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Abstract

We consider the Schrodinger operator £ = —A+V on R™, where n > 3 and the nonnegative potential V belongs to
reverse Holder class RHq, for some q; > 7. Let I be the fractional integral associated with £, and let b belong to a new
Campanato space /\%(p). In this paper, we establish the boundedness of the commutators [b,I«] from LP(R™) to L9(R™)
whenever 1/q = 1/p— (ax+B)/n,1 < p < n/(oc+ B). When ﬁﬁ <p < 1,1/q =1/p—(ax+ B)/n, we show that [b,I4] is

bounded from H]Z (R™) to LY(IR™). Moreover, we also prove that [b, I] maps HL.‘TB (R™) continuously into weak L= (R™).
(©2017 All rights reserved.
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1. Introduction and results

Let L = —A +V be a Schrodinger operator on R™,n > 3. The function V is nonnegative, V # 0, and
belongs to a reverse Holder class RHg, for some q; > %, that is, there exists a constant C such that

i q1 >1/Q1 _
<B| L V(y)hdy < B JB V(y)dy

for every ball B C R™.
Suppose V € RHq, with q; > n/2. The fractional integral associated with £ is defined by

dt

Tof(x) = £™%2f(x) :J e_w(ﬂ(x)m

0

for 0 < o« < m. If L = —Ais the Laplacian on R™, then I is the Riesz potential I, that is,

_ fly)
I“f(x) = J]Rn Wdy
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As in [10], for a given potential V € RHy, with q; > n/2, we define the auxiliary function

1
p(x):sup{r>0:rnzj V(y)dy <1}, x € R™.
B(x,1)

It is well-known that 0 < p(x) < oo for any x € R™.
Let © > 0 and 0 < B < 1, according to [7], the new Campanato class /\%(p) consists of the locally
integrable functions b such that

1

0
.

_ b —bgldu<C(1+—

IB(x,r)[1+B/m JB(X,r)| (y) —beldy ( - )

p(x)
holds for all x € R™ and v > 0. A seminorm of b € /\[93 (p), denoted by [b]%, is given by the infimum of the
constants in the inequalities above.

Note that if 6 = 0, /\%(p) is the classical Campanato space. If B = 0, /\%(p) is exactly the space
BMOg(p) introduced in [1].

We recall the Hardy space associated with Schrodinger operator £ which had been studied by Dz-
iubanski and Zienkiewicz in [4] and [5]. Because V € Lﬁé . (R™), the Schrodinger operator £ generates
a (Cp) contraction semigroup {T£ : s > 0} = {e %% : s > 0}. The maximal function associated with
{T£ : s > 0} is defined by M*f(x) = sup._, ITZ£(x)|. We always denote 1 = 2—n/q; and &’ = min{1,n}.
For - < p < 1, the Hardy space HY (R™) associated with Schrodinger operator £ is defined as follows.

Definition 1.1. We say that f is an element of HE (R™) if the maximal function M*f belongs to LP(R™).
The quasi-norm of f is defined by [/f/p (rn) = [M“ ] Lp (Rr)-

We introduce the concept of HY%-atom.

Definition 1.2. Let 75, <p <1< ¢ < co. A function a € [2(R™) is called an Hz’q—atom if ¥ < p(xg) and
the following conditions hold:

(1) Supp ac B(XOI T)/
(i) ||la|lra(rn) < IB(xo, 1)/ 971/P,
(iii) if r < p(x0)/4, then fB(xo,r) a(x)dx = 0.
We have the following atomic characterization of Hardy space.

Proposition 1.3 ([5]). Let ;s < p < 1 < q < oo. Then f € HY(R™) if and only if f can be written as
f = ZJ- Ajaj, where a; are Hz’q-atoms, Z]- IA;IP < oo, and the sum converges in the HE(]R“) quasi-norm.

Moreover
1/p
~ 3 [P
gy ~inf $ (Z M)

j
where the infimum is taken over all atomic decompositions of f into HY9-atoms.

The above atomic decomposition of HY. (R™) implies that the Hardy space HF, (R™) is larger than
the classical Hardy space HP (R™). Especially, the Hardy space HY (R™) is exactly the local Hardy space
hP(R™) introduced by Goldberg in [6] when the potential V is a positive constant.

