $2^{j_0} \ge \gamma \rho(x_0)/r$. Splitting into annuli, we have

$$K_1 \leqslant \sum_{i=2}^{j_0} 2^{-\delta j} (2^j r)^{\alpha} \frac{1}{|2^j B|} \int_{2^j B} |f(u)| |b(u) - b_B| du.$$

By Hölder's inequality, Lemma 2.5 and $2^{j}r \leqslant \gamma \rho(x_0)$ for $j < j_0$, we have

$$\begin{split} & K_1 \lesssim \sum_{j=2}^{j_0} 2^{-j\delta} (2^j r)^{\alpha} \left(\frac{1}{|2^j B|} \int_{2^j B} |f(u)|^s du \right)^{1/s} \left(\frac{1}{|2^j B|} \int_{2^j B} |b(u) - b_B|^{s'} du \right)^{1/s'} \\ & \lesssim [b]_{\beta}^{\theta} \sum_{j=2}^{j_0} 2^{-\delta j} (2^j r)^{\alpha + \beta} \left(1 + \frac{2^j r}{\rho(x_0)} \right)^{\theta'} \left(\frac{1}{|2^j B|} \int_{2^j B} |f(u)|^s du \right)^{1/s} \\ & \lesssim [b]_{\beta}^{\theta} M_{\alpha + \beta, s}(f)(x). \end{split}$$

Note that

$$\frac{1}{|2^{j}B|} \int_{2^{j}B} |f(u)| |b(u) - b_{B}| du \lesssim [b]_{\beta}^{\theta} (2^{j}r)^{\beta} \left(1 + \frac{2^{j}r}{\rho(x_{0})}\right)^{\theta'} \left(\frac{1}{|2^{j}B|} \int_{2^{j}B} |f(u)|^{s} du\right)^{1/s}.$$

Since $\frac{2^{j}r}{\rho(x_0)} \ge \gamma$ for $j \ge j_0$, then, by choosing $N > \theta'$ we get

$$\begin{split} \mathsf{K}_2 \lesssim & \rho(\mathsf{x}_0)^{\mathsf{N}} \sum_{\mathsf{j} \geqslant \mathsf{j}_0} 2^{-\mathsf{j}\delta} \frac{1}{(2^{\mathsf{j}} r)^{\mathsf{N} - \alpha}} \frac{1}{|2^{\mathsf{j}} \mathsf{B}|} \int_{2^{\mathsf{j}} \mathsf{B}} |\mathsf{f}(\mathsf{u})| |\mathsf{b}(\mathsf{u}) - \mathsf{b}_{\mathsf{B}}| d\mathsf{u} \\ \lesssim & [\mathsf{b}]_{\beta}^{\theta} \left(\frac{2^{\mathsf{j}} r}{\rho(\mathsf{x}_0)} \right)^{-(\mathsf{N} - \theta')} \sum_{\mathsf{j} = \mathsf{j}_0}^{\infty} 2^{-\mathsf{j}\delta} (2^{\mathsf{j}} r)^{\alpha + \beta} \left(\frac{1}{|2^{\mathsf{j}} \mathsf{B}|} \int_{2^{\mathsf{j}} \mathsf{B}} |\mathsf{f}(\mathsf{u})|^{\mathsf{s}} d\mathsf{u} \right)^{1/\mathsf{s}} \\ \lesssim & [\mathsf{b}]_{\beta}^{\theta} \mathsf{M}_{\alpha + \beta_{\mathsf{s}} \mathsf{s}} \mathsf{f}(\mathsf{x}). \end{split}$$

Lemma 3.3. Let $1 < s < p < n/(\alpha + \beta)$, $B = B(x_0, r)$ with $r \leqslant \gamma \rho(x_0)$, and $x \in B$. Then $M^{\sharp}_{\rho, \gamma}([b, \mathbb{I}_{\alpha}]f)(x) \lesssim [b]^{\theta}_{\beta}\left(M_{\alpha + \beta, s}(f)(x) + M_{\beta, s}(\mathbb{I}_{\alpha}f)(x)\right).$

Proof. We write

$$\begin{split} \frac{1}{|B|} \int_{B} |[b, \mathbb{I}_{\alpha}] f(y) - ([b, \mathbb{I}_{\alpha}] f)_{B} | dy \leqslant & \frac{2}{|B|} \int_{B} |(b(y) - b_{B}) \mathbb{I}_{\alpha} f(y)| dy + \frac{2}{|B|} \int_{B} |\mathbb{I}_{\alpha} ((b - b_{B}) f_{1})(y)| dy \\ & + \frac{1}{|B|} \int_{B} |\mathbb{I}_{\alpha} ((b - b_{B}) f_{2})(y) - (\mathbb{I}_{\alpha} ((b - b_{B}) f_{2}))_{B} | dy \\ & = & J_{1} + J_{2} + J_{3}, \end{split}$$

where $f = f_1 + f_2$ with $f_1 = f\chi_{2B}$.

