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Abstract
This paper investigates the periodic initial value problem for the two-dimensional Burgers-Ginzburg-Landau (2D Burgers-

GL) equations, which can be derived from the so-called modulated modulation equations (MME) that govern the dynamics of
the modulated amplitudes of some periodic critical modes. The well-posedness of the solutions and the global attractors for the
2D Burgers-GL equations are obtained via delicate a priori estimates, the Galerkin method, and operator semigroup method.
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1. Introduction

In this paper, we consider the following two-dimensional Burgers-Ginzburg-Landau (2D Burgers-GL)
equations

v1t = αv1xx +αv1yy +βv1v1x +βv2v1y + γ(|A|
2)x, (1.1)

v2x = v1y, (1.2)

At = µ0A+ (µ1 + iµ2)(Axx +Ayy) + s1(v
2
1 + v

2
2)

1
2A− (s2|A|

2 + s3(v
2
1 + v

2
2))A, (1.3)

where the velocity components v1 = v1(x,y, t) and v2 = v2(x,y, t) are real-valued functions, and A =
A(x,y, t) is the complex-valued function. (x,y) ∈ Ω, Ω is a bounded domain in two-dimensional real
Euclidean space. The coefficients α,β,γ,µ0,µ1, and µ2 are real constants, while s1, s2, and s3 are complex
constants. Similar to the derivation by the Cole-Hopf transformation in [17], the 2D Burgers-GL equations
(1.1)-(1.3) can be rewritten in another coupled form as

vt = α∆v+β(v · ∇)v+ γ∇(|A|2), (1.4)

At = µ0A+ (µ1 + iµ2)∆A+ s1|v|A− (s2|A|
2 + s3|v|

2)A, (1.5)
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where v = {v1, v2}, |v| =
√
v2

1 + v
2
2.

The Burgers-GL equations (1.4)-(1.5) in one-dimensional can be derived from the so-called modulated
modulation equations (MME) deduced by Harten [19]. In his study of the Ginzburg-Landau equation as
a modulation equation for the amplitude of a periodic critical mode in various applications, he found that
there is the less well-known possibility of an instability of non-sideband type for the family of periodic
solution of the Ginzburg-Landau equation besides the Eckhaus’ instability. And then he deduced three
so-called MME under the different coefficients of the original Ginzburg-Landau equation which consist
of the critical mode(s) with an amplitude modulated in space and time. One of the three MMEs is a real
gradient system of Kuramoto-Shivasinsky type derived with multiple scaling techniques [14]. Another is
a perturbed Korteweg-de-Vries derived for an Eckhaus’ instability by Bernoff [3]. The last one seems to
be a new result and has the form of Burgers equation coupled to the Ginzburg-Landau equation, which
is the Burgers-GL equations (1.4)-(1.5) in one-dimensional.

If there is no coupling term with A in Eq. (1.4), then Eq. (1.4) would be the well-known two-
dimensional Burgers equations [17], which is transformed by the Cole-Hopf transformation and is an
integrable generalization of the well-known Burgers equation [4]. Some researches have been done in
physical study and the mathematical analysis of the two-dimensional Burgers equations, such as the sta-
tionary solutions [13], the exact solutions [1], the numerical solutions [2, 20], and so on. Meanwhile, if
there is no coupling terms with v in Eq. (1.5), the Eq. (1.5) reduces to the well-known CGL equation,
which is considered as the generic modulation equation near the onset of instabilities in non-equilibrium
fluid dynamical systems, as well as in the theory of phase transitions and superconductivity [15, 16].
For some other results involved with the CGL equation, see [6, 7] and reference therein. However, lit-
tle progress has been obtained for the coupled Burgers-GL equations (1.4)-(1.5), Since Guo and Huang
studied the well-posedness and global attractors for one-dimensional Burgers-GL equations in [8] and [9].
Afterwards Huang continued to study the one-dimensional Burgers-GL equations in discrete version by
the finite difference method in spatial direction [11] and that with non-homogeneous term by the Leray-
Schauder fixed point theorem [12]. Subsequent to previous work in one-dimension Burgers-GL equations,
in this paper we are further going to consider the 2D Burgers-GL equations (1.1)-(1.3), with the periodic
boundary conditions

v(x+ L,y, t) = v(x,y, t), v(x,y+ L, t) = v(x,y, t), (1.6)
A(x+ L,y, t) = A(x,y, t), A(x,y+ L, t) = A(x,y, t), (1.7)∫
Ω

v(x, t)dx = 0, t > 0, (1.8)

and the initial conditions

v(x,y, 0) = v0(x,y), A(x,y, 0) = A0(x,y), (1.9)

where L > 0 is the period, and v0(x,y) and A0(x,y) are given functions.
In what follows, we are going to study the well-posedness and global attractors for the periodic initial

value problem via delicate a priori estimates and operator semigroup method. In our argument, we set
s2 = s2r + is2i, where s2r and s2i are the real part and imaginary part of s2, respectively. And we make
some basic assumptions as

