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Abstract
In this paper, we consider a general non-autonomous Lotka-Volterra competitive model with random perturbations. Suffi-

cient conditions for stochastic permanence and extinction are established. Particularly, when these conditions are applied to a
stochastic logistic equation, these conditions are sufficient and necessary. Some figures are also worked out to illustrate the main
results. Some recent results are extended. Moreover, our results reveal that different types of stochastic noises have different
effects on the permanence and extinction of the population. c©2017 All rights reserved.
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1. Introduction

In the natural world, it is a usual phenomena that several species compete for the limited resources.
Therefore it is important to study the multi-species competitive models. A famous non-autonomous
Lotka-Volterra competitive system can be expressed as follows

dxi(t)

dt
= xi(t)[ri(t) −

n∑
j=1

aij(t)xj(t)], i = 1, ...,n, (1.1)

where xi(t) is the size of the ith population at time t, ri(t) is the growth rate of the ith species at time
t, aii(t) > 0 is the introspecific competition rate, and aij(t) > 0 is the interspecific competition rate,
i, j = 1, 2, ...,n, i 6= j. Owing to its theoretical and practical significance, system (1.1) has been extensively
investigated and many important properties of the global dynamics of solutions have been obtained. For
example, persistence and extinction of (1.1) were considered in [1, 2, 35, 37]. Zhao et al. [38] investigated
permanence and global attractivity of model (1.1). Model (1.1) with time delay was analyzed in [13, 17].
[3, 15] studied the effect of impulses on model (1.1). Model (1.1) with stage structure was considered by
[24].

On the other hand, in the real world, population systems are inevitably affected by environmental
noises. Then it is important to study stochastic population systems to reveal the effect of random noise
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on the dynamics of the system. In fact, stochastic population models have been received great attention
recently, see e.g. [4, 6–12, 16, 18–23, 25–30, 32, 33, 36, 39, 40]. Particularly, under the assumption that the
growth rate ri(t) is affected by random noise, with

ri(t)→ ri(t) +βi(t)Ẇ1(t),

where Ẇ1(t) stands for the white noise, Li and Mao [18] proposed and investigated the following stochas-
tic competitive model

dxi(t) = xi(t)

(
ri(t) −

n∑
j=1

aij(t)xj(t)

)
dt+βi(t)xi(t)dW1(t), i = 1, ...,n, (1.2)

where W1(t) is a standard Brownian motions defined on a complete probability space (Ω,F,P). The
authors [18] investigated stochastic permanence, extinction, and global attractivity of model (1.2). From
then on, model (1.2) and its generalizations have been investigated by many authors. Bao et al. [7]
investigated model (1.2) with Lévy jumps. Jiang et al. [16] considered persistence and extinction of model
(1.2) in autonomous case.

However, model (1.2) is based on the assumption that only the growth rates ri are affected by the
stochastic noise. Then an important and interesting topic arises naturally: what happens if both ri and
aij are perturbed by the stochastic noise? As a matter of fact, Bandyopadhyay and Chattopadhyay [6] has
pointed out that if the parameters in the models are assumed to be deterministic irrespective of environ-
mental fluctuations, there would be some limitations in mathematical modeling of ecological systems, at
the same time, it would be difficult to fit data perfectly and to predict the future dynamics of the system
accurately. May [34] has claimed that due to environmental noise, the birth rate, competition coefficients,
and other parameters in the system should be stochastic. Motivated by these, in this paper, we assume
that aij is also perturbed stochastic noise, with

−aij(t) +αij(t)Ẇ2(t).

Then model (1.2) becomes

dxi(t) = xi(t)

(
ri(t) −

n∑
j=1

aij(t)xj(t)

)
dt

+βi(t)xi(t)dW1(t) +

n∑
j=1

αij(t)xi(t)xj(t)dW2(t), i = 1, ...,n,

(1.3)

where W1(t) and W2(t) are independent standard Brownian motions defined on a complete probability
space (Ω,F,P); ri(t), aij(t), βi(t), and αij(t) are continuous and bounded functions on [0,+∞) and
aij(t) > 0 for i, j = 1, ...,n.