Since $r \leqslant \gamma \rho(x_0)$ and $\rho(x) \approx \rho(x_0)$, by Hölder's inequality and Lemma 2.5, we get

$$\begin{split} J_1 \leqslant & \left(\frac{1}{|B|} \int_B |b(y) - b_B|^{s'} dy \right)^{1/s'} \left(\frac{1}{|B|} \int_B |\mathbb{I}_\alpha f(y)|^s dy \right)^{1/s} \\ \lesssim & [b]_\beta^\theta r^\beta \left(\frac{1}{|B|} \int_B |\mathbb{I}_\alpha f(y)|^s dy \right)^{1/s} \lesssim [b]_\beta^\theta M_{\beta,s}(\mathbb{I}_\alpha f)(x). \end{split}$$

For some 1 < r < s, and $1/r - 1/r_0 = \alpha/n$, by Hölder's inequality and Lemma 2.5, we have

$$\begin{split} J_2 &\lesssim \left(\frac{1}{|B|} \int_B |\mathbb{I}_{\alpha}((b-b_B)f_1)(y)|^{r_0} dy\right)^{1/r_0} \\ &\lesssim \frac{1}{|B|^{-\alpha/n}} \left(\frac{1}{|B|} \int_{2B} |(b(y)-b_B)f(y)|^r dy\right)^{1/r} \end{split}$$

$$\begin{split} \lesssim & \frac{1}{|B|^{-\alpha/n}} \left(\frac{1}{|B|} \int_{2B} |b(y) - b_B|^{u} dy \right)^{1/u} \left(\frac{1}{|B|} \int_{2B} |f(y)|^s dy \right)^{1/s} \\ \lesssim & [b]_{\beta}^{\theta} \left(\frac{1}{|2B|^{1-(\alpha+\beta)s/n}} \int_{2B} |f(y)|^s dy \right)^{1/s} \\ \lesssim & [b]_{\beta}^{\theta} M_{\alpha+\beta,s}(f)(x). \end{split}$$

By Lemma 3.2,

$$\begin{split} J_3 \leqslant & \frac{1}{|B|^2} \int_B \int_B \int_{(2B)^c} |K_{\alpha}(y, u) - K_{\alpha}(z, u)| |b(u) - b_B| |f(u)| du dz dy \\ \lesssim & \int_{(2B)^c} |K_{\alpha}(y, u) - K_{\alpha}(z, u)| |b(u) - b_B| |f(u)| du \\ \lesssim & [b]_B^\theta M_{\alpha + \beta, s}(f)(x). \end{split}$$

We now come to prove Theorem 1.4. By proposition 2.4, Lemma 3.1, and Lemma 3.3 we have

$$\begin{split} \|[b,\mathbb{I}_{\alpha}]f\|_{L^{q}(\mathbb{R}^{n})}^{q} &\leqslant \int_{\mathbb{R}^{n}} |M_{\rho,\eta}([b,\mathbb{I}_{\alpha}]f)(x)|^{q} \, dx \\ &\leqslant \int_{\mathbb{R}^{n}} \left| M_{\rho,\gamma}^{\sharp}([b,\mathbb{I}_{\alpha}]f)(x) \right|^{q} dx + \sum_{k} |Q_{k}| \left(\frac{1}{|Q_{k}|} \int_{2Q_{k}} |[b,\mathbb{I}_{\alpha}]f(x)| \, dx \right)^{q} \\ &\lesssim \int_{\mathbb{R}^{n}} \left| M_{\rho,\gamma}^{\sharp}([b,\mathbb{I}_{\alpha}]f)(x) \right|^{q} dx + \sum_{k} |Q_{k}| \left(\inf_{y \in 2Q_{k}} M_{\alpha+\beta,s}(f)(y) \right)^{q} \\ &\lesssim ([b]_{\beta}^{\theta})^{q} \int_{\mathbb{R}^{n}} \left| M_{\alpha+\beta,s}(f)(x) + M_{\beta,s}(\mathbb{I}_{\alpha}f)(x) \right|^{q} dx + ([b]_{\beta}^{\theta})^{q} \sum_{k} \int_{2Q_{k}} |M_{\alpha+\beta,s}(f)(x)|^{q} dx \\ &\lesssim ([b]_{\beta}^{\theta})^{q} \left(\int_{\mathbb{R}^{n}} |M_{\alpha+\beta,s}(f)(x)|^{q} dx + \int_{\mathbb{R}^{n}} |M_{\beta,s}(\mathbb{I}_{\alpha}f)(x)|^{q} dx \right) \\ &\lesssim ([b]_{\beta}^{\theta})^{q} \|f\|_{L^{p}(\mathbb{R}^{n})}^{q} \end{split}$$

where we have used the finite overlapping property given by Proposition 2.3.