α > 0, µ0 > 0, µ1 > 0, s2r > 0, |s2i| <
√

3s2r, Re(s3) > 0. (1.10)

The rest of paper is organized as follows. In Section 2, we briefly give some notations and prelimi-
naries. In Section 3, we establish a prior estimates for the solutions of the periodic initial value problem
(1.4)-(1.9). In Section 4, the well-posedness for the 2D Burgers-GL equations are obtained via the Galerkin
method and so-called continuity method. In the last Section 5, the existence of the global attractors are
obtained by constructing the uniform a priori estimates in time.
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2. Notations and preliminaries

For the mathematical setting, we introduce several function spaces and notations. We denote

Lp(Ω) = {v = {v1, v2}|v1 ∈ Lp(Ω), v2 ∈ Lp(Ω)},

Wk,p(Ω) = {v = {v1, v2}|v1 ∈Wk,p(Ω), v2 ∈Wk,p(Ω)},

where Lp(Ω) and Wk,p(Ω)(k ∈ N+, 1 6 p 6∞) are the usual Lebesgue and Sobolev spaces, respectively.
When p = 2, we denote L2 = Lp(Ω) and Hk = Wk,2(Ω) for simplicity. These two spaces are equipped
with the following inner products and norms:

(v,u) =
2∑
i=1

(vi,ui) =
2∑
i=1

∫
Ω

viuidx,

‖v‖2 = (v, v), ‖v‖Hk =

∑
|l|6k

‖Dlv‖2

 1
2

.

Meanwhile, we introduce complex Sobolev spaces. In general, we denote by X,Y, · · · , the complexified
space of a function X, Y, · · · . For example, L2 and Hk are the complexified spaces of L2(Ω) and Hk(Ω),
respectively. If A ∈ L2,B ∈ L2, we define

(A,B) =
∫
Ω

ABdx, ‖A‖2 = (A,A), ‖A‖Hk =

∑
|l|6k

‖DlA‖2

 1
2

,

where B denotes the complex conjugate of B. Furthermore, Xper denotes the set of all periodic functions
that are contained in the space X.

Without any ambiguity, we denote a generic positive constant by C which may vary from line to line.

Lemma 2.1 (Gagliardo-Nirenberg inequality, [5]). Let Ω be a bounded domain with ∂Ω in Cm, and let u be
any function in Wm,r(Ω) ∩ Lq(Ω), 1 6 q, r 6 ∞. For any integer j, 0 6 j < m, and for any number a in the
interval j/m 6 a 6 1, set

1
p
=
j

n
+ a

(
1
r
−
m

n

)
+ (1 − a)

1
q

.

If m− j−n/r is not a nonnegative integer, then

‖Dju‖Lp 6 C‖u‖aWm,r‖u‖1−a
Lq . (2.1)

If m− j−n/r is a nonnegative integer, then (2.1) holds for a = j/m. The constant C depends only on Ω, r,q, j,a.

In the sequel, we will use the following inequalities for two-dimensional equations as the specific cases
of the Gagliardo-Nirenberg inequality:

%labelGNYoujieinequality2‖Dju‖L∞ 6 C‖u‖aHm‖u‖1−a, ma = j+ 1,

‖Dju‖L2 6 C‖u‖aHm‖u‖1−a, ma = j,

‖Dju‖L4 6 C‖u‖aHm‖u‖1−a, ma = j+ 1/2.

Lemma 2.2 (The uniform Gronwall lemma, [18]). Let g,h,y be three positive locally integrable functions on
[t0,∞), such that y′ is locally integrable on [t0,∞), and which satisfy

dy

dt
6 gy+ h, for t > t0,∫t+r

t

g(s)ds 6 a1,
∫t+r
t

h(s)ds 6 a2,
∫t+r
t

y(s)ds 6 a3, for t > t0,
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where r,a1,a2,a3 are positive constants. Then

y(t+ r) 6
(a3

r
+ a2

)
exp(a1), for t > t0.

3. A priori estimates

In this section, we derive some a priori estimates for the solutions of the periodic initial value problem
(1.4)-(1.9). Firstly we have

Lemma 3.1. Assume v0(x) ∈ L2
per(Ω), A0(x) ∈ L2

per(Ω), and the assumptions (1.10) hold. Then for the solutions
of the problem (1.4)-(1.9), we have

‖v‖2 6

(
‖v0‖2 +

|γ|2

s2r
‖A0‖2

)
e−θt +

2|γ|2C2

αθs2r
(1 − e−θt), (3.1)

‖A‖2 6 ‖A0‖2e−t +C2(1 − e−t), (3.2)

and

lim sup
t→∞

(
‖v‖2 + ‖A‖2) 6 2|γ|2C2

αθs2r
+C2 = ρ2

0.