In the investigation of population models, permanence and extinction are two important topics. How-
ever, as far as we know, no results related to permanence and extinction of model (1.3) have been reported.
The aim of this paper is to study these problems. We will show that when the noise is small, the popu-
lation system is stochastically permanent. At the same time, we will prove that a sufficiently large noise
will force all the populations become extinct. In particular, we shall establish the sufficient and necessary
conditions for stochastic permanence and extinction to a general stochastic logistic equation. Some recent
results will be generalized. Moreover, we will show that a different type of stochastic noise has a different
effect on the permanence and extinction of the population.

2. Main results

For the sake of simplicity, define

Rn+ = {a = (a1, ..,an) : ai > 0, 1 6 i 6 n}, fu = sup
t>0

f(t), fl = inf
t>0

f(t).
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Lemma 2.1. If min
16i,j6n

alij > 0, then for any given initial value x(0) ∈ Rn+, there is a unique solution x(t) to (1.3)

on t > 0 and the solution will remain in Rn+ almost surely (a.s.).

Proof. The proof is a slight modification of in [18] and therefore is omitted.

From now on, we always suppose that min
16i,j6n

alij > 0.

Definition 2.2 ([18]). If for all ε ∈ (0, 1), there exists a pair of positive constants ξ1 = ξ1(ε) and ξ2 = ξ2(ε)
such that for any initial data x(0) ∈ Rn+, the solution satisfies

lim inf
t→+∞ P

{
|x(t)| > ξ1

}
> 1 − ε, lim inf

t→+∞ P
{
|x(t)| 6 ξ2

}
> 1 − ε,

then model (1.3) is said to be stochastically permanent.

Lemma 2.3. Suppose that x(t) is an arbitrary solution of (1.3), then for every 0 < p < 1, i = 1, 2...,n, there is a
constant K = K(p) > 0 such that

lim sup
t→+∞ E

[
x
p
i (t)

]
6 K(p), t > 0. (2.1)

Proof. The proof is standard but for the completeness of the paper we only give a brief one. Define

V(x) =

n∑
i=1

etx
p
i

for x ∈ Rn+, where p < 1. Applying Itô’s formula ([31]) results in

dV(x) = et
n∑
i=1

x
p
i dt+ e

t
n∑
i=1

{
px
p−1
i dxi + 0.5p(p− 1)xp−2

i (dxi)
2
}

= etp

n∑
i=1

x
p
i

[
1/p+ ri(t) −

n∑
j=1

aij(t)xj + 0.5(p− 1)β2
i(t)

+ 0.5(p− 1)
( n∑
j=1

αij(t)xj

)2]
dt+ etp

n∑
i=1

βi(t)x
p
i dW1(t) + e

tp

n∑
i=1

n∑
j=1

αij(t)x
p
i xjdW2(t).

6 etp
n∑
i=1

x
p
i

[
1/p+ ri(t) − aii(t)xi

]
dt+ etp

n∑
i=1

βi(t)x
p
i dW1(t) + e

tp

n∑
i=1

n∑
j=1

αij(t)x
p
i xjdW2(t).

6 et
n∑
i=1

Ki(p)dt+ e
tp

n∑
i=1

βi(t)x
p
i dW1(t) + e

tp

n∑
i=1

n∑
j=1

αij(t)x
p
i xjdW2(t),

where

Ki(p) =

(
p

p+ 1

)p+1(1/p+ |ri|
u

alii

)p
.

In other words, we have shown that

etE

[ n∑
i=1

x
p
i (t)

]
6

n∑
i=1

x
p
i (0) + E

∫t
0
es

n∑
i=1

Ki(p)ds =

n∑
i=1

x
p
i (0) +

n∑
i=1

Ki(p)(e
t − 1).

Consequently

lim sup
t→+∞ E

[ n∑
i=1

x
p
i (t)

]
6

n∑
i=1

Ki(p) =: K(p).

This completes the proof.
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Now, let us impose an assumption.

(H1): min16i6n b
l
i > 0, where bi(t) = ri(t) − 0.5β2

i(t), 1 6 i 6 n. That is to say, the intensities of the
stochastic noises in the system are not too large.

Theorem 2.4. If (H1) is satisfied, then (1.3) is stochastically permanent.

