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Abstract

In this work, we introduce a new subclass of bi-univalent functions under the Dp,q operator. By using the Faber polynomial
expansions, we obtain upper bounds for the coefficients of functions belonging to this analytic and bi-univalent function class.
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1. Introduction, definitions, and notations

Let A denote the class of functions of the form:

f(z) = z+

∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disc

U = {z : z ∈ C and |z| < 1} .

By S we denote the subclass of A consisting of functions of the form (1.1) which are also univalent in U.
Further, P be the class of functions consisting of ϕ, such that

ϕ(z) = 1 +

∞∑
n=1

ϕnz
n,

which are regular in the open unit disc U and satisfy the condition < (ϕ(z)) > 0 in U. By the Carathéo-
dory’s Lemma (e.g., see [12]) we have |ϕn| 6 2.
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The Koebe One-Quarter Theorem [12] states that the image of U under every function f in the nor-
malized univalent function class S contains a disc of radius 1

4 . Thus, clearly, every such univalent function
has an inverse f−1 which satisfies the following condition:

f−1 (f (z)) = z (z ∈ U)

and

f
(
f−1 (w)

)
= w

(
|w| < r0 (f) ; r0 (f) >

1
4

)
,

where
f−1 (w) = w − a2w

2 +
(
2a2

2 − a3
)
w3 −

(
5a3

2 − 5a2a3 + a4
)
w4 + · · · .

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in U. Let Σ denote the
class of bi-univalent functions defined in the unit disk U. For a brief history of functions in the class, see
[27] (see also [9, 10, 20, 22]). Recently, Srivastava et al. [27], Altınkaya and Yalçın [6], and Magesh and
Yamini [21] made an effort to introduce various subclasses of the bi-univalent function class Σ and found
non-sharp coefficient estimates on the initial coefficients |a2| and |a3| (see also [28]). But the coefficient
problem for each one of the following Taylor-Maclaurin coefficients

|an| , n ∈N\ {1, 2} ; N = {1, 2, 3, · · · }

is still an open problem. In the literature, there are only a few works determining the general coefficient
bounds |an| for the analytic bi-univalent functions ([7, 16, 18]).

The Faber polynomials introduced by Faber [13] play an important role in various areas of mathe-
matical sciences, especially in geometric function theory. Grunsky [15] succeeded in establishing a set of
conditions for a given function which are necessary and in their totality sufficient for the univalency of
this function, and in these conditions the coefficients of the Faber polynomials play an important role.
Schiffer [25] gave a differential equations for univalent functions solving certain extremum problems with
respect to coefficients of such functions; in this differential equation appears again a polynomial which is
just the derivative of a Faber polynomial (see, for details, [24]).

If the functions f and F are analytic in U, then f is said to be subordinate to F, written as

f (z) ≺ F (z) (z ∈ U) ,

if there exists a Schwarz function u (z) =
∞∑
n=1

cnz
n, analytic in U, with

u (0) = 0 and |u (z)| < 1 (z ∈ U)

such that
f (z) = F (u (z)) (z ∈ U) .

For the Schwarz function u (z) we note that |cn| < 1 (e.g., see Duren [12]).
In the field of geometric function theory, various subclasses of analytic functions have been studied

from different viewpoints. The fractional q-calculus is the important tool that is used to investigate
subclasses of analytic functions. Historically speaking, a firm footing of the usage of the the q-calculus
in the context of geometric function theory was actually provided and the basic (or q-) hypergeometric
functions were first used in geometric function theory in a book chapter by Srivastava (see, for details,
[26]). In fact, the theory of univalent functions can be described by using the theory of the q-calculus.
Moreover, in recent years, such q-calculus operators as the fractional q-integral and fractional q-derivative
operators were used to construct several subclasses of analytic functions (see, for example, [5, 8, 23]).

For the convenience, we provide some basic definitions and concept details of q-calculus which are
used in this paper. We suppose throughout the paper that 0 < q < p 6 1. We recall the definitions of frac-
tional q-calculus operators of complex-valued function f(z). We shall follow the notation and terminology
in [14].
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Definition 1.1 ([11]). The (p,q)-derivative of the function f given by (1.1) is defined as

(Dp,qf)(z) =
f(pz) − f(qz)

(p− q)z
, z 6= 0,

and (Dp,qf)(0) = f′(0), provided f′(0) exists.