Let us consider the commutator associated with the Riesz potential I and locally integrable function
b, b, I«]f(x) = b(x)I«f(x) — I«(bf)(x). When b € BMO, Chanillo proved in [3] that [b, ] is bounded
from LP(R™) to L9(R™) with 1/q = 1/p —a/n,1 < p < n/x. When b belongs to the Campanato space
Ap,0 < B < 1, Paluszyniski in [9] showed that [b, I] is bounded from LP(R™) to L9(IR"™), where 1/q =
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1/p—(x+B)/n,1 <p < n/(x+ P). Furthermore, Lu et al. in [8] considered the boundedness of [b, []
on the classical Hardy spaces when b € Ag(0 < § < 1). They proved that if ;35 < p < 1land 1/q =
1/p — (x+ B)/n,[b,I«] maps HP(IR™) continuously into LY(IR™). At the endpoint p = they also
showed that [b, I«] maps HP (R™) continuously into weak L/ (n—aJ(RM),

When b € BMOg(p), Bui in [2] obtained the boundedness of [b,I4] from LP(IR™) to L9(IR") with
1/g=1/p—a/n,1 <p <n/a.

Inspired by the above results, in this paper, we are interested in the boundedness of [b,I,] when b
belongs to the new Campanato class /\% (p). The results of this paper are as follows.

Theorem 1.4. Let 0 < & < n, and let V € RHq, with q1 > n/2. Then for any b € /\%(p),O < B <1, the

commutator [b, L] is bounded from LP (R™) into L9(IR™), where % = % — %ﬁ, 1<p< ﬁﬁ

Theorem 1.5. Let 0 < o < n, and let V € RHgq, with q1 > /2. Supposeb € AR (p),0 < B < 8" If g <p<1

and % = % - %ﬁ, then the commutator [b, 1] is bounded from HB (R™) into L9(IR™).

Theorem 1.6. Let 0 < o < m, and let V € RHq, with q1 > n/2. Suppose b € /\%(p),O < B < &'. Then the
commutator [b, L] is bounded from HZTB (R™) into weak Li—= (R™).

Finally, we make some conventions on the notation. Throughout the whole paper, we always use C
to denote a positive constant, that is independent of the main parameters involved but whose value may
differ from line to line. We shall use the symbol A < B to indicate that there exists a constant C such that
A < CB. A = B means that A < B and B < A.

_n _
n+p3’

2. Some preliminaries
We would like to recall some important properties concerning the auxiliary function which will play
an important role to obtain the main results.

Proposition 2.1 ([10]). Let V € RH,, 5. For the auxiliary function p there exist C and ko > 1 such that

ko

1 x—yl\ x —y|\ ko
C  p(x) (1+ 5 ) < p(y) < Cp(x) <1+ o) >

forall x,y € R™

A ball B(x, p(x)) is called critical. Assume that Q = B(xq, p(xp)), for x € Q, the inequality above tells
us that p(x) = p(y) if x —y| < Cp(x).

It is easy to get the following result from Proposition 2.1.

Lemma 2.2. Let k € N and x € 2t1B(xq, 1) \ 2%B(xg, 1). Then we have

1 < 1
N ~ N/(ko+1) "
2kt 2k
(1+25) (1+25)

Proposition 2.3 ([4]). There exists a sequence of points {xi.}°_; in R™, so that the family of critical balls Qy =
B(xy, p(xi)), k > 1, satisfies

() Uk Qe =R™;
(ii) there exists N = N(p) such that for every k € N, card{j : 4Q; N4Q} < N.

Given a > 0, we define the following maximal functions for g € Llloc(]R“) and x € R™,

1
Mopag(x) =  sup MJ 19(y)ldy,
XEBE(Bp,OL B

1
MY g(x) = sup BJ lg(y) — gsldy,
XEBE‘BP,(X| | B

where B, « ={B(z,7) :z€ R™ and r < ap(y)}.
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We have the following Fefferman-Stein type inequality.

Proposition 2.4 ([1]). For 1 < p < oo, there exist 1 and 'y such that if {Qy }x is a sequence of balls as in Proposition
2.3, then

)
[ Mongtrax < [ e gtra 3 0 (107 o, ')

forall g € LL_(R™).

loc

Let us recall the property of b € /\?5 (p).

Lemma 2.5 ([7]). Let1 < s < oo,b € /\g(p), and B = B(x, ). Then

Ve 0 (Hk 2%\
(|2kB| sz (y) — bl dy) <[b][3(2 r)B <1+p(x)>

for all k € IN, where 8" = (ko + 1), and kg is the constant appearing in Proposition 2.1.