Proof. Let

U(x) =

n∑
i=1

xi, V1(x) = 1/U2(x)

for x ∈ Rn+. It then follows from Itô’s formula that

dV1(x) = −
2

U3(x)

n∑
i=1

xi

(
ri(t) −

n∑
j=1

aij(t)xj

)
dt+

3
U4(x)

[( n∑
i=1

βi(t)xi

)2

+

( n∑
i=1

n∑
j=1

α2
ij(t)xixj

)2]
dt

−
2

U3(x)

[ n∑
i=1

βi(t)xidW1(t) +

n∑
i=1

n∑
j=1

αij(t)xixjdW2(t)

]
.

By (H1), there is a positive constant λ satisfying

min
16i6n

bli > λ max
16i6n

(β2
i)
u.

Let
V2(x) = (1 + V1(x))

λ, x ∈ Rn+.

Then

dV2(x) = LV2(x)dt− λ(1 + V1(x))
λ−1 2

U3(x)
×
[ n∑
i=1

βi(t)xidW1(t) +

n∑
i=1

n∑
j=1

αij(t)xixjdW2(t)

]
,

where

LV2(x) = λ(1 + V1(x))
λ−2
{
− (1 + V1(x))

2
U3(x)

n∑
i=1

xi

(
ri(t) −

n∑
j=1

aij(t)xj

)

+ (1 + V1(x))
3

U4(x)

[ n∑
i=1

β2
i(t)x

2
i +

n∑
i=1

n∑
j=1

α2
ij(t)x

2
ix

2
j

]

+
λ− 1

2
4

U6(x)

[( n∑
i=1

βi(t)xi

)2

+

( n∑
i=1

n∑
j=1

αij(t)xixj

)2]}

= λ(1 + V1(x))
λ−2
{
−

2
U3(x)

n∑
i=1

xiri(t) −
2

U5(x)

n∑
i=1

xiri(t)

+
2

U3(x)

n∑
i=1

n∑
j=1

aij(t)xixj +
2

U5(x)

n∑
i=1

n∑
j=1

aij(t)xixj

+

[
3

U4(x)
+

3
U6(x)

+
2(λ− 1)
U6(x)

][( n∑
i=1

βi(t)xi

)2

+

( n∑
i=1

n∑
j=1

αij(t)xixj

)2]}

6 λ(1 + V1(x))
λ−2
{
−

2
U6(x)

n∑
i=1

x2
iri(t) +

max
16i,j6n

auij

U(x)
+

max
16i,j6n

auij

U3(x)
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+

3 max
16i6n

(β2
i)
u

U2(x)
+ 3 max

16i,j6n
(α2
ij)
u +

2λ+ 1
U6(x)

n∑
i=1

β2
i(t)x

2
i +

(2λ+ 1) max
16i,j6n

(α2
ij)
u

U2(x)

}

= λ(1 + V1(x))
λ−2
{
−

2
U6(x)

n∑
i=1

x2
i

[
bi(t) − λβ

2
i(t)

]
+ V1.5

1 (x) max
16i,j6n

auij

+ V1(x)

[
3 max

16i6n
(β2
i)
u + (2λ+ 1) max

16i,j6n
(α2
ij)
u

]
+ V0.5

1 (x) max
16i,j6n

auij + 3 max
16i,j6n

(α2
ij)
u

}
6 λ(1 + V1(x))

λ−2
{
− 2V2

1 (x)[ min
16i6n

bli − λ max
16i6n

(β2
i)
u] + V1.5

1 (x) max
16i,j6n

auij

+ V1(x)

[
3 max

16i6n
(β2
i)
u + (2λ+ 1) max

16i,j6n
(α2
ij)
u

]
+ V0.5

1 (x) max
16i,j6n

auij + 3 max
16i,j6n

(α2
ij)
u

}
.

Let ν be sufficiently small such that

0 < 0.5ν/λ < min
16i6n

bli − λ max
16i6n

(α2
i)
u.

Let
V3(x(t)) = e

νtV2(x(t)).