4. Proofs of Theorems 1.5 and 1.6

Let us first prove Theorem 1.5.

Choosing $\tau > 1$, we only need to show that for any $H_{\mathcal{L}}^{p,\tau}$ -atom \mathfrak{a} ,

$$\|[b, \mathbb{I}_{\alpha}]a\|_{L^{q}(\mathbb{R}^{n})} \leqslant C$$

holds, where C is a constant independent of a. Suppose supp $a \subset B = B(x_0, r)$ with $r < \rho(x_0)$. Then

$$\|[b, \mathbb{I}_{\alpha}]a\|_{L^{q}(\mathbb{R}^{n})} \leqslant \left(\int_{2B} |[b, \mathbb{I}_{\alpha}]a(x)|^{q} dx\right)^{1/q} + \left(\int_{(2B)^{c}} |[b, \mathbb{I}_{\alpha}]a(x)|^{q} dx\right)^{1/q} = A_{1} + A_{2}.$$

Let $1/q_1 = 1/\tau - (\alpha + \beta)/n$. By Theorem 1.4 and the size condition of atom α , we have

$$A_1 \leqslant \left(\int_{2B} |[b, \mathbb{I}_{\alpha}] a(x)|^{q_1} dx \right)^{1/q_1} (2r)^{\frac{n}{q} - \frac{n}{q_1}} \leqslant C \left(\int_{2B} |a(x)|^{\tau} dx \right)^{1/\tau} (2r)^{\frac{n}{q} - \frac{n}{q_1}} \leqslant C (2r)^{\frac{n}{\tau} - \frac{n}{p}} (2r)^{\frac{n}{q} - \frac{n}{q_1}} = C.$$

For A₂, we consider two cases, that are $r < \rho(x_0)/4$ and $\rho(x_0)/4 \leqslant r < \rho(x_0)$. **Case I:** When $r < \rho(x_0)/4$, by the vanishing condition of α , we have

$$|[b, \mathbb{I}_{\alpha}] a(x)| \leqslant |b(x) - b_B| \int_{B} |K_{\alpha}(x, y) - K_{\alpha}(x, x_0)||a(y)| dy + \int_{B} |K_{\alpha}(x, y)(b(y) - b_B)a(y)| dy = A_{21} + A_{22}.$$

Note that

$$\int_{B} |a(y)| dy \lesssim r^{n-\frac{n}{p}},$$

and

$$\frac{1}{|2^k B|} \int_{2^k B} |b(x) - b_B|^q dx \lesssim ([b]_{\beta}^{\theta})^q (2^k r)^{\beta q} \left(1 + \frac{2^k r}{\rho(x_0)}\right)^{\theta' q}.$$

When $x \in 2^{k+1}B(x_0,r) \setminus 2^kB(x_0,r)$, and $y \in B$, by Lemmas 2.7 and 2.2, we can take δ such that $0 < \beta < \delta < \delta'$ and

$$|K_\alpha(x,y)-K_\alpha(x,x_0)|\lesssim \frac{1}{\left(1+\frac{2^kr}{\rho(x_0)}\right)^{N/(k_0+1)}}\frac{r^\delta}{(2^kr)^{n+\delta-\alpha}}.$$

Noticing $1/q=1/p-(\alpha+\beta)/n$ and $p>\frac{n}{n+\beta}>\frac{n}{n+\delta}$, then we get