Proposition 2.6 ([5]). Let pi(x,y) be the kernels associated with the semigroups (et} ~0. If V. € RHq, with

q1 > n/2, then for every 0 < & < &’ and every N > 0 there exists a constant C > 0 such that for [y — z| < %Ix —yl,
we have

1 —2\° —yP
) =Pl 2+ ety ) — il S (22 ) ep (20 (14 4 VLY.

Let K be the kernel of I . The following results give the estimates on the kernel K (x,y).

Lemma 2.7. Suppose V € RHq, with q1 > %

(i) For every N > 0, there exists a constant C such that

1 1
(1+ )™ ey

Ka(x,y)l S
x)

(ii) Forevery 0 < & < &' there exists a constant C such that for every N > 0, we have

1 ly — z|®
Ko, 4) =K (%, ) + Ko (Y, %) = Kae[2,%)] S G
x—yl\ " x =yl
1+ 5w

where [y — z| < [x —yl/4.

Proof. We observe that (i) is the result of Proposition 3.3 of [2]. By Proposition 2.4 and the methods used
in Proposition 3.3 of [2], we can obtain (ii). O

Since I (f)(x)] S I« (Ifl)(x), then we get the following.

Corollary 2.8. Suppose V. € RHq, with g1 > n/2. Let 0 < « < nandlet 1 < p < q < oo satisfy 1/q =
1/p — «/n. Then for all f in LP(R™) we have

IMafllLamn) S IIfllLe rm)

when p > 1, and also

ITacfllwrarny S Il rn)

when p = 1.
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3. Proof of Theorem 1.4
In order to prove Theorem 1.4, we need the following lemmas.

Lemma3.l. Let1<s<p<n/(a+B),be /\g(p), and Q = B(xg, p(xg)). Then

Qo I 1edidy < ] inf Moo (1),

where

1 1/s
Map,s(f)(x) = i‘é}é (W‘J |f(9)|sd9) .

Proof. Since
(b, Ialf(y) = (b(y) —bo)Laf(y) —Iu((b—bo)f)(y),

we have

1 1
KMLJdeﬂwMyéKMLme)—m@Hf(mm+“yJ «((b—bo)f)(y)ldy = I + .

By Holder’s inequality and Lemma 2.5, for any t > 1 we get

L B o 1/t <1 . )1/‘(
11<<|Q|L|b(y) bol dy) |Q|Lmaf(y)| dy

<[] p(x0)® (1J |ﬂaf1(y)|‘dy>1/t+(1j mafz(yntdy)l/t 4T
~lblg g g /

where f = f; +f, with f; = fxoq. Choose t > 1 such that 1/s —1/t = «/n, then by the (L%,L")-
boundedness of I« (see Corollary 2.8), we have

1 1/s
I < [b]%p(XO)BW <J2Q |f(y)|5dy>

1 . 1/s .
5“’]%(2@1 E— S/nLmen dy) < (01§ inf Mo s ().

Note that
f(z)]

N dz.
2Q) (1 + %) |y _ Z‘TL—(X

Tofa(y)] < J Ky, 2)(2)ldz < J
(2Q)° (

In this situation, we have p(y) = p(xo),[y —z| = |xg —z| for any y € Q and z € (2Q)€. So, decomposing
(2Q)¢ into annuli 2Q \ 2*71Q, k > 2, we get

2kN

dz.
L e LkQ| (2))dz

k>2
Then, by Holder’s inequality we get

2kN

I1o <)% p(x0)P _J If(z)|dz
B kZ>2|2kQ|l a/n 2%*Q
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S . #(2)]
<[b J f(z)|dz
B % 2kQ|l—(x+B)/n 20
SIg ) 2 kN( . J If(Z)ISdZ>1/S
= 2kQ|1 (x+B)s/n 2%Q

S[b] B xlg(fg M+ B,s (f)(x).

The estimate for I can be proceeded in the same way of 1. The decomposition f = f; + f, gives
1
I SJ M ((b—bo)f1)(yldy + = J T« ((b—bg)f2)(y)ldy = o1 + Ina.
IQlJo Q]

Choose r such that 1 < r < s <p and 1/r—1/19 = a/n. By Holder’s inequality, Lemma 2.5 and (L",L")-
boundedness of I, for some u > r we have

1 1/7o
< = — ro
In < <|Q| JQ M ((b—Dbg)f1)(y)l dU)

1 1 . 1/r
Sorem (G LQ (1o —bo)n)(yay )

1 1 . s /4 } L
SW <@|LQ If(y)l dy> <|Q|LQ Ib(y) —bgl dy)

<[blg 225 Mo g,s () (%).