Furthermore, we have∫t+r
t

‖∇v‖2ds 6
|γ|2

α2C3

(
C2r+ ‖A0‖2 +C2

)
+

1
α

(
‖v0‖2 +

|γ|2

s2r
‖A0‖2

)
+

2|γ|2C2

α2θs2r
, (3.3)

and ∫t+r
t

‖∇A‖2ds+

∫t+r
t

∫
Ω

|A|4dxds+

∫t+r
t

∫
Ω

|v|2|A|2dxds 6
1
C3

(
C2r+ ‖A0‖2 +C2

)
(3.4)

for all r > 0, where θ, C2, and C3 are positive constants depending on the known parameters.

Proof. Multiplying (1.5) by A, integrating with respect to x over Ω and taking the real part, we obtain

1
2
d

dt
‖A‖2 + µ1‖∇A‖2 + s2r

∫
Ω

|A|4dx+ Re(s3)

∫
Ω

|v|2|A|2dx = µ0‖A‖2 + Re(s1)

∫
Ω

|v||A|2dx. (3.5)

According to the Hölder’s inequality and Yong’s inequality with ε, we have

µ0‖A‖2 + Re(s1)

∫
Ω

|v||A|2dx 6 µ0‖A‖2 + |s1|

(∫
Ω

|v|2|A|2dx

) 1
2

‖A‖

6
1
2

Re(s3)

∫
Ω

|v|2|A|2dx+

(
|s1|

2

2Re(s3)
+ µ0

)
‖A‖2

6
1
2

Re(s3)

∫
Ω

|v|2|A|2dx+
1
2
s2r

∫
Ω

|A|4dx+C1,

(3.6)

where C1 is a positive constant depending on µ0, s1, s2, s3, and |Ω|, the two-dimensional measure of Ω.
Combining (3.5) and (3.6) together yields that

d

dt
‖A‖2 + 2µ1‖∇A‖2 + s2r

∫
Ω

|A|4dx+ Re(s3)

∫
Ω

|v|2|A|2dx 6 C1.

Noticing that ‖A‖2 6 1
2s2r
∫
Ω |A|4dx+ |Ω|/2s2r, we obtain

d

dt
‖A‖2 + ‖A‖2 + 2µ1‖∇A‖2 +

1
2
s2r

∫
Ω

|A|4dx+ Re(s3)

∫
Ω

|v|2|A|2dx 6 C1 +
|Ω|

4s2r
= C2. (3.7)



C. Guo, S. Fang, J. Nonlinear Sci. Appl., 10 (2017), 3123–3135 3127

By the Gronwall’s inequality, we have

‖A‖2 6 ‖A0‖2e−t +C2(1 − e−t), (3.8)

which concludes (3.2).
Next, we take the inner product of (1.4) with v in L2(Ω) to have

1
2
d

dt
‖v‖2 +α‖∇v‖2 = βb(v, v, v) + γ

∫
Ω

∇(|A|2)vdx, (3.9)

where
b(u, v,w) =

∫
Ω

(u1v1xw1 + u2v1yw1 + u1v2xw2 + u2v2yw2)dxdy (3.10)

for u = {u1,u2}, v = {v1, v2}, and w = {w1,w2}, whenever the integrals make sense. Obviously, there holds
that b(v, v,w) = ((v · ∇)v,w). Actually, the form b is trilinear continuous on H1(Ω). Generally, we have
the following inequalities giving various continuity properties of b(u, v,w) [18]

|b(u, v,w)| 6 Cb ×


‖u‖ 1

2 ‖∇u‖ 1
2 ‖∇v‖ 1

2 ‖∆v‖ 1
2 ‖w‖,

‖u‖ 1
2 ‖∆u‖ 1

2 ‖∇v‖‖w‖,
‖u‖‖∇v‖‖w‖ 1

2 ‖∆w‖ 1
2 ,

‖u‖ 1
2 ‖∇u‖ 1

2 ‖∇v‖‖w‖ 1
2 ‖∇w‖ 1

2 ,

(3.11)

where Cb > 0 is an appropriate constant.
First, according to the integration by parts and the Eq. (1.2), there holds

b(v, v, v) = 0. (3.12)

Second, we have

γ

∫
Ω

∇(|A|2)vdx 6 |γ|

∫
Ω

|A|2|∇v|dx 6 1
2
α‖∇v‖2 +

|γ|2

2α

∫
Ω

|A|4dx. (3.13)

Substituting (3.12) and (3.13) into (3.9), it follows

d

dt
‖v‖2 +α‖∇v‖2 6

|γ|2

α

∫
Ω

|A|4dx. (3.14)

Under the condition
∫
Ω vdx = 0, we have ‖v‖ 6 C∗‖∇v‖ from the Poincaré’s inequality. Then from (3.14)

and multiplying 1
2s2r on both sides, there holds

d

dt

(
1
2
s2r‖v‖2

)
+
αs2r

2C2
∗
‖v‖2 6

|γ|2s2r

2α

∫
Ω

|A|4dx. (3.15)