$$\begin{split} \int_{(2B)^c} (A_{21})^q dx \lesssim & r^{(\mathfrak{n} - \frac{\mathfrak{n}}{p}) \, \mathfrak{q}} ([b]_\beta^\theta)^q \sum_{k \geqslant 1} \frac{1}{\left(1 + \frac{2^k r}{\rho(x_0)}\right)^{N \, \mathfrak{q}/(k_0 + 1)}} \frac{r^{\delta \, \mathfrak{q}}}{(2^k r)^{(\mathfrak{n} + \delta - \alpha) \, \mathfrak{q}}} \int_{2^k B} |b(x) - b_B|^q dx \\ \lesssim & ([b]_\beta^\theta)^q \sum_{k \geqslant 1} \frac{1}{\left(1 + \frac{2^k r}{\rho(x_0)}\right)^{N \, \mathfrak{q}/(k_0 + 1) - \theta' \, \mathfrak{q}}} 2^{k \, \mathfrak{q}(\frac{\mathfrak{n}}{p} - \mathfrak{n} - \delta)} \\ \lesssim & ([b]_\beta^\theta)^q \sum_{k \geqslant 1} 2^{k \, \mathfrak{q}(\frac{\mathfrak{n}}{p} - \mathfrak{n} - \delta)} \\ \lesssim & ([b]_\beta^\theta)^q. \end{split}$$

For $x \in (2B)^c$, $y \in B$, we have $|x - y| \approx |x - x_0|$. By Lemmas 2.7 and 2.2,

$$\begin{split} \left(\int_{2^{k+1}B \setminus 2^k B} |K_{\alpha}(x,y)|^q \, dx \right)^{1/q} \lesssim & \frac{r^{\delta}}{\left(1 + \frac{2^k r}{\rho(x_0)} \right)^{\frac{N}{k_0 + 1}}} \left(\int_{2^{k+1}B \setminus 2^k B} \frac{dx}{|x - x_0|^{q \, (n + \delta - \alpha)}} \right)^{1/q} \\ \lesssim & \frac{2^{-k\delta}}{\left(1 + \frac{2^k r}{\rho(x_0)} \right)^{\frac{N}{k_0 + 1}}} \frac{1}{\left(2^k r \right)^{\frac{n}{q'} - \alpha}}. \end{split}$$

By Hölder's inequality and Lemma 2.5 we get

$$\begin{split} \int_{B} |b(y) - b_{B}| |a(y)| dy & \leqslant \left(\int_{B} |a(y)|^{\tau} dy \right)^{1/\tau} \left(\int_{B} |b(y) - b_{B}|^{\tau'} dy \right)^{1/\tau'} \\ & \lesssim [b]_{\beta}^{\theta} r^{\frac{n}{\tau} - \frac{n}{p}} r^{\beta + \frac{n}{\tau'}} \left(1 + \frac{r}{\rho(x_{0})} \right)^{\theta'} \\ & \lesssim [b]_{\beta}^{\theta} r^{n - \frac{n}{p} + \beta} \left(1 + \frac{r}{\rho(x_{0})} \right)^{\theta'}. \end{split}$$

Then, by Minkowski's inequality we get

$$\begin{split} \left(\int_{(2B)^c} (A_{22})^q dx\right)^{1/q} &\lesssim \int_B |b(y) - b_B| |a(y)| dy \left(\sum_{k\geqslant 1} \int_{2^{k+1}B\setminus 2^kB} |K_\alpha(x,y)|^q dx\right)^{1/q} \\ &\lesssim [b]_\beta^\theta r^{n-\frac{n}{p}+\beta} \left(1+\frac{r}{\rho(x_0)}\right)^{\theta'} \sum_{k\geqslant 1} \frac{2^{-k\delta}}{\left(1+\frac{2^k r}{\rho(x_0)}\right)^{\frac{N}{k_0+1}}} \frac{1}{(2^k r)^{\frac{n}{q'}-\alpha}} \\ &\lesssim [b]_\beta^\theta \sum_{k\geqslant 1} \frac{1}{2^{k(n-\frac{n}{p}+\beta+\delta)}} \\ &\lesssim [b]_\beta^\theta. \end{split}$$

Case II: When $\rho(x_0)/4 \leqslant r < \rho(x_0)$, this is $\frac{r}{\rho(x_0)} \geqslant 1/4$. The atom α does not satisfy the vanishing condition. By Minkowski's inequality,

$$\begin{split} A_{2} & \leq \left\{ \int_{(2B)^{c}} |b(x) - b_{B}|^{q} \middle| \int_{B} K_{\alpha}(x, y) \alpha(y) dy \middle|^{q} dx \right\}^{1/q} \\ & + \left\{ \int_{(2B)^{c}} \middle| \int_{B} |K_{\alpha}(x, y)(b(y) - b_{B}) \alpha(y)| dy \middle|^{q} dx \right\}^{1/q} \\ & = A'_{21} + A'_{22}. \end{split}$$