The estimate Iy < [b]?3 infycQ Mu4p,s(f)(x) can be obtained by the similar approach to ones of I,
and I»;. Then we omit the details here. O

Lemma 3.2. Let B = B(xq, 1) with v < yp(xo) and let x € B, then for any y,z € B we have
J(ZB) Ko(y, 1) — Ka(z,w)l[b(u) — blf(u)ldu S [bIgMasp,s(£)(x).

Proof. Setting Q = B(xo, vp(x0)), due to the facts that p(y) = p(z) = p(x¢) and [y —u| = |z—u| = [xg —u,
then by Lemma 2.7 we get

where

[f(u)(b(u) —bg)

Ky =1° d
! JQ\ZB g —un s O

and

_ .8 N[ [fw)(b(u) —bs)l
K2 =1%p(x0) JQC xo _u_|n+N+8—ocdu'

Let jo be the least integer such that 20 > yp(x¢)/r. Splitting into annuli, we have

1
2-3% (291) J u)||b(u) —bg|du.
Z B8] |, FIb() —be
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By Holder’s inequality, Lemma 2.5 and 2/t < yp(xo) for j < jo, we have

jo 1 1/s 1 1/s’
Ky <Y 2798 (20n)e J f(w)*d J b(u) —bpl*’
vy 2 (g | rwran) (] b - val e

j=2

b8 3, oa+B 2r o 1 s s
Zz i (2ir) ot (1+p(XO)> <|2].B| LBIf(u)I du)

j=2
SIIg Mt s () (x).

Note that

1 <h10 (9i)\B 21\ /1 s /s
|2].B|LjBIf(u)llb(u)—bglduw[b]B(Z T) <1+p(xo)> <I2jB| J'szIf(u)l du) .

; = forj > jo, then, by choosing N > 6 we get

Since p(

1 1
< N —)6 _
Ko <p(xo) ]; DIN—= 7B JZjBIf(u)IIb(u) bgldu
0

<[b]6 ZJT (Ne)iz jd 2] )oH—B 1 |f( )|Sd Vs
~P8 \ oxo) 28] g

j=jo
SR Mag,s (%)

Lemma3.3. Let 1 <s <p <n/(a+p), B=B(x,1) withr < yp(xp), and x € B. Then
M (10, Ta]f) (x) S [b]§ (Mot p,s (F)(x) + Mg s (Taf)(x)) .
Proof. We write

1

J, 110, 1adt1) — (0, Kaslay <5 | 1b(y) — b afly)ldy +

B s i e - ve ey

+ 57| Mal(b—ba)fa)(y) = (La((b— b))l
=J1+J2+]s,

where f = 1 + f with f; = fxoB.
Since r < vp(xp) and p(x) = p(xp), by Holder’s inequality and Lemma 2.5, we get

1 o 1/s’ 1 . 1/s
e (] -verar) (g | merwray)

1 1/s
<[b](51'[3 <|B|J ]Iocf(U”SdU) 5 [b]%MB,s(]Iocf)(X)-

For some 1 <t <s,and 1/r—1/r9 = a/n, by Holder’s inequality and Lemma 2.5, we have

1 . 1/7o
5 (g |, Matio vy )

1 1 1/r
<___ - | _ T
N|B‘—oc/n (|B| JZB |(b(y) bB)ﬂyN dy)
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By Lemma 3.2,

J3

1 1 ( |u 1/u 1 | |S 1/s
<— (= by —>b d> (J f(y) d)
[B|—o/m (|B| LB v el B Jp 0 Y

9 1 1/s
S
Sl (IZBI1 (act+B) S/nJBlf(U)| dy>

<613 Moy .5 (F) ().

J J J Ky, 1) — Kee(z, wllb(w) — b If(w)|dudzdy
B JB J(2B)¢

S Ka(y, 1) = K[z, u)llb(u) — bplf(u)ldu

We now come to prove Theorem 1.4. By proposition 2.4, Lemma 3.1, and Lemma 3.3 we have

||[b/l[0c]f||ﬁq (IR“) <
R

q
o M o LN 0] x5 (|Q | j b, TaJf () ax>

q
1 q i
o M 100 310w g, M)

<

S

r

|Mp,n([br ][oc]f)(XNq dx

SO | [Macepal)06) + M (af)0)| T (101509 3 | Moy a0

k
<([b]3)" <LR |Ma+ﬁ,s(f)(x)|qu+J Mg s (Laf)( \qu)
f5

S([b]

2Qxk

9,

where we have used the finite overlapping property given by Proposition 2.3.