Meanwhile from (3.7), we have

d

dt

(
|γ|2

α
‖A‖2

)
+

|γ|2

α
‖A‖2 +

|γ|2s2r

2α

∫
Ω

|A|4dx 6
|γ|2C2

α
. (3.16)

Combining (3.15) and (3.16) together yields that

d

dt

(
1
2
s2r‖v‖2 +

|γ|2

α
‖A‖2

)
+ θ

(
1
2
s2r‖v‖2 +

|γ|2

α
‖A‖2

)
6

|γ|2C2

α
,

where θ = min{ α
C2
∗
, 1} > 0. By the Gronwall’s inequality, we have

‖v‖2 6

(
‖v0‖2 +

|γ|2

s2r
‖A0‖2

)
e−θt +

2|γ|2C2

αθs2r
(1 − e−θt), (3.17)

which implies (3.1). Thus from (3.8) and (3.17), we have
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lim sup
t→∞

(
‖v‖2 + ‖A‖2) 6 2|γ|2C2

αθs2r
+C2 = ρ2

0, (3.18)

We consider the space E0 normed by ‖ψ‖E0 = {‖v‖2 + ‖A‖2}
1
2 , for all ψ = {v,A}. Thus we deduce from

(3.8), (3.17), and (3.18) that the balls BE0(0, ρ) of E0 centered at 0 of radius ρ > ρ0 are positively invariants
and are absorbing in E0 for the semigroup S(t). We choose ρ′0 > ρ0 and denote by B0 the ball BE0(0, ρ′0).
Any set B bounded in E0 is included in a ball B(0,R) of E0. Then there holds S(t)B ⊂ B0 for t > t0(B, ρ′0),
where

t0 =
1

min{1, θ}
ln

2R2 +
|γ|2

s2r
R2

(ρ′0)
2 − ρ2

0
. (3.19)

Finally, we infer from (3.7) and (3.8), after integration in t, that∫t+r
t

‖∇A‖2ds+

∫t+r
t

∫
Ω

|A|4dxds+

∫t+r
t

∫
Ω

|v|2|A|2dxds 6
1
C3

(∫t+r
t

C2ds+ ‖A(t)‖2
)

6
1
C3

(
C2r+ ‖A0‖2 +C2

)
,

(3.20)

where C3 = min{2µ1, 1
2s2r, Re(s3)}. This concludes (3.4). Meanwhile, integrating (3.14) in t and combining

(3.20), we have∫t+r
t

‖∇v‖2ds 6
1
α

(
|γ|2

α

∫t+r
t

∫
Ω

|A|4dxds+ ‖v(t)‖2
)

6
|γ|2

α2C3

(
C2r+ ‖A0‖2 +C2

)
+

1
α

(
‖v0‖2 +

|γ|2

s2r
‖A0‖2

)
+

2|γ|2C2

α2θs2r
,

which concludes (3.3). Thus the proof of Lemma 3.1 is completed.

Lemma 3.2. Assume v0(x) ∈ H1
per(Ω),A0(x) ∈ H1

per(Ω), and the conditions in Lemma 3.1 hold. Then for the
solutions of the problem (1.4)-(1.9), we have

‖∇v‖2 + ‖∇A‖2 6
(a3

r
+ a2

)
ea1 , for t > t0 + r, ∀r > 0,

where a1,a2, and a3 are positive constants.

Proof. Taking the inner product of (1.4) with −∆v in L2(Ω), we have

1
2
d
dt‖∇v‖

2 +α‖∆v‖2= −βb(v, v,∆v) − γ(∇(|A|2),∆v). (3.21)

Multiplying (1.5) by −∆A, integrating with respect to x over Ω and taking the real part, we have

1
2
d

dt
‖∇A‖2 + µ1‖∆A‖2 = µ0‖∇A‖2 − Re

(
s1

∫
Ω

|v|A∆Adx

)
+ Re

(
(s2r + is2i)

∫
Ω

|A|2A∆Adx

)
+ Re

(
s3

∫
Ω

|v|2A∆Adx

)
.

(3.22)

Adding (3.21) and (3.22) together yields that

d

dt
(‖∇v‖2 + ‖∇A‖2) + 2α‖∆v‖2 + 2µ1‖∆A‖2

= 2µ0‖∇A‖2 − 2βb(v, v,∆v) − 2γ(∇(|A|2),∆v) − 2Re
(
s1

∫
Ω

|v|A∆Adx

)
+ 2Re

(
(s2r + is2i)

∫
Ω

|A|2A∆Adx

)
+ 2Re

(
s3

∫
Ω

|v|2A∆Adx

)
.

