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Abstract
In this paper, we study the initial-boundary value problem of Rosenau-KdV equation. A conservative two level nonlinear

Crank-Nicolson difference scheme, which has the theoretical accuracy O(τ2 + h4), is proposed. The scheme simulates two
conservative properties of the initial boundary value problem. Existence, uniqueness, and priori estimates of difference solution
are obtained. Furthermore, we analyze the convergence and unconditional stability of the scheme by the energy method.
Numerical experiments demonstrate the theoretical results. c©2017 All rights reserved.
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1. Introduction

Consider the following initial-boundary value problem of Rosenau-KdV equation,

ut + uxxxxt + ux + uux + uxxx = 0, x ∈ (xL, xR), t ∈ (0, T ], (1.1)

u(x, 0) = u0(x), x ∈ [xL, xR], (1.2)

u(xL, t) = u(xR, t) = 0, ux(xL, t) = ux(xR, t) = 0, uxx(xL, t) = uxx(xR, t) = 0, t ∈ [0, T ], (1.3)

where u0(x) is a known function.
In the study of the dynamics of dense discrete systems, Rosenau [22, 23] proposed the so-called

Rosenau equation
ut + uxxxxt + ux + uux = 0, x ∈ R, t > 0. (1.4)

From then on, there are many studies about the existence, the uniqueness and numerical methods for the
equation (1.4) (see [5, 6, 7, 14, 16, 18, 21]). As the further consideration of nonlinear wave, Zuo added
viscous term to Rosenau equation (1.4) and obtained Rosenau-KdV equation (1.1). Zuo [30] also studied
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the solitary wave solutions and periodic solutions of (1.1). Recently, some researchers [8, 9] discussed the
solitary solutions for the generalized Rosenau-KdV equation with usual power law on linearity. In [9], the
author also gave the two invariants for the generalized Rosenau-KdV equation. In [29], authors proposed
a conservative difference scheme for generalize Rosenau-Kdv equation. Meanwhile, they proved the two
conservative laws by discrete energy method and provided numerical experiments.

Since the solitary wave solution for (1.1) is (see [30])

u(x, t) =
(
−

35
24

+
35
312

√
313
)

sech4
[ 1

24

√
−26 + 2

√
313
(
x− (

1
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26

√
313)t

)]
,

the physical boundary condition of Rosenau-KdV equation (1.1) satisfies

u(x, t)→ 0, ux(x, t)→ 0, uxx(x, t)→ 0, (t > 0), |x |→ +∞. (1.5)

Hence, when −xL � 0, xR � 0, the homogeneous boundary condition (1.3) and the asymptotic condition
(1.5) are consistent. The initial boundary value problem (1.1)-(1.3) possesses the following conservative
properties (see [9, 12]),

Q(t) =

∫xR
xL

u(x, t)dx =
∫xR
xL

u0(x)dx = Q(0), (1.6)

E(t) = ‖u‖2
L2

+ ‖uxx‖2
L2

= E(0), (1.7)

where Q(0), E(0) are both constants only depending on initial data.
Many analytic techniques [10, 26] are pretty reasonable methods to understand some nonlinear dif-

ferential equation. But for models whose exact solutions hardly are found, the numerical method is an
alternative choice. Especially, high-accuracy numerical algorithms [2, 3, 4, 12, 25], which maintain the
conservative properties of the initial equation, could guarantee the validity of the numerical approxima-
tion. Because the high accuracy could guarantee the precision of the approximation, and the conservatives
make the approximate solution reflect the physical phenomena better. Many numerical experiments show
that conservative difference scheme can simulate the conservative law of initial problem well and it could
avoid the nonlinear blow-up (see [13, 20, 19, 24, 27]). Moreover, the conservative scