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Abstract
We investigate Hyers-Ulam stability of the first order difference equation xi+1 = axi+b

cxi+d
, where ad− bc = 1, c 6= 0 and

|a+ d| > 2. It has Hyers-Ulam stability if the initial point x0 lies in some definite interval of R. The condition |a+ d| > 2 implies
that the above recurrence is a natural generalization of Pielou logistic difference equation. c©2017 All rights reserved.
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1. Introduction

The difference equation is the recursively defining a sequence, each of which term is defined as a
function of the preceding terms. The difference equation often refers to a specific type of recurrence
relation. In particular, if the sequence {xi}i∈N0 is defined as the relation between the general term xi and
only its first predecessor xi−1 with the definite initial term x0 satisfying the equation xi+1 = g(xi), then it
is called first order difference equation.

In 1940, Ulam [11] suggested an important problem of the stability of group homomorphisms:
Given a metric group (G,d) and a function f : G→ G which satisfies the inequality d(f(xy), f(x)f(y)) 6 ε
for a positive number ε and for all x,y ∈ G, do there exist a homomorphism a : G → G and a constant
δ > 0 depending only on G and ε such that d(a(x), f(x)) 6 δ for all x ∈ G?

The first positive answer to this question was given by Hyers [3] in 1941 for Cauchy additive equation
in Banach spaces.

If the answer is affirmative, the functional equation a(xy) = a(x)a(y) is said to be stable in the sense
of Hyers and Ulam (or the equation has the Hyers-Ulam stability). We refer the reader to [3, 4, 10, 11] for
the exact definition of Hyers-Ulam stability.

For decades, theory of Hyers-Ulam stability of functional equations or linear differential equations
was developed. More recently, Hyers-Ulam stability of difference equations has been given attention. For
instance, see [2, 5–9]. However, this stability for difference equations is not yet studied far beyond the
linear difference equation as far as we know.
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In this paper, we investigate Hyers-Ulam stability of the first order linear fractional difference equation
which is motivated from the discretized function as the solution of Verhulst-Pearl differential equation.

We denote by N, N0, R, and C the set of all positive integers, of all nonnegative integers, of all real
numbers, and the set of all complex numbers, respectively.

We would show Hyers-Ulam stability of the first order difference equation of the form

xi+1 = g(xi), (1.1)

for all integers i ∈N0, where g is the linear fractional map as follows

g(x) =
ax+ b

cx+ d
,

where a,b, c,d are real numbers with ad− bc = 1, c 6= 0 and |a+ d| > 2. More precisely, we would prove
that if a real-valued sequence {ai}i∈N0 satisfies the inequality

|ai+1 − g(ai)| 6 ε,

for all i ∈ N0, then there exists a solution {bi}i∈N0 to the difference equation (1.1) and a positive G(ε)
depending only on F and ε such that

|bi − ai| 6 G(ε),

for all i ∈N0 and ε→ 0 implies that G(ε)→ 0.
We remark that the difference equation (1.1) is a discrete form of the functional equation x(ξ(t)) =

H(t, x(t)), whose stability results have been surveyed in [1].
The Verhulst-Pearl equation is a population growth model which is given as

y ′(t) = y(t)
(
p− qy(t)

)
,

for some p,q > 0, where y is the size of population at the time t and the positive constant p is the
growth rate of population. The nonlinear term, −qy(t)2 is the negative effect on the growth due to the
environment. The solution is the map as follows

y(t) =
p

q

1
1 + 1

rqe
−pt

,

for some constant r. Thus we obtain that

y(t+ 1) =
epy(t)

1 + q
p(e

p − 1)y(t)
.

Discretizing the above equation we obtain the following recursive relation

y(n+ 1) =
Ay(n)

1 +Cy(n)
,

where A = ep and C = q
p(e

p − 1). This equation is called Pielou logistic difference equation.
The behavior of Pielou logistic difference equation is the same as iterative property of some kind of

linear fractional maps. Let the map corresponding Pielou logistic equation be as follows

F(x) =
Ax

Cx+ 1
,

where A > 1 and C > 0.
In the sequel, we consider the matrix representation of linear fractional map, which clarifies the qual-
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itative properties using the trace of matrix representation. For instance, the following map

x 7→ ax+ b

cx+ d
,

for ad− bc 6= 0 has the matrix representation

M =

(
a b

c d

)
.