(3.23)
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Now we need to majorize the right hand side of (3.23). Based on the results in Lemma 3.1, we have

2µ0‖∇A‖2 6 2µ0C‖A‖
1
2
H2‖A‖

1
2 6

µ1

4
‖∆A‖2 +C. (3.24)

From the property of b(u, v,w) in (3.11), we obtain

|−2βb(v, v,∆v)| 6 2|β|Cb‖v‖
1
2 ‖∇v‖‖∆v‖

3
2 6

α

4
‖∆v‖2 +C4‖∇v‖4. (3.25)

According to the Gagliardo-Nirenberg inequality and Lemma 3.1, we have∣∣−2γ(∇(|A|2),∆v)
∣∣ 6 4|γ|‖A‖L∞‖∇A‖‖∆v‖
6
α

4
‖∆v‖2 + 16|γ|2C‖A‖H2‖A‖‖∇A‖2

6
α

4
‖∆v‖2 +

µ1

4
‖∆A‖2 +C5‖∇A‖4,

(3.26)

and ∣∣∣∣−2Re
(
s1

∫
Ω

|v|A∆Adx

)∣∣∣∣ 6 2|s1|‖v‖L∞‖A‖‖∆A‖
6
µ1

4
‖∆A‖2 + 4|s1|

2C‖v‖H2‖v‖‖A‖2

6
α

4
‖∆v‖2 +

µ1

4
‖∆A‖2 +C.

(3.27)

While by virtue of an inequality in [10] and under the condition |s2i| <
√

3s2r, we know that

2Re
(
(s2r + is2i)

∫
Ω

|A|2A∆Adx

)
6 0. (3.28)

For the last term in (3.23), we handle it as follows since Re(s3) > 0

2Re
(
s3

∫
Ω

|v|2A∆Adx

)
= −2Re(s3)

∫
Ω

|v|2|∇A|2dx− 2Re
(
s3

∫
Ω

∇(|v|2)A∇Adx
)

6 −2Re(s3)

∫
Ω

|v|2|∇A|2dx+ 4|s3|

∫
Ω

|v||∇v||A||∇A|dx

6 4|s3|‖v‖L∞‖A‖L∞‖∇v‖‖∇A‖
6 4|s3|C‖v‖

1
2
H2‖v‖

1
2 ‖A‖

1
2
H2‖A‖

1
2 ‖∇v‖‖∇A‖

6
α

4
‖∆v‖2 +

µ1

4
‖∆A‖2 +C6‖∇v‖4 +C7‖∇A‖4.

(3.29)

Combining (3.23)-(3.29), we have

d

dt
(‖∇v‖2 + ‖∇A‖2) +α‖∆v‖2 + µ1‖∆A‖2 6 (C4 +C6)‖∇v‖4 + (C5 +C7)‖∇A‖4 +C8

6 C9(‖∇v‖2 + ‖∇A‖2)2 +C8,
(3.30)

where C9 = C4 + C5 + C6 + C7 and C8 are positive constants depending on the known parameters and
‖v0‖, ‖A0‖.

A priori estimates of v in L∞(0, T ; H1(Ω)) and A in L∞(0, T ;H1(Ω)), for all T > 0, follow easily
from (3.30) by application of the classical Gronwall lemma, using the previous estimates. We are more
interested in estimates valid for large t, then we apply the uniform Gronwall lemma (Lemma 2.2) to (3.30)
with y,g,h replaced by

‖∇v‖2 + ‖∇A‖2, C9(‖∇v‖2 + ‖∇A‖2), C8.
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Thanks to the estimates in Lemma 3.1, we estimate the quantities a1,a2,a3 in Lemma 2.2 by a1 = C9a3,
a2 = C8r, and a3 =

|γ|2

α2C3

(
C2r+ ‖A0‖2 +C2

)
+ 1
α

(
‖v0‖2 +

|γ|2

s2r
‖A0‖2

)
+

2|γ|2C2
α2θs2r

+ 1
C3

(
C2r+ ‖A0‖2 +C2

)
.

Then we obtain
‖∇v‖2 + ‖∇A‖2 6

(a3

r
+ a2

)
ea1 , for t > t0 + r,

and t0 as in (3.19). This completes the proof of Lemma 3.2.

Lemma 3.3. Assume v0(x) ∈ H2
per(Ω),A0(x) ∈ H2

per(Ω), and the conditions in Lemma 3.2 hold. Then for the
solutions of the problem (1.4)-(1.9), we have

‖∆v‖2 + ‖∆A‖2 6 (‖∆v0‖2 + ‖∆A0‖2)e−t +C(1 − e−t), (3.31)

and ∫t+r
t

‖∇∆v‖2ds+

∫t+r
t

‖∇∆A‖2ds 6 C, (3.32)

where C is a positive constant.