From Definition 1.1, we deduce that

(Dp,qf)(z) = 1 +

∞∑
n=2

[n]p,q anz
n−1,

where the symbol [n]p,q denotes the so-called (p,q)-bracket or twin-basic number

[n]p,q =
pn − qn

p− q
.

It happens clearly thatDp,qz
n = [n]p,q z

n−1. Note also that for p = 1, the Jackson (p,q)-derivative reduces
to the Jackson q-derivative given by (see [17])

(Dqf)(z) =
f(z) − f(qz)

(1 − q)z
, z 6= 0.

The twin-basic number is a natural generalization of the q-number, that is

lim
p→1

[n]p,q = [n]q =
1 − qn

1 − q
, q 6= 1.

The object of this paper is to introduce a new subclasses of bi-univalent functions defined by using the
Jackson (p,q)-derivative operator and use the Faber polynomial expansion techniques to derive bounds
for the general Taylor-Maclaurin coefficients |an| for the functions in this class. We also obtain estimates
for the initial coefficients |a2| and |a3| of these functions.

2. Bounds derivable by the Faber polynomial expansion techniques

We begin this section by introducing the function class DΣ(p,q; λ,ϕ) by means of the following defi-
nition.

Definition 2.1. A function f(z) given by (1.1) is said to be in the class DΣ(p,q; λ,ϕ) if the following
subordination conditions hold true:

f ∈ Σ and (1 − λ)
f(z)

z
+ λ(Dp,qf)(z) ≺ ϕ (z) , (z ∈ U; λ > 1) (2.1)

and

f ∈ Σ and (1 − λ)
g(w)

w
+ λ(Dp,qg)(w) ≺ ϕ (w) , (w ∈ U; λ > 1), (2.2)

where g (w) = f−1 (w) .

We note from Definition 2.1 that

lim
p→1−

DΣ(p,q; λ,ϕ) =

f : f ∈ Σ and


lim
p→1−

[
(1 − λ)

f(z)
z + λ(Dp,qf)(z)

]
lim
p→1−

[
(1 − λ)

g(w)
w + λ(Dp,qg)(w)

]

 = DΣ(q; λ,ϕ).
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Furthermore, we note that

lim
q→1−

DΣ(q; λ,ϕ) =

f : f ∈ Σ and


lim
q→1−

[
(1 − λ)

f(z)
z + λ(Dqf)(z)

]
lim
q→1−

[
(1 − λ)

g(w)
w + λ(Dqg)(w)

]

 = Rσ(λ,ϕ),

where Rσ(λ,ϕ) is the class of bi-univalent defined and studied by Kumar et al. [19].
Using the Faber polynomial expansion of functions f ∈ A of the form (1.1), the coefficients of its

inverse map g = f −1 may be expressed as follows (see [3]):

g (w) = f−1 (w) = w+

∞∑
n=2

1
n
K−n
n−1 (a2,a3, · · · )wn,

where

K−n
n−1 =

(−n)!
(−2n+ 1)! (n− 1)!

an−1
2 +

(−n)!
[2 (−n+ 1)]! (n− 3)!

an−3
2 a3 +

(−n)!
(−2n+ 3)! (n− 4)!

an−4
2 a4

+
(−n)!

[2 (−n+ 2)]! (n− 5)!
an−5

2

[
a5 + (−n+ 2)a2

3
]

+
(−n)!

(−2n+ 5)! (n− 6)!
an−6

2 [a6 + (−2n+ 5)a3a4] +
∑
j>7

a
n−j
2 Vj,

such that Vj (7 6 j 6 n) is a homogeneous polynomial in the variables a2,a3, · · · ,an (see, for details, [4]).
In particular, the first three terms of K−n

n−1 are given below:

1
2
K−2

1 = −a2,
1
3
K−3

2 = 2a2
2 − a3,

1
4
K−4

3 = −
(
5a3

2 − 5a2a3 + a4
)

.

In general, an expansion of Kpn is given by (see [3])

Kpn = pan +
p (p− 1)

2
E2
n +

p!
(p− 3)!3!

E3
n + · · ·+ p!