When $y \in B$, $x \in 2^{k+1}B \setminus 2^kB$, we have

$$\begin{split} \left| \mathsf{K}_{\alpha}(x,y) \right| \lesssim \frac{1}{\left(1 + \frac{2^k r}{\rho(x_0)} \right)^{\frac{N}{k_0 + 1}}} \frac{1}{(2^k r)^{n - \alpha}}, \\ \int_{\mathbb{R}} |a(y)| dy \lesssim r^{n - \frac{n}{p}}, \end{split}$$

and

$$\int_{2^k B} |b(x) - b_B|^q dx \lesssim ([b]_\beta^\theta)^q (2^k r)^{n + \beta \, q} \left(1 + \frac{2^k r}{\rho(x_0)}\right)^{\theta' \, q}.$$

Note that $\frac{r}{\rho(x_0)} \geqslant 1/4$, then

$$\begin{split} (A_{21}')^q \lesssim & ([b]_{\beta}^{\theta})^q \sum_{k\geqslant 1} \frac{1}{\left(1+\frac{2^k r}{\rho(x_0)}\right)^{\frac{qN}{k_0+1}-q\theta'}} \frac{(2^k r)^{n+\beta\,q}}{(2^k r)^{(n-\alpha)\,q}} r^{(n-\frac{n}{p})\,q} \\ \lesssim & ([b]_{\beta}^{\theta})^q \sum_{k\geqslant 1} \frac{1}{(2^k)^{\frac{qN}{k_0+1}-q\theta'}} (2^k)^{(\frac{n}{p}-n)\,q} \lesssim ([b]_{\beta}^{\theta})^q. \end{split}$$

Since N can be chosen large enough, the last series converges.

The estimate of A'_{22} is exactly the same as $\|A_{22}\|_{L^q((2B)^c)}$, we omit the detail of the proof. Then the proof of Theorem 1.5 is finished.

Finally, we proceed to prove Theorem 1.6.

Let $f \in H_{\mathcal{L}}^{\frac{n}{n+\beta}}(\mathbb{R}^n)$, we write $f = \sum_{j=-\infty}^{\infty} \lambda_j a_j$, where each a_j is an $H_{\mathcal{L}}^{\frac{n}{n+\beta},l}$ -atom, $1 < l < \frac{n}{\alpha+\beta}$, and

$$\left(\sum_{j=-\infty}^{\infty}|\lambda_j|^{\frac{n}{n+\beta}}\right)^{\frac{n+\beta}{n}}\leqslant 2\|f\|_{H_{\mathcal{L}}^{\frac{n}{n+\beta}}(\mathbb{R}^n)}.$$

Suppose that supp $a_j \subset B_j = B(x_j, r_j)$ with $r_j < \rho(x_j)$. Write

$$\begin{split} [b,\mathbb{I}_{\alpha}]f(x) &= \sum_{j=-\infty}^{\infty} \lambda_{j}[b,\mathbb{I}_{\alpha}]a_{j}(x)\chi_{8B_{j}}(x) + \sum_{j:r_{j}\geqslant\rho(x_{j})/4} \lambda_{j}\big(b(x)-b_{B_{j}}\big)\mathbb{I}_{\alpha}a_{j}(x)\chi_{(8B_{j})^{c}}(x) \\ &+ \sum_{j:r_{j}<\rho(x_{j})/4} \lambda_{j}\big(b(x)-b_{B_{j}}\big)\mathbb{I}_{\alpha}a_{j}(x)\chi_{(8B_{j})^{c}}(x) - \sum_{j=-\infty}^{\infty} \lambda_{j}\mathbb{I}_{\alpha}((b-b_{B_{j}})a_{j})(x)\chi_{(8B_{j})^{c}}(x) \\ &= \sum_{i=1}^{4} \sum_{j=-\infty}^{\infty} \lambda_{j}A_{ij}(x). \end{split}$$

In the following, we always let $q = \frac{n}{n-\alpha}$. Note that

$$\left(\int_{B_j} |a_j(x)|^l dx\right)^{1/l} \lesssim |B_j|^{\frac{1}{l} - \frac{n+\beta}{n}}.$$

Choose $t>\frac{n-\alpha}{n-\alpha-\beta}$ such that $\frac{1}{q\,t}=\frac{1}{l}-\frac{\alpha+\beta}{n}.$ By Hölder's inequality and Theorem 1.4 we get

$$\begin{split} \left\|A_{1,j}\right\|_{L^q(\mathbb{R}^n)} \lesssim & \left(\int_{8B_j} \left|[b,\mathbb{I}_\alpha]\alpha_j(x)\right|^{qt} dx\right)^{\frac{1}{qt}} r_j^{\frac{n}{qt'}} \\ \lesssim & \left[b\right]_\beta^\theta r_j^{\frac{n}{qt'}} \left(\int_{B_j} |\alpha_j(x)|^l dx\right)^{1/l} \lesssim [b]_\beta^\theta |B_j|^{\frac{1}{qt'} + \frac{1}{l} - \frac{n+\beta}{n}} \lesssim [b]_\beta^\theta. \end{split}$$