Proof. We take the inner product of (1.4) with ∆2v in L2(Ω) to have

1
2
d
dt‖∆v‖

2 +α‖∇∆v‖2= βb(v, v,∆2v) + γ(∇(|A|2),∆2v). (3.33)

Multiplying (1.5) by ∆2A, integrating with respect to x over Ω and taking the real part, we obtain that

1
2
d

dt
‖∆A‖2 + µ1‖∇∆A‖2 = µ0‖∆A‖2 + Re

(
s1

∫
Ω

|v|A∆2Adx

)
− Re

(
s2

∫
Ω

|A|2A∆2Adx

)
− Re

(
s3

∫
Ω

|v|2A∆2Adx

)
.

(3.34)

Adding (3.33) and (3.34) together yields that

d

dt
(‖∆v‖2 + ‖∆A‖2) + 2α‖∇∆v‖2 + 2µ1‖∇∆A‖2

= 2µ0‖∆A‖2 + 2βb(v, v,∆2v) + 2γ(∇(|A|2),∆2v)

+ 2Re
(
s1

∫
Ω

|v|A∆2Adx

)
− 2Re

(
s2

∫
Ω

|A|2A∆2Adx

)
− 2Re

(
s3

∫
Ω

|v|2A∆2Adx

)
.

(3.35)

From Gagliardo-Nirenberg inequality and previous lemmas, there holds

2µ0‖∆A‖2 6 2µ0C‖A‖
2
3
H3‖A‖

1
3 6

µ1

5
‖∇∆A‖2 +C. (3.36)

While according the definition (3.10), we have

∣∣−2βb(v, v,∆2v)
∣∣ = ∣∣∣∣−2β

∫
Ω

(v1v1x∆
2v1 + v2v1y∆

2v1 +v1v2x∆
2v2 + v2v2y∆

2v2)dxdy
∣∣

6 C
∫
Ω

(|∇v|2 + |v||∆v|)|∇∆v|dx

6 C(‖∇v‖L∞‖∇v‖+ ‖v‖L4‖∆v‖L4)‖∇∆v‖

6 C(‖v‖
2
3
H3‖v‖

1
3 ‖∇v‖+ ‖v‖

1
2
H1‖v‖

1
2 ‖v‖

5
6
H3‖v‖

1
6 )‖∇∆v‖

6
α

4
‖∇∆v‖2 +C.

(3.37)

In the same way, by the Gagliardo-Nirenberg inequality and previous results, we obtain the following



C. Guo, S. Fang, J. Nonlinear Sci. Appl., 10 (2017), 3123–3135 3131

estimates ∣∣2γ(∇(|A|2),∆2v)
∣∣6 4|γ|

∫
Ω(|∆A||A|+ |∇A|2)|∇∆v|dx

6 4|γ|(‖∆A‖L4‖A‖L4 + ‖∇A‖L∞‖∇A‖)‖∇∆v‖
6 C(‖A‖

5
6
H3‖A‖

1
6 ‖A‖

1
2
H1‖A‖

1
2 + ‖A‖

2
3
H3‖A‖

1
3 ‖∇A‖)‖∇∆v‖

6 α
4 ‖∇∆v‖

2 + µ1
5 ‖∇∆A‖

2 +C,

(3.38)

∣∣2Re
(
s1
∫
Ω |v|A∆2Adx

)∣∣6 2|s1|(‖A‖L∞‖∇v‖+ ‖v‖L∞‖∇A‖)‖∇∆A‖
6 2|s1|C‖A‖

1
3
H3‖A‖

2
3 ‖∇v‖‖∇∆A‖

+2|s1|C‖v‖
1
3
H3‖v‖

2
3 ‖∇A‖‖∇∆A‖

6 α
4 ‖∇∆v‖

2 + µ1
5 ‖∇∆A‖

2 +C,

(3.39)

and ∣∣−2Re
(
s2
∫
Ω |A|2A∆2Adx

)∣∣6 6|s2|‖A‖2
L∞‖∇A‖‖∇∆A‖

6 6|s2|C‖A‖
2
3
H3‖A‖

4
3 ‖∇A‖‖∇∆A‖

6 µ1
5 ‖∇∆A‖

2 +C.
(3.40)

It is easy to handle the last term as follows∣∣−2Re
(
s3
∫
Ω |v|2A∆2Adx

)∣∣6 2|s3|(2‖v‖L∞‖A‖L∞‖∇v‖+ ‖v‖2
L∞‖∇A‖)‖∇∆A‖

6 C(‖v‖
1
3
H3‖v‖

2
3 ‖A‖

1
3
H3‖A‖

2
3 + ‖v‖

2
3
H3‖v‖

4
3 )‖∇∆A‖

6 α
4 ‖∇∆v‖

2 + µ1
5 ‖∇∆A‖

2 +C.
(3.41)

Then substituting (3.36)-(3.41) into (3.35), there arrives

d

dt
(‖∆v‖2 + ‖∆A‖2) +α‖∇∆v‖2 + µ1‖∇∆A‖2 6 C. (3.42)

Noticing that ‖∆v‖2 6 α‖∇∆v‖2 +C and ‖∆A‖2 6 µ1‖∇∆A‖2 +C, thus there holds

d

dt
(‖∆v‖2 + ‖∆A‖2) + ‖∆v‖2 + ‖∆A‖2 6 C.