An application of Itô’s formula, gives

dV3(x) = νe
νtV2(x)dt+ e

νtdV2(x)

= LV3(x)dt− λe
νt(1 + V1(x))

λ−1 2
U3(x)

×
[ n∑
i=1

βi(t)xidW1(t) +

n∑
i=1

n∑
j=1

αij(t)xixjdW2(t)

]
,

where

LV3(x) 6 λe
νt(1 + V1(x))

λ−2
{
ν(1 + V1(x))

2/λ− 2V2
1 (x)[ min

16i6n
bli − λ max

16i6n
(β2
i)
u]

+ V1.5
1 (x) max

16i,j6n
auij + V1(x)

[
3 max

16i6n
(β2
i)
u + (2λ+ 1) max

16i,j6n
(α2
ij)
u

]
+ V0.5

1 (x) max
16i,j6n

auij + 3 max
16i,j6n

(α2
ij)
u

}
= λeνt(1 + V1(x))

λ−2
{
− 2V2

1 (x)[ min
16i6n

bli − λ max
16i6n

(β2
i)
u − 0.5ν/λ]

+ V1.5
1 (x) max

16i,j6n
auij + V1(x)

[
3 max

16i6n
(β2
i)
u + (2λ+ 1) max

16i,j6n
(α2
ij)
u + 2ν/λ

]
+ V0.5

1 (x) max
16i,j6n

auij + 3 max
16i,j6n

(α2
ij)
u + ν/λ

}
= eνtJ(x),

where

J(x) = λ(1 + V1(x))
λ−2
{
− 2V2

1 (x)[ min
16i6n

bli − λ max
16i6n

(β2
i)
u − 0.5ν/λ]

+ V1.5
1 (x) max

16i,j6n
auij + V1(x)

[
3 max

16i6n
(β2
i)
u + (2λ+ 1) max

16i,j6n
(α2
ij)
u + 2ν/λ

]
+ V0.5

1 (x) max
16i,j6n

auij + 3 max
16i,j6n

(α2
ij)
u + ν/λ

}
.

Clearly, J(x) has an upper bound in Rn+, so we define C1 := sup
x∈Rn+

J(x) < +∞. Consequently,

dV3(x(t)) 6 C1e
νtdt− λeνt(1 + V1(x))

λ−1 2
U3(x)

[ n∑
i=1

βi(t)xidWi(t) +

n∑
i=1

n∑
j=1

αij(t)xixjdW2(t)

]
.
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Integrating both sides of the above inequality and then taking expectations, we have

E

[
V3(x(t))

]
= E

[
eνt(1 + V1(x(t)))

λ

]
6

(
1 + V1(x(0))

)λ
+C1e

νt/ν.

That is to say,

lim sup
t→+∞ E

[
Vλ1 (x(t))

]
6 C1/ν.

Thanks to ( n∑
i=1

xi(t)

)λ
6

(
n max

16i6n
xi(t)

)λ
= nλ

(
max

16i6n
x2
i(t)

)0.5λ

6 nλ|x(t)|λ.

Then we have

lim sup
t→+∞ E

[
|x(t)|−2λ

]
6 n2λC1/ν =: C.

For arbitrary fixed ε > 0, denote ξ1 = ε0.5/λ/C0.5/λ, according to Chebyshev’s inequality ([31]), one can
see that

P

{
|x(t)| < ξ1

}
6 ξ2λ

1 E

[
1/|x(t)|2λ

]
.

Consequently, lim inf
t→+∞ P

{
|x(t)| > ξ1

}
> 1 − ε.

To complete the proof, it suffices to prove that for arbitrary fixed ε > 0, we can find a constant ξ2 > 0

such that lim inf
t→+∞ P

{
|x(t)| 6 ξ2

}
> 1 − ε. In fact, by (2.1) and Chebyshev’s inequality, one can prove this

assertion easily.

We are in the position to study the extinction of (1.3).

Theorem 2.5. If lim sup
t→+∞ t−1

∫t
0 bi(s)ds < 0, then the population xi(t), represented by model (1.3) goes to extinc-

tion a.s., i.e., lim
t→+∞ xi(t) = 0 a.s., 1 6 i 6 n.

Proof. By virtue of Itô’s formula,

d ln xi =
[
bi(t) −

n∑
j=1

aij(t)xi − 0.5
( n∑
j=1

αij(t)xj

)2]
dt +βi(t)dW1(t) +

n∑
j=1

αij(t)xjdW2(t), 1 6 i 6 n.