(p−n)!n!
Enn, (p ∈ Z),

where
Z = {0,±1,±2, · · · } and Epn = Epn (a2,a3, · · · )

and, alternatively, by (see [1] and [2])

Emn (a1,a2, · · · ,an) =
∞∑
m=1

m! (a1)
µ1 · · · (an)µn

µ1! · · ·µn!
,

while a1 = 1, and the sum is taken over all nonnegative integers µ1, · · · ,µn satisfying the following
conditions:

µ1 + µ2 + · · ·+ µn = m,µ1 + 2µ2 + · · ·+nµn = n.

Evidently,
Enn (a1,a2, · · · ,an) = an1 .

Our first main result is given by Theorem 2.2 below.

Theorem 2.2. Let f given by (1.1) be in the class DΣ(p,q; λ,ϕ) (λ > 1). If am = 0 for 2 6 m 6 n− 1, then

|an| 6
2∣∣∣1 +

(
[n]p,q − 1

)
λ
∣∣∣ , (n > 4).



Ş. Altınkaya, S. Yalçın, J. Nonlinear Sci. Appl., 10 (2017), 3067–3074 3071

Proof. For analytic functions f of the form (1.1), we have

(1 − λ)
f(z)

z
+ λ(Dp,qf)(z) = 1 +

∞∑
n=2

[
1 +

(
[n]p,q − 1

)
λ
]
anz

n−1 (2.3)

and

(1 − λ)
g(w)

w
+ λ(Dp,qg)(w) = 1 +

∞∑
n=1

[
1 +

(
[n]p,q − 1

)
λ
]
bnw

n−1

= 1 +

∞∑
n=1

[
1 +

(
[n]p,q − 1

)
λ
]
× 1
n
K−n
n−1 (a2,a3, · · · ,an)wn−1.

(2.4)

On the other hand, the inequalities (2.1) and (2.2) imply the existence of two Schwartz functions

u (z) =
∞∑
n=1

cnz
n and v (w) =

∞∑
n=1

dnw
n so that

(1 − λ)
f(z)

z
+ λ(Dp,qf)(z) = ϕ(u(z)) (2.5)

and
(1 − λ)

g(w)

w
+ λ(Dp,qg)(w) = ϕ(v(w)), (2.6)

where

ϕ(u(z)) = 1 +

∞∑
n=1

n∑
k=1

ϕkE
k
n (c1, c2, · · · , cn) zn (2.7)

and

ϕ(v(w)) = 1 +

∞∑
n=1

n∑
k=1

ϕkE
k
n (d1,d2, · · · ,dn)wn. (2.8)

Thus, from (2.3), (2.5), and (2.7) we have[
1 +

(
[n]p,q − 1

)
λ
]
an =

n−1∑
k=1

ϕkE
k
n−1 (c1, c2, · · · , cn−1) , (n > 2). (2.9)

Similarly, by using (2.4), (2.6), and (2.8), we find that

[
1 +

(
[n]p,q − 1

)
λ
]
bn =

n−1∑
k=1

ϕkE
k
n−1 (d1,d2, · · · ,dn−1) , (n > 2). (2.10)

We note that, for am = 0 (2 6 m 6 n− 1), we have

bn = −an

and so [
1 +

(
[n]p,q − 1

)
λ
]
an = ϕ1cn−1, −

[
1 +

(
[n]p,q − 1

)
λ
]
an = ϕ1dn−1.

Now taking the absolute values of either of the above two equations and using the facts that |ϕ1| 6 2,
|cn−1| 6 1, and |dn−1| 6 1, we obtain

|an| =
|ϕ1cn−1|∣∣∣1 +
(
[n]p,q − 1

)
λ
∣∣∣ = |ϕ1dn−1|∣∣∣1 +

(
[n]p,q − 1

)
λ
∣∣∣ 6 2∣∣∣1 +

(
[n]p,q − 1

)
λ
∣∣∣ ,

which evidently completes the proof of Theorem 2.2.
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By letting p→ 1 in Theorem 2.2, we obtain the following consequence.

Corollary 2.3. Let f given by (1.1) be in the class DΣ(q; λ,ϕ) (λ > 1). If am = 0 for 2 6 m 6 n− 1, then

|an| 6
2(1 − q)

1 − q+ (q− qn) λ
, (n > 4).

3. Estimates for the initial coefficients a2 and a3

In this section, we choose to relax the coefficient restrictions imposed in Theorem 2.2 and derive
the resulting estimates for the initial coefficients a2 and a3 of functions f ∈ DΣ(p,q; λ,ϕ); given by the
Taylor-Maclaurin series expansion (1.1).