4. Proofs of Theorems 1.5 and 1.6

Let us first prove Theorem 1.5.
Choosing T > 1, we only need to show that for any H? "-atom a,

b, Iolallamn) < C

holds, where C is a constant independent of a. Suppose supp a C B = B(xo, ) with r < p(xp). Then

1/q 1/q
H[b,]IoJaHLq(]Rn) < <J I[b, I ]a(x)]d dx> + (L | |[b,]I(x]a(x)qu> =A1+ A
2B 2B)c

Let1/q; =1/t — (0t + )/n. By Theorem 1.4 and the size condition of atom a, we have

1/q1 n 1/ n_mn n_n n__
A< ( J b, TJa(x )qldx) eni & <c q |a(x)|de> ri 3 < cen? 3 2n)
2B 2B

n n

n

a =C.
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For A,, we consider two cases, that are r < p(xg)/4 and p(xg)/4 < T < p(xp).
Case I: When r < p(x0)/4, by the vanishing condition of a, we have

b, IeJa(x) < [b(x) _bB|JB Ka(x,y) — Ku(x,%0)llaly)ldy +JB Ka(x,y)(b(y) —bg)aly)ldy = Ay + Ax.
Note that
j laly)ldy < ™,
B

and

1
[2%B|

ZkT 8'q
J b(x) — bgl9dx S ([b]3)9(2%r)Pa <1+ ) .
2¢B p(xo)

When x € 25F1B(xg, 1) \ 2*B(x0, 1), and y € B, by Lemmas 2.7 and 2.2, we can take § such that 0 < § <
b < &' and

1 rd
)N/(k0+1) (zkr)n+5—oc '

Ka(x,y) = Ka(x, %0)| S

~

2k
(1 + o0x)

Noticing 1/q =1/p — (x+p)/nand p > ﬁﬁ > 5, then we get

1 o4
>Nq/(k0+l) (Zkr) (n+6—a)q

J (Apn)9dx <r™ P )9 (p]§)9 Y
(2B)¢

i

J [b(x) —bg|9dx
2B

1 n
01\q kq(E—m—9)
~((blg) = (14 2 N/l )-0g >
k/l( +p(X0))
S(b1g)a Yy ka2
k>1

For x € (2B)¢,y € B, we have |x —y| = |x — x¢|. By Lemmas 2.7 and 2.2,

1/4 s dx 1/q
(J |ch(XﬂJ)|q dX) S N (J (n+5—oc))
2k+1B\2kB < okp ) Ko+1 2k+1B\2kB Ix —xold

T+ 550
< 2k 1
~ okp |\ Kot (Zkr)%ffx
<1 + p(xO))
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Then, by Minkowski’s inequality we get

1/q
<J (Azz)qu> SJ [b(y) —bglla(y)ldy
(2B)e B

[b]%Tn_%_'_B <

1/4

J Ka(x,y)[Tdx
k}l 2k+1B \sz

2~k 1

n
&4 —x

0
xo)) = (1+ 2y >k0+1 (2kr) 4

p(x0)
<[b)8 !
SR ) e
k>1

AN

Case II: When p(xg)/4 < v < p(xp), this is P(;()) > 1/4. The atom a does not satisfy the vanishing
condition. By Minkowski’s inequality,

q 1/q
dx}

q 1/q
dx}

Az<{j b(x) — bl J Ko y)aly)dy
(2B)c B

Al
(2B)¢

:Aél + Aéz

L Ka(x,y)(bly) — bg)aly)ldy

When y € B,x € 2k*1B\ 2*B, we have

and
2kp
J b(x) —bg|9dx < ([b]§)9(28r)™HPa (1+ T)
. p(xo)
Note that 7 > 1/4, then
1 (24P (o
A3 S([6)9)9 rTes
( 21) ( [5) kgl . e fh qo’ (zkr)(n «)q
(‘*puw)
1
<(1b18)e (25)( 79 < (1b13)*
B ]él (zk)k0+1—qe B

Since N can be chosen large enough, the last series converges.

The estimate of Aj, is exactly the same as ||A||Lq((2B)c), We omit the detail of the proof. Then the
proof of Theorem 1.5 is finished.

Finally, we proceed to prove Theorem 1.6.