Integrating both sides from 0 to t,

ln xi(t) − ln xi(0) =
∫t

0

[
bi(s) −

n∑
j=1

aij(s)xi(s) − 0.5
( n∑
j=1

αij(t)xj(s)

)2]
ds

+Mi(t) +Ni(t), 1 6 i 6 n.

(2.2)

Here

Mi(t) =

∫t
0
βi(s)dW1(s), Ni(t) =

∫t
0

n∑
j=1

αij(s)xj(s)dW2(s), 1 6 i 6 n.

Clearly, Mi(t) is a local martingale with quadratic variation

〈Mi(t),Mi(t)〉 =
∫t

0
β2
i(s)ds 6 (β2

i)
ut.
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It then follows from the strong law of large numbers for local martingales (see, e.g., [31]) that

lim
t→+∞Mi(t)/t = 0 a.s., 1 6 i 6 n. (2.3)

At the same time,

〈Ni(t),Ni(t)〉 =
∫t

0

( n∑
j=1

αij(s)xj(s)

)2

ds.

According to the exponential martingale inequality (see, e.g., [31]), one can observe that

P

{
sup

06t6k

[
Ni(t) −

1
2
〈Ni(t),Ni(t)〉

]
> 2 lnk

}
6 1/k2, 1 6 i 6 n.

Thanks to the Borel-Cantalli lemma (see, e.g., [31]), for almost all ω ∈ Ω, there exists a random integer
k0 = k0(ω) such that for k > k0,

sup
06t6k

[
Ni(t) −

1
2
〈Ni(t),Ni(t)〉

]
6 2 lnk, 1 6 i 6 n.

Therefore,

Ni(t) 6 2 lnk+ 0.5
∫t

0

( n∑
j=1

αij(s)xj(s)

)2

ds

for all 0 6 t 6 k, k > k0 almost surely. When these inequalities are used in (2.2), we have

ln xi(t) − ln xi(0) =
∫t

0

[
bi(s) −

n∑
j=1

aij(s)xi(s) − 0.5
( n∑
j=1

αij(s)xj(s)

)2]
ds

+Mi(t) + 2 lnk+ 0.5
∫t

0

( n∑
j=1

αij(s)xj(s)

)2

ds

6
∫t

0
bi(s)ds+Mi(t) + 2 lnk, 1 6 i 6 n

for all 0 6 t 6 k, k > k0 almost surely. That is to say, for 0 < k− 1 6 t 6 k,

t−1[ln xi(t) − ln xi(0)] 6 t−1
∫t

0
bi(s)ds+

2 lnk
t

+Mi(t)/t 6 t
−1
∫t

0
bi(s)ds+

2n lnk
k− 1

+Mi(t)/t.

According to (2.3),

lim sup
t→+∞ t−1 ln xi(t) 6 lim sup

t→+∞ t−1
∫t

0
bi(s)ds.

That is to say, if lim sup
t→+∞ t−1

∫t
0 bi(s)ds < 0, then lim

t→+∞ xi(t) = 0.

Remark 2.6. Biologically, Theorem 2.5 means that sufficiently large stochastic random noises can force the
species become extinct.

Remark 2.7. Li and Mao [18] have studied model (1.2) and have shown that

(A) if (H1) is satisfied, then (1.2) is stochastically permanent;
(B) if lim sup

t→+∞ t−1
∫t

0 bi(s)ds < 0, then xi(t), represented by model (1.2), goes to extinction a.s., i.e.,

lim
t→+∞ xi(t) = 0 a.s., 1 6 i 6 n.

Clearly, model (1.2) is a special case of model (1.3) (i.e., αij(t) ≡ 0 for all 1 6 i, j 6 n). Therefore our
Theorems 2.4 and 2.5 extend the results of [18].
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To finish this section, we consider the following stochastic logistic equation:

dx(t) = x(t)

(
r− ax(t)

)
dt+βx(t)dW1(t) +αx

2dW2(t), x(0) = x0 > 0, (2.4)

where a > 0. By Theorems 2.4 and 2.5, we obtain the following sufficient and necessary conditions for
stochastic permanence and extinction.

Corollary 2.8. For Eq. (2.4):

(I) if r− 0.5β2 < 0, then the population x(t) is extinctive a.s.;
(II) if r− 0.5β2 > 0, then the population x(t) is stochastically permanent.