Applying the Gronwall’s inequality concludes (3.31). Finally integrating in t in (3.42), we have (3.32).
Thus the proof of Lemma 3.3 is completed.

Generally based on the results of the previous lemmas and the mathematical deduction, we have the
following lemma for problem (1.4)-(1.9).

Lemma 3.4. Assume v0(x) ∈ Hkper(Ω),A0(x) ∈ Hkper(Ω)(k > 3), and the conditions (1.10) hold. Then for the
solutions of the problem (1.4)-(1.9), we have

‖v‖2
Hk + ‖A‖

2
Hk 6 C,

where C is a positive constant depending on the known parameters and ‖v0‖Hk , ‖A0‖Hk .

4. The local solutions and global solutions

In this section, we will obtain the existence and uniqueness of the local solutions and global solutions
for the periodic initial value problem (1.4)-(1.9). Firstly, we adopt the Galerkin method to construct
the approximate solutions for the problem (1.4)-(1.9). Let ωj(x)(j = 1, 2, · · · ) be the unit eigenfunctions
satisfying the equation

∆ωj + λjωj = 0, j = 1, 2, · · · , ωj ∈ H1
0(Ω)∩ L4(Ω),
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with periodicity ωj(x) = ωj(x + Lei)(i = 1, 2) and λj(j = 1, 2, · · · ) is the corresponding eigenvalues
different from each other {ωj(x)} consists of the orthogonal base in L2(Ω). Thus the approximate solutions
can be written as

vm(x, t) =
m∑
j=1

gjm(t)ωj(x), Am(x, t) =
m∑
j=1

hjm(t)ωj(x).

According to the Galerkin method, these undetermined coefficients gjm(t) and hjm(t) have to satisfy
the following initial value problem of a system of the ordinary differential equations

(vmt,ωj) = α(∆vm,ωj) +β((vm · ∇)vm,ωj) + γ
(
∇(|Am|2),ωj

)
,

(Amt,ωj)= µ0(Am,ωj) + (µ1 + iµ2)(∆Am,ωj) + s1(|vm|Am,ωj)
−s2(|Am|2Am,ωj) − s3(|vm|2Am,ωj),

with initial conditions
vm(x, 0) = v0m(x), Am(x, 0) = A0m(x),

where 0 6 t 6 T and j = 1, 2, · · · ,m.
We assume that

v0m(x)
H2

per(Ω)
−→ v0(x), A0m(x)

H2
per(Ω)
−→ A0(x), m→∞.

Similar to the proof of Lemmas 3.1, 3.2 and 3.3, we can establish the estimates of the solutions of the
problem (1.4)-(1.9) which are uniform for m. By using the compact principle, we can prove the following.

Theorem 4.1 (Local existence). Assume that v0(x) ∈ H2
per(Ω),A0(x) ∈ H2

per(Ω), and the conditions (1.10) hold.
Then the periodic initial value problem (1.4)-(1.9) possesses the periodic local solutions v(x, t) and A(x, t), which
satisfy

v(x, t) ∈ L∞(0, t0; H2
per(Ω)), vt(x, t) ∈ L∞(0, t0; L2

per(Ω)),

A(x, t) ∈ L∞(0, t0;H2
per(Ω)), At(x, t) ∈ L∞(0, t0;H1

per(Ω)),

where t0 depends on ‖v0(x)‖H2
per

and ‖A0(x)‖H2
per

.

Theorem 4.2 (Global existence and uniqueness). Suppose the conditions of Theorem 4.1 fulfill. Then there exist
unique global solutions v(x, t) and A(x, t), which satisfy

v(x, t) ∈ L∞(0, T ; H2
per(Ω)), vt(x, t) ∈ L∞(0, T ; L2

per(Ω)),

A(x, t) ∈ L∞(0, T ;H2
per(Ω)), At(x, t) ∈ L∞(0, T ;L2

per(Ω)),

for the periodic initial value problem (1.4)-(1.9).

Proof. From Theorem 4.1 we know that the local solutions for the problem (1.4)-(1.9) exist and t0 de-
pends on ‖v0(x)‖H2

per
and ‖A0(x)‖H2

per
. According to the priori estimates in Section 3 and by the so-called

continuity method, we can obtain the global solutions for the problem (1.4)-(1.9) easily.

More generally, we have the following existence and uniqueness theorems of the global smooth solu-
tions from Lemma 3.4.