Noticing $0 < \frac{n}{n+\beta} < 1$, we get

$$\begin{split} \left\| \sum_{j=-\infty}^{\infty} \lambda_{j} A_{1j} \right\|_{L^{q}(\mathbb{R}^{n})} \lesssim \sum_{j=-\infty}^{\infty} \left| \lambda_{j} \right| \left\| A_{1j} \right\|_{L^{q}(\mathbb{R}^{n})} \lesssim [b]_{\beta}^{\theta} \sum_{j=-\infty}^{\infty} \left| \lambda_{j} \right| \lesssim [b]_{\beta}^{\theta} \left(\sum_{j=-\infty}^{\infty} \left| \lambda_{j} \right|^{\frac{n}{n+\beta}} \right)^{\frac{n+\beta}{n}} \\ \lesssim [b]_{\beta}^{\theta} \left\| f \right\|_{\mathcal{L}^{\frac{n}{n+\beta}}_{\frac{n}{n+\beta}}(\mathbb{R}^{n})}. \end{split}$$

Then

$$\left|\left\{x\in\mathbb{R}^n:\ \left|\ \sum_{j=-\infty}^\infty \lambda_j A_{1j}\right|>\frac{\lambda}{4}\right\}\right|\lesssim \frac{\left([b]^\theta_\beta\right)^q}{\lambda^q}\|f\|^q_{H^{\frac{n}{n+\beta}}_\mathcal{L}(\mathbb{R}^n)}.$$

Since $x \in B_j$, $y \in 2^{k+1}B_j \setminus 2^kB_j$, we have $|x-y| \approx |x-x_j| \approx 2^kr_j$, and by Lemma 2.2 we get

$$\frac{1}{\left(1+\frac{|x-y|}{\rho(x)}\right)^N}\lesssim \frac{1}{\left(1+\frac{2^kr_j}{\rho(x_j)}\right)^{\frac{N}{k_0+1}}}.$$

Note that $\int_{B_j} |\alpha_j(y)| dy \leqslant r_j^{-\beta}$, and $r_j/\rho(x_j) \geqslant 1/4.$ Then

$$\begin{split} \left\| A_{2,j}(x) \right\|_{L^{q}(\mathbb{R}^{n})}^{q} &= \sum_{k \geqslant 3} \int_{2^{k+1} B_{j} \setminus 2^{k} B_{j}} |b(x) - b_{B_{j}}|^{q} \left(\int_{B_{j}} \frac{1}{\left(1 + \frac{|x - y|}{\rho(x)}\right)^{N}} \frac{1}{|x - y|^{n - \alpha}} |a_{j}(y)| dy \right)^{q} dx \\ &\lesssim \sum_{k \geqslant 3} \frac{1}{\left(1 + \frac{2^{k} r_{j}}{\rho(x_{j})}\right)^{\frac{Nq}{k_{0} + 1}}} \frac{1}{(2^{k} r_{j})^{(n - \alpha)q}} \int_{2^{k + 1} B_{j}} |b(x) - b_{B_{j}}|^{q} dx \left(\int_{B_{j}} |a_{j}(y)| dy \right)^{q} \end{split}$$

$$\begin{split} &\lesssim \! \left([b]_{\beta}^{\theta}\right)^{q} \sum_{k\geqslant 3} \frac{1}{\left(1+\frac{2^{k}r_{j}}{\rho(x_{j})}\right)^{\left(\frac{N}{k_{0}+1}-\theta'\right)q}} (2^{k}B_{j})^{\beta\,q} r_{j}^{-\beta\,q} \\ &\lesssim \! \left([b]_{\beta}^{\theta}\right)^{q} \sum_{k\geqslant 1} \frac{1}{2^{kq\left(\frac{N}{k_{0}+1}-\theta'-\beta\right)}} \\ &\lesssim \! \left([b]_{\beta}^{\theta}\right)^{q}. \end{split}$$

Then

$$\bigg\| \sum_{j=-\infty}^\infty \lambda_j A_{2j} \bigg\|_{L^q(\mathbb{R}^n)} \lesssim [\mathfrak{b}]_\beta^\theta \|f\|_{H_\mathcal{L}^{\frac{n}{n+\beta}}(\mathbb{R}^n)}.$$