Theorem 3.1. Let f given by (1.1) be in the class DΣ(p,q; λ,ϕ) (λ > 1). Then

|a2| 6 min

{
2

|1 + (p+ q− 1)λ|
,

2√
|1 + (p2 + pq+ q2 − 1)λ|

}
,

|a3| 6 min

{
4

[1 + (p+ q− 1) λ]2
+

2
|1 + (p2 + pq+ q2 − 1)λ|

,
6

|1 + (p2 + pq+ q2 − 1)λ|

}
,

and ∣∣a3 − 2a2
2
∣∣ 6 4

|1 + (p2 + pq+ q2 − 1)λ|
.

Proof. Replacing n by 2 and 3 in (2.9) and (2.10), respectively, we find that[
1 +

(
[2]p,q − 1

)
λ
]
a2 = ϕ1c1, (3.1)[

1 +
(
[3]p,q − 1

)
λ
]
a3 = ϕ1c2 +ϕ2c

2
1, (3.2)

−
[
1 +

(
[2]p,q − 1

)
λ
]
a2 = ϕ1d1, (3.3)

and [
1 +

(
[3]p,q − 1

)
λ
]
(2a2

2 − a3) = ϕ1d2 +ϕ2d
2
1. (3.4)

From (3.1) and (3.3) we obtain
d1 = −c1

and

|a2| =
|ϕ1c1|∣∣∣1 +

(
[2]p,q − 1

)
λ
∣∣∣ = |ϕ1d1|∣∣∣1 +

(
[2]p,q − 1

)
λ
∣∣∣ 6 2

|1 + (p+ q− 1)λ|
. (3.5)

Now, by adding (3.2) to (3.4), we have

2
[
1 +

(
[3]p,q − 1

)
λ
]
a2

2 = ϕ1 (c2 + d2) +ϕ2
(
c2

1 + d
2
1
)

or, equivalently,

|a2| 6
2√

|1 + (p2 + pq+ q2 − 1)λ|
. (3.6)

Next, in order to find the bound on the coefficient |a3|, we subtract (3.4) from (3.2). Thus, we get

2
[
1 +

(
[3]p,q − 1

)
λ
] (
a3 − a

2
2
)
= ϕ1 (c2 − d2) +ϕ2

(
c2

1 − d
2
1
)
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or

|a3| 6 |a2|
2 +

|ϕ1 (c2 − d2)|

2
∣∣∣1 +

(
[3]p,q − 1

)
λ
∣∣∣ . (3.7)

Upon substituting the value of a2
2 from (3.5) and (3.6) into (3.7), it follows that

|a3| 6
4

[1 + (p+ q− 1) λ]2
+

2
|1 + (p2 + pq+ q2 − 1)λ|

and
|a3| 6

6
|1 + (p2 + pq+ q2 − 1)λ|

.

Finally, from (3.4), we deduce (by the Carathéodory Lemma) that

∣∣a3 − 2a2
2
∣∣ = ∣∣ϕ1d2 +ϕ2d

2
1

∣∣∣∣∣1 +
(
[3]p,q − 1

)
λ
∣∣∣ 6 4

|1 + (p2 + pq+ q2 − 1)λ|
.

This evidently completes the proof of the above theorem.

By letting p→ 1 in Theorem 3.1, we obtain the following consequence.

Corollary 3.2. Let f given by (1.1) be in the class DΣ(q; λ,ϕ) (λ > 1). If am = 0 for 2 6 m 6 n− 1, then

|a2| 6
2

1 + qλ
, |a3| 6

4
(1 + qλ)2 +

2
1 + (q2 + q)λ

, and
∣∣a3 − 2a2

2
∣∣ 6 4

1 + (q2 + q)λ
.

Corollary 3.3. Let f given by (1.1) be in the class Rσ(λ,ϕ) (λ > 1). If am = 0 for 2 6 m 6 n− 1, then

|a2| 6
2

1 + λ
(3.8)

and
|a3| 6

4
(1 + λ)2 +

2
1 + 2λ

.

Remark 3.4. The above estimate for |a2| shows that the inequality (3.8) is an improvement of the estimate
obtained by Kumar et al. ([19], Theorem 2.2).
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