1
Let f € H“*'3 (R™), we write f = 3 2 Ajaj, where each gj is an H’”‘3 -atom, 1 <1< 5, and

n+p
n

o0
Ai|7B <2f|| » .
S LS.

j=—o0
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Suppose that suppa; C Bj = B(xj, 15) with r; < p(x;). Write

X)= > A LaJaj(x)xss,(x)+ Y A(b(x) —bp;)Laaj(x)x(58;)c (x)

j=—00 jmyzpe(x;)/4

+ Z A (b(x) — b, ) Taaj (X)X (88, () — Z Ao ((b—bg;)aj) (x)x(sB;)e (X)

jrj<p(x;)/4 j=—00

4 00
= Z Z }‘inj (X)

i=1j=—o0

In the following, we always let ¢ = . Note that
1/1
(J |a]-(x)‘dx> < IBy
B;
Choose t > 2755 such that =1- %‘3 By Holder’s inequality and Theorem 1.4 we get

1

a
J |[b, TaJaj(x) 1" dx) T
8B;

j

A large < (

1/1
at 1_nip
SUI (J “]'(X)'Id"> < 1By < wlg
By
Noticing 0 < = 5 < 1, we get
nip
Z MAu| S Z A | aggey SOIG D IS bR ( Yy Ajn:ﬁ)
]7 (9] ]:—oo ):—OO j:—OO
(oI ] W (g
Then
- A [b]§) ¢
H"GIR“: 2 N >H5()anq .
f— 4 HE'P (RY)

Since x € Bj,y € 2k+lB]- \ZkBj, we have [x —y| =~ [x —xj| = Zkrj, and by Lemma 2.2 we get

L S
(1+5) (1+w) "
Notethath]_ laj(y)ldy <7 andr]/p(x])>1/4.Then
q
42309y = X | fobx) — byl | | g laylylay | ax
S39271B;\2+B; B (1_‘_%) x =yl
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<(13)* Y L (24B) P, B
k>3 <1+ 2k )(koﬂe')q
p(xj)

1
0\4d
SR Y — )

K>1 2K <k0+1

S(1g)*
Then
AA < & f]] o
j_Zoo Az AL 25 oy
Therefore
a AN ()Y
ermn; ]-Z AjAg >4}’,§)\q||f||Hn

When x € 2871B; \ 2B, and y € Bj, by Lemmas 2.7 and 2.2 we have

1

2B (R

|ch(X/U) - K(X(XIX]'N 5

p(xj)

Thus, by the vanishing condition of a; and 0 < 3 < & < 3" we have

. q — _ q
A3 (X[ a gn) = Z LkHBj\szj [b(x) — beg;| (JB

(1 2¥r, >N/(k0+1) (2kpynro—a

q
|Ka(><,y)—Ka(x,xj)llaj(y)ldy> dx

q
Iaj(y)ldy>

k>3 j
1 ryd
< ) J [b(x) —bg.|9dx J
p(xj)
5q
5([b]%>q : N Nag (2% ::L+5—“]
k>3 (1+ 2k )(koﬂe )q (2%r5)
p(x;)
1
0\d
5([b](5) k(5—B)
k>1
0\d
<(lolp)
Then
o0
0
> NA < [b]BHf”Hﬁ(mn)
j——o0 <
Therefore
00 0\4d
A (b19)
ermn. > AjAs >4H5 ?\E 119
j=—oco H
Note that

k.. yn+pBq.—Bdg
q(2 Ti) T
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and

e/
TR+ T
Soigrt (Hp@) < [blg,

o0 o0

[Ag;(x)] < Z AL (1(b —bg;) ;) (%)X (8B (x) < La Z IAj(b—bg;)ql | (x).

By the boundedness of I, from L!(IR™) to WL9(IR™) (see Corollary 2.8) we get

Thus,

> A > A
erlR“: > NAy >4H<ern{“: Io( D Aj(b—bg,)ayl)(x) >4H
j=—00 j=—00
<1's mo—bs gl
<— Ai(b—bg.)a;
7\q ],:700 ) ) ) ]_1(]Rn)
1 > !
5)\7( ( Z |7\j|||(b—bB,-)aiHL1(Rn)
j=—00
q
[b]e q o0 [b]e q
OB 5 ) e O e,
j=—00 He (R™)
4 00 4 00 A
ermn; Y AA >7\H§Z {xe]R“. S Ay >4}‘
i=1lj=—o0 i=1 j=—o0
q
[b]e q o) [b]e q
Sﬁ Z A5 SﬁllquL ,
Ad e Ad HEJr (R™)

which completes the proof of Theorem 1.6.
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