Therefore

$$\left|\left\{x\in\mathbb{R}^n:\;\left|\;\sum_{j=-\infty}^\infty\lambda_jA_{2j}\right|>\frac{\lambda}{4}\right\}\right|\lesssim\frac{\left([b]^\theta_\beta\right)^q}{\lambda^q}\|f\|^q_{H^{\frac{n}{n+\beta}}_\mathcal{L}(\mathbb{R}^n)}.$$

When $x \in 2^{k+1}B_j \setminus 2^kB_j$, and $y \in B_j$, by Lemmas 2.7 and 2.2 we have

$$|\mathsf{K}_\alpha(\mathsf{x},\mathsf{y}) - \mathsf{K}_\alpha(\mathsf{x},\mathsf{x}_{\mathsf{j}})| \lesssim \frac{1}{\left(1 + \frac{2^k r_{\mathsf{j}}}{\rho(\mathsf{x}_{\mathsf{j}})}\right)^{N/(k_0 + 1)}} \frac{r_{\mathsf{j}}^\delta}{(2^k r_{\mathsf{j}})^{n + \delta - \alpha}}.$$

Thus, by the vanishing condition of a_i and $0 < \beta < \delta < \delta'$ we have

$$\begin{split} \left\| A_{3,j}(x) \right\|_{L^{q}(\mathbb{R}^{n})}^{q} &= \sum_{k \geqslant 3} \int_{2^{k+1}B_{j} \setminus 2^{k}B_{j}} |b(x) - b_{B_{j}}|^{q} \left(\int_{B_{j}} |K_{\alpha}(x,y) - K_{\alpha}(x,x_{j})| |a_{j}(y)| dy \right)^{q} dx \\ &\lesssim \sum_{k \geqslant 3} \frac{1}{\left(1 + \frac{2^{k}r_{j}}{\rho(x_{j})} \right)^{\frac{Nq}{k_{0}+1}}} \frac{r_{j}^{\delta q}}{(2^{k}r_{j})^{(n+\delta-\alpha)q}} \int_{2^{k+1}B_{j}} |b(x) - b_{B_{j}}|^{q} dx \left(\int_{B_{j}} |a_{j}(y)| dy \right)^{q} \\ &\lesssim \left([b]_{\beta}^{\theta} \right)^{q} \sum_{k \geqslant 3} \frac{1}{\left(1 + \frac{2^{k}r_{j}}{\rho(x_{j})} \right)^{\left(\frac{N}{k_{0}+1} - \theta' \right)q}} \frac{r_{j}^{\delta q}}{(2^{k}r_{j})^{(n+\delta-\alpha)q}} (2^{k}r_{j})^{n+\beta q} r_{j}^{-\beta q} \\ &\lesssim \left([b]_{\beta}^{\theta} \right)^{q} \sum_{k \geqslant 1} \frac{1}{2^{k(\delta-\beta)}} \\ &\lesssim \left([b]_{\beta}^{\theta} \right)^{q}. \end{split}$$

Then

$$\bigg\| \sum_{j=-\infty}^\infty \lambda_j A_{3j} \bigg\|_{L^q(\mathbb{R}^n)} \lesssim [\mathfrak{b}]_\beta^\theta \|f\|_{H_\mathcal{L}^{\frac{n}{n+\beta}}(\mathbb{R}^n)}.$$

Therefore

$$\left|\left\{x\in\mathbb{R}^n:\;\left|\;\sum_{j=-\infty}^\infty\lambda_jA_{3j}\right|>\frac{\lambda}{4}\right\}\right|\lesssim\frac{\left([b]^\theta_\beta\right)^q}{\lambda^q}\|f\|^q_{H^{\frac{n}{n+\beta}}_\mathcal{L}(\mathbb{R}^n)}.$$

Note that

$$\|(b - b_{B_j})a_j\|_{L^1} \leqslant \left(\int_{B_j} |b(x) - b_{B_j}|^{l'} dx\right)^{1/l'} \left(\int_{B_j} |a_j(x)|^l dx\right)^{1/l}$$

$$\lesssim \! [b]_{\beta}^{\theta} r_{j}^{\frac{n}{T}-n-\beta+\frac{n}{l'}+\beta} \left(1+\frac{r_{j}}{\rho(x_{j})}\right)^{\theta'} \lesssim \ [b]_{\beta}^{\theta},$$

and

$$|A_{4j}(x)| \leqslant \sum_{j=-\infty}^{\infty} |\lambda_j| \mathbb{I}_{\alpha}(|(b-b_{B_j})a_j|)(x) \chi_{(8B_j)^c}(x) \leqslant \mathbb{I}_{\alpha} \left(\sum_{j=-\infty}^{\infty} |\lambda_j(b-b_{B_j})a_j|\right)(x).$$

By the boundedness of \mathbb{I}_{α} from $L^1(\mathbb{R}^n)$ to $WL^q(\mathbb{R}^n)$ (see Corollary 2.8) we get

$$\begin{split} \left| \left\{ x \in \mathbb{R}^n : \; \left| \sum_{j=-\infty}^{\infty} \lambda_j A_{4j} \right| > \frac{\lambda}{4} \right\} \right| \leqslant & \left| \left\{ x \in \mathbb{R}^n : \; \left| \mathbb{I}_{\alpha} \left(\sum_{j=-\infty}^{\infty} |\lambda_j (b - b_{B_j}) a_j| \right) (x) \right| > \frac{\lambda}{4} \right\} \right| \\ \lesssim & \frac{1}{\lambda^q} \left\| \sum_{j=-\infty}^{\infty} |\lambda_j (b - b_{B_j}) a_j| \right\|_{L^1(\mathbb{R}^n)}^q \\ \lesssim & \frac{1}{\lambda^q} \left(\sum_{j=-\infty}^{\infty} |\lambda_j| \| (b - b_{B_j}) a_j \|_{L^1(\mathbb{R}^n)} \right)^q \\ \lesssim & \frac{\left([b]_{\beta}^{\theta} \right)^q}{\lambda^q} \left(\sum_{j=-\infty}^{\infty} |\lambda_j| \right)^q \lesssim \frac{\left([b]_{\beta}^{\theta} \right)^q}{\lambda^q} \| f \|_{H_{\mathcal{L}}^{\frac{n}{n+\beta}}(\mathbb{R}^n)}^q. \end{split}$$

Thus,

$$\begin{split} \left| \left\{ x \in \mathbb{R}^n : \; \left| \; \sum_{i=1}^4 \sum_{j=-\infty}^\infty \lambda_j A_{ij} \right| > \lambda \right\} \right| \lesssim & \sum_{i=1}^4 \left| \left\{ x \in \mathbb{R}^n : \; \left| \; \sum_{j=-\infty}^\infty \lambda_j A_{ij} \right| > \frac{\lambda}{4} \right\} \right| \\ \lesssim & \frac{\left([b]_\beta^\theta \right)^q}{\lambda^q} \left(\sum_{j=-\infty}^\infty |\lambda_j| \right)^q \lesssim \frac{\left([b]_\beta^\theta \right)^q}{\lambda^q} \| f \|_{H_\mathcal{L}^{\frac{n}{n+\beta}}(\mathbb{R}^n)}^q, \end{split}$$

which completes the proof of Theorem 1.6.

References

- [1] B. Bongioanni, E. Harboure, O. Salinas, Commutators of Riesz transforms related to Schrödinger operators, J. Fourier Anal. Appl., 17 (2011), 115–134.1, 2.4
- [2] T. A. Bui, Weighted estimates for commutators of some singular integrals related to Schrödinger operators, Bull. Sci. Math., 138 (2014), 270–292.1, 2
- [3] S. Chanillo, A note on commutator, Indiana Univ. Math. J., 31 (1982), 7–16.1
- [4] J. Dziubański, J. Zienkiewicz, Hardy space H¹ associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Rev. Mat. Iberoamericana, 15 (1999), 279–296.1, 2.3
- [5] J. Dziubański, J. Zienkiewicz, H^p spaces associated with Schrödinger operators with potentials from reverse Hölder classes, Colloq. Math., **98** (2003), 5–38.1, 1.3, 2.6
- [6] D. Goldberg, A local version of real Hardy spaces, Duke Math. J., 46 (1979), 27-42.1
- [7] Y. Liu, J. Sheng, Some estimates for commutators of Riesz transforms associated with Schrödinger operators, J. Math. Anal. Appl., **419** (2014), 298–328.1, 2.5
- [8] S. Z. Lu, Q. Wu, D.C. Yang, Boundedness of commutators on Hardy type spaces, Sci. China Ser. A, 45 (2002), 984–997.1
- [9] M. Paluszyński, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss, Indiana Univ. Math. J., 44 (1995), 1–17. 1
- [10] Z. W. Shen, L^p estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier, 45 (1995), 513–546.1, 2.1