However, since the map x 7→ ax+b
cx+d is the same as x 7→ pax+pb

pcx+pd , the matrix M is a representative of any
matrix pM for all real numbers p 6= 0. Thus we may assume that detM = 1 only if ad − bc > 0. If
ad− bc < 0, then we assume that detM = −1. In this paper, we always fix the condition ad− bc > 0.

The linear fractional map F for Pielou logistic difference equation has the matrix representation as
follows ( √

A 0
C√
A

1√
A

)
.

The matrix representation of F would be also denoted by F unless it makes confusion. Observe the
inequality of the trace: tr(F) =

√
A+ 1√

A
> 2.

In this paper, we investigate Hyers-Ulam stability of linear fractional maps whose trace is greater than
two. These maps generate Pielou logistic difference equation by iteration.

2. Preliminaries

Let g be the linear fractional map

g(x) =
ax+ b

cx+ d
, (2.1)

for real numbers a, b, c and d, where ad− bc = 1 and c 6= 0.
Recall that g

(
−dc
)
= ∞. Since Hyer-Ulam stability at ∞ is not considered in this article, a suitable

proper subinterval in R should be chosen. The set A is called (forward) invariant under g if g(A) ⊂ A is
satisfied.

In this section, we find a subinterval of R invariant under g defined in (2.1) if the trace of the matrix
representation of g is strictly greater than two.

Lemma 2.1. Let g be the linear fractional map defined in (2.1). The followings are true for x ∈ R and r > 0.

(i) If x+ d
c >

r
|c| , then − 1

r|c| < g(x) −
a
c < 0;

(ii) If x+ d
c < − r

|c| , then 0 < g(x) − a
c <

1
r|c| .

Proof. Suppose firstly that x+ d
c >

r
|c| . Then we have

r

|c|
< x+

d

c
<∞⇒ 0 <

1
x+ d

c

<
|c|

r

⇒ −
1
r|c|

< −
1
c2

1
x+ d

c

< 0

⇒ −
1
r|c|

<
−ad+ bc

c2x+ cd
< 0

⇒ −
1
r|c|

<
−acx− ad+ acx+ bc

c(cx+ d)
< 0
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⇒ −
1
r|c|

< −
a

c
+
ax+ b

cx+ d
< 0.

Moreover, we obtain that

−∞ < x+
d

c
< −

r

|c|
⇒ 0 <

ax+ b

cx+ d
−
a

c
<

1
r|c|

,

by the similar calculations.

Lemma 2.2. Let g be the linear fractional map defined as (2.1), where a, b, c and d are real numbers, ad− bc = 1
and c 6= 0. Assume that the matrix representation g satisfies |tr(g)| = 2 + τ for τ > 0. If

∣∣x− a
c

∣∣ 6 1
(1+τ)|c| , then

1+τ
|c| < x+

d
c or x+ d

c < −1+τ
|c| .

Proof. Since |tr(g)| = |a+ d| > 2, we will prove our assertion only for the case of ac 6= −dc .

Case 1: Assume that ac > −dc . Since a+d
c = a

c −
(
−dc
)
> 0 and tr(g) is a+ d, tr(g)

c = a+d
c > 0. Then we

have
a

c
−

(
−
d

c

)
=
a+ d

c
=

tr(g)
c

=

∣∣∣∣ tr(g)c
∣∣∣∣ = 2 + τ

|c|
>

1
|c|

(
1

1 + τ
+ 1 + τ

)
.

Using this inequality, we can visualize this case in the following figure.

−dc − 1+τ
|c|

6
( )q

−dc

−dc + 1+τ
|c|

6
( )q

a
c

q
x

a
c − 1

(1+τ)|c|

?

a
c + 1

(1+τ)|c|

?

In view of this figure, we easily see that x+ d
c = x−

(
−dc
)
> 1+τ

|c| .

Case 2: Assume that ac < −dc . By the similar calculations of Case 1, we obtain tr(g)
c = a+d

c < 0. Thus

a

c
−

(
−
d

c

)
=
a+ d

c
=

tr(g)
c

= −

∣∣∣∣ tr(g)c
∣∣∣∣ = −

2 + τ

|c|
< −

1
|c|

(
1

1 + τ
+ 1 + τ

)
,

or

−
d

c
−
a

c
>

1
|c|

(
1

1 + τ
+ 1 + τ

)
.

On account of the last inequality, we can visualize this case in the following figure.

a
c − 1

(1+τ)|c|

6
( )q

a
c

a
c + 1

(1+τ)|c|

6

q
x

( )q
−dc

−dc − 1+τ
|c|

?

−dc + 1+τ
|c|

?

By considering this figure, we show that −dc − x > 1+τ
|c| or x+ d

c < −1+τ
|c| .
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Proposition 2.3. Let g be the linear fractional map defined as (2.1), where a, b, c and d are real numbers,
ad− bc = 1 and c 6= 0. Assume that the matrix representation g satisfies |tr(g)| = 2 + τ, for τ > 0. Then g maps
the interval

{
x ∈ R :

∣∣x+ d
c

∣∣ > 1+τ
|c|

}
into itself.

Proof. Denote the following two intervals{
x ∈ R :

∣∣∣∣x+ dc
∣∣∣∣ > 1 + τ

|c|

}
,
{
x ∈ R :

∣∣∣x− a
c

∣∣∣ 6 1
(1 + τ)|c|

}
, (2.2)

by Sτ and by Tτ, respectively. Then Lemma 2.2 implies that Tτ ⊂ Sτ and Lemma 2.1 implies that g(Sτ) ⊂
Tτ. Hence, the interval Sτ is invariant under g as follows:

g(Sτ) ⊂ Tτ ⊂ Sτ, (2.3)

which completes the proof.

3. Hyers-Ulam stability

Suppose that a real-valued sequence {an}n∈N0 satisfies the inequality

|ai+1 − F(i,ai)| 6 ε,

for a positive number ε and for all i ∈ N0, where | · | is the absolute value of real number. If there exists
the sequence {bi}i∈N0 which satisfies that

bi+1 = F(i,bi), (3.1)

for each i ∈N0, and |ai − bi| 6 G(ε) for all i ∈N0, where the positive number G(ε) converges to zero as
ε→ 0, then we say that the difference equation (3.1) has Hyers-Ulam stability.

Theorem 3.1. Let g be linear fractional map defined as (2.1) of which matrix representation satisfies that |tr(g)| =
2 + τ for τ > 0. For any given 0 < ε < τ

(1+τ)|c| , let the real-valued sequence {ai}i∈N0 satisfy the inequality

|ai+1 − g(ai)| 6 ε,

for all i ∈N0. If a0 is in the interval Sτ =
{
x ∈ R :

∣∣x+ d
c

∣∣ > 1+τ
|c|

}
, then there exists a sequence {bi}i∈N0 which

satisfies
bi+1 = g(bi),

and

|bi − ai| 6
1

(1 + τ)2i |b0 − a0|+

i−1∑
j=0

ε

(1 + τ)2j ,

for each i ∈N0.

Proof. First, we claim that an ∈ Sτ for all n ∈N0. Recall that R \ Sτ and Tτ are bounded disjoint intervals
because g(Sτ) ⊂ Tτ ⊂ Sτ by Lemma 2.2 and Proposition 2.3.

Let x ∈ R \ Sτ and x ′ ∈ Tτ. From the definitions of Sτ and Tτ, we have

−
d

c
−

1 + τ

|c|
6 x 6 −

d

c
+

1 + τ

|c|
, (3.2)

and
a

c
−

1
(1 + τ)|c|

6 x ′ 6
a

c
+

1
(1 + τ)|c|

. (3.3)

There are only two cases for the location of the bounded disjoint intervals R \ Sτ and Tτ as we see in
the following figure.
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R\Sτ
[ ]q

x

Tτ
[ ]q
x ′

or
Tτ

[ ]q
x ′

R\Sτ
[ ]q
x

According to (3.2) and the first figure, we get

x 6 −
d

c
+

1 + τ

|c|
6
a

c
−

1
(1 + τ)|c|

6 x ′,

or by (3.3) and the second figure, we have

x ′ 6
a

c
+

1
(1 + τ)|c|

6 −
d

c
−

1 + τ

|c|
6 x.