Remark 2.9. Corollary 2.8 reveals an interesting and important result: different types of stochastic noises
have different effects on the permanence and extinction of the population. Note that the permanence
and extinction of species depend only on the value of r− 0.5β2. Therefore, the stochastic noise on r is
unfavorable for the permanence of the population while the stochastic noises on a has no impact on the
permanence and extinction of the population.

3. Example and numerical simulations

In this section we use the Milstein method (see, e.g., Higham [14]) to substantiate our main results.
For simplicity, we choose n = 2.

Consider the discretization equations:

x
(k+1)
1 = x
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where γk and ηk, k = 1, 2, ...,n, are the Gaussian random variables N(0, 1).
In Fig. 1, we choose r1(t) = 0.36 + 0.01 sin t, r2(t) = 0.33 + 0.05 sin t, a11(t) = 0.2 + 0.01 sin t, a22(t) =

0.22 + 0.01 sin t, a12(t) = 0.1 + 0.02 sin t, a21(t) = 0.05 + 0.02 sin t, α11(t) = 0.5 + 0.2 sin t, α12(t) = 0.3 +
0.1 sin t, α21(t) = 0.7 + 0.12 sin t, and α22(t) = 0.46 + 0.3 sin t. The only difference between conditions
of Fig. 1 (a) and Fig. 1 (b) is that the values of β2

1 and β2
2 are different. In Fig. 1 (a), we choose

β2
1(t)/2 = β2

2(t)/2 = 0.21+ 0.02 sin t, then (H1) holds. In view of Theorem 2.4, system (1.3) is stochastically
permanent. Fig. 1 (a) confirms this. In Fig. 1 (b), we choose β2

1(t)/2 = 0.38 + 0.02 sin t, β2
2(t)/2 =

0.4 + 0.02 sin t, then lim sup
t→+∞ t−1

∫t
0 b1(s)ds = −0.02 < 0 and lim sup

t→+∞ t−1
∫t

0 b2(s)ds = −0.07 < 0. By virtue

of Theorem 2.5, both x1 and x2 go to extinction. See Fig. 1 (b).



M. Deng, J. Nonlinear Sci. Appl., 10 (2017), 3099–3108 3107

0 200 400 600 800 1000

0.35

0.4

0.45

0.5

0.55

0.6

Time

x
1
(t)

x
2
(t)

(a)

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time

x
1
(t)

x
2
(t)

(b)

Figure 1: Solutions of system (1.3) for n = 2, r1(t) = 0.36 + 0.01 sin t, r2(t) = 0.33 + 0.05 sin t, a11(t) = 0.2 + 0.01 sin t, a22(t) =
0.22 + 0.01 sin t, a12(t) = 0.1 + 0.02 sin t, a21(t) = 0.05 + 0.02 sin t, α11(t) = 0.5 + 0.2 sin t, α12(t) = 0.3 + 0.1 sin t, α21(t) =
0.7 + 0.12 sin t and α22(t) = 0.46 + 0.3 sin t, x1(0) = 0.55, x2(0) = 0.4, and step size ∆t = 0.001. The horizontal axis represents
the time t. (a) is with β2

1(t)/2 = β2
2(t)/2 = 0.21 + 0.02 sin t; (b) is with β2

1(t)/2 = 0.38 + 0.02 sin t, β2
2(t)/2 = 0.4 + 0.02 sin t.

4. Conclusions and further research

This paper is devoted to the permanence and extinction of a general Lotka-Volterra competitive model
with random perturbations. We show that when the noise is sufficiently small the population system is
stochastically permanent; at the same time, we prove that a sufficiently large noise will force all the popu-
lations become extinct. Particularly, for a stochastic logistic equation, sufficient and necessary conditions
for stochastic permanence and extinction are established. Some recent results are generalized.

Some interesting topics deserve further investigation. One could study more realistic but more com-
plex models, for example, stochastic systems under regime switching (see e.g., [30, 40]), or with Lévy
jumps (see e.g., [29]), or with reaction-diffusion ([5]). Also it is interesting to study n-dimensional stochas-
tic food chain model or cooperative system, and we leave these for future work.
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