Theorem 4.3 (Existence and uniqueness for global smooth solutions). Suppose that v0(x) ∈ Hkper(Ω),
A0(x) ∈ Hkper(Ω)(k > 3) and the conditions (1.10) hold. Then there exist unique global smooth solutions v(x, t)
and A(x, t), which satisfy

v(x, t) ∈ L∞(0, T ; Hkper(Ω)), vt(x, t) ∈ L∞(0, T ; Hk−2
per (Ω)),

A(x, t) ∈ L∞(0, T ;Hkper(Ω)), At(x, t) ∈ L∞(0, T ;Hk−2
per (Ω)),

for the periodic initial value problem (1.4)-(1.9).
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5. The existence of global attractor

In this section, we construct the global attractor for the problem (1.4)-(1.9). We first note that by
Theorem 4.2, there exists a dynamical system S(t)(t > 0) which maps H2

per(Ω)×H2
per(Ω) to H2

per(Ω)×
H2

per(Ω) such that S(t)(v0,A0) = (v(t),A(t)), the solutions of problem (1.4)-(1.9). Firstly from Lemmas
3.1, 3.2 and 3.3, we have the uniform a priori estimates in time, which implies

‖v(t)‖H2
per

+ ‖A(t)‖H2
per

6 K, ∀ t > t0, (5.1)

where K is a positive constant.
In what follows, we are going to show that the semigroup S(t) : H2

per(Ω)×H2
per(Ω) → H2

per(Ω)×
H2

per(Ω) is compact for large t. That is

Lemma 5.1. Assume that the conditions of Theorem 4.2 hold. Then for the solutions of the problem (1.4)-(1.9), we
have

‖∇∆v‖2 + ‖∇∆A‖2 6 C, ∀ t > t0,

where the constant C depends on the known parameters and the data ‖v0‖H2
per

, ‖A0‖H2
per

.

Proof. Similar to the proofs in previous lemmas, we take the inner product of (1.4) with ∆3v in L2(Ω) and
(1.5) with ∆3A in L2(Ω). Adding the two equations together and majorizing each term with previous
estimates, we have

d

dt
(‖∇∆v‖2 + ‖∇∆A‖2) 6 C(‖∇∆v‖2 + ‖∇∆A‖2) +C. (5.2)

Applying (3.32) in Lemma 3.3, integrating (5.2) in t and by the uniform Gronwall lemma, we obtain
that

‖∇∆v‖2 + ‖∇∆A‖2 6 C, ∀ t > t0, (5.3)

where the constant C depends on the known parameters and the data ‖v0‖H2
per

, ‖A0‖H2
per

. Thus the proof
of Lemma 5.1 is completed.

In order to prove the existence of global attractor of problem (1.4)-(1.9), we need the following result:

Theorem 5.2 ([18]). We assume that H is a metric space and that the nonlinear operator S(t) of H into itself for
t > 0 satisfied

S(t+ s) = S(t) · S(s), ∀ s, t > 0, S(0) = I, (Identity in H).

And also S(t) is continuous and uniformly compact for large t. That means for every bounded set B, there exists t0,
which may depend on B that

⋃
t>t0

S(t)B is relatively compact in H. We also assume that there exists an open set U

and a bounded set B of U such that B is absorbing in U.
Then the ω-limit set of B: A = ω(B) =

⋂
s>0

⋃
t>s

S(t)B is a compact attractor, which attracts the bounded set of

U. It is the maximal bounded attractor in U.

Theorem 5.3. Assume that the conditions of Theorem 4.2 hold. Then there exists a global attractor A ⊂ H2
per(Ω)×

H2
per(Ω) for the periodic initial problem (1.4)-(1.9), i.e., there is a set A such that

(1) S(t)A = A, t ∈ R+;
(2) lim

t→∞dist(S(t)B,A) = 0, for any bounded set B ⊂ H2
per(Ω)×H2

per(Ω), where

dist(X, Y) = sup
x∈X

inf
y∈Y
‖x− y‖E,

and S(t)(v0,A0) is a semigroup operator generated by the problem (1.4)-(1.9).
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Proof. On account of the result of Theorem 5.2, we will prove this theorem by checking the conditions in
Theorem 5.2. We observe that (5.1) shows that the ball

B =
{
(v,A) ∈ H2

per(Ω)×H2
per(Ω) : ‖v(t)‖H2

per
6 K, ‖A(t)‖H2

per
6 K
}

is an absorbing set of S(t) in H2
per(Ω)×H2

per(Ω). In addition, Lemma 5.1 implies the dynamical system
S(t) is uniformly compact for large t. Thus, according to Theorem 5.2, we can conclude that the ω-limit
set of B: A = ω(B) =

⋂
s>0

⋃
t>s

S(t)B is a compact attractor on H2
per(Ω)×H2

per(Ω), where the closure is

taken in H2
per(Ω)×H2

per(Ω). This completes the proof of Theorem 5.3.

Generally by induction and the estimates in Lemma 3.4, we have the following result.

Theorem 5.4. The semigroup of the nonlinear operators {S(t)} determined by the periodic initial problem (1.4)-(1.9)
has a compact connect global attractor A in Hkper(Ω)×Hkper(Ω), which attracts all bounded sets of Hkper(Ω)×
Hkper(Ω), for all k > 0.
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