Hence, we obtain

|x− x ′| >

∣∣∣∣a+ dc
∣∣∣∣−(1 + τ

|c|
+

1
(1 + τ)|c|

)
=

2 + τ

|c|
−

1
|c|

(
1 + τ+

1
1 + τ

)
=

1
|c|

(
1 −

1
1 + τ

)
(3.4)

=
τ

(1 + τ)|c|

> ε.

Since a0 ∈ Sτ, g(a0) ∈ Tτ by Lemma 2.1 or (2.3). Moreover, |g(a0)−a1| 6 ε. Thus, by (3.4), a1 /∈ R \ Sτ,
that is, a1 ∈ Sτ. Then, by induction, we can show that an ∈ Sτ for all n ∈ N0. Since g ′(x) = 1

(cx+d)2 , |g ′|
has a uniform upper bound in Sτ as follows

|g ′(x)| =
1

|cx+ d|2
=

1

c2
∣∣x+ d

c

∣∣2 < 1
(1 + τ)2 < 1.

Thus, g is a Lipschitz map on Sτ with the Lipschitz constant 1
(1+τ)2 .

Finally, we can easily apply induction to prove

|bi − ai| = |g(bi−1) − g(ai−1) + g(ai−1) − ai|

6 |g(bi−1) − g(ai−1)|+ |g(ai−1) − ai|

6
1

(1 + τ)2 |bi−1 − ai−1|+ ε

...

6
1

(1 + τ)2i |b0 − a0|+

i−1∑
j=0

ε

(1 + τ)2j ,

for each i ∈N0.

4. Application

The Pielou logistic difference equation can be treated as the iteration of the linear fractional map

F(x) =
Ax

Cx+ 1
=

√
Ax

C√
A
x+ 1√

A

,

for A > 1 and C > 0. (The last expression of F is given in the form of ad−bc = 1.) Then tr(F) =
√
A+ 1√

A
.
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The invariant set Sτ under F is as follows:

Sτ =

{
x ∈ R :

∣∣∣∣x+ 1
C

∣∣∣∣ > A+ 1 −
√
A

C

}
, (4.1)

where τ =
√
A + 1√

A
− 2 > 0 by (2.2). Then the Pielou logistic difference equation has Hyers-Ulam

stability.

Example 4.1. Let F be the linear fractional map as follows

F(x) =
Ax

Cx+ 1
,

for A > 1 and C > 0. For every given 0 < ε < A
√
A−2A+

√
A

(A−
√
A+1)C

, let a sequence {ai}i∈N0 satisfy the inequality

|ai+1 − F(ai)| 6 ε,

for all i ∈N0. If a0 is in Sτ defined in (4.1), then there exists a sequence {bi}i∈N0 which satisfies

bi+1 = F(bi),

and

|ai − bi| 6
1

(1 + τ)2i |b0 − a0|+

i−1∑
j=0

ε

(1 + τ)2j ,

for each i ∈N0, where τ =
√
A+ 1√

A
− 2 > 0.

Proof. By the direct calculation, we obtain

τ

(1 + τ) C√
A

=
A
√
A− 2A+

√
A

(A−
√
A+ 1)C

.

Then Theorem 3.1 implies that if the inequality 0 < ε < A
√
A−2A+

√
A

(A−
√
A+1)C

holds and a0 ∈ Sτ, then there exists
a sequence {bi}i∈N0 such that

bi+1 = F(bi),

and

|ai − bi| 6
1

(1 + τ)2i |b0 − a0|+

i−1∑
j=0

ε

(1 + τ)2j ,

for each i ∈N0, which completes the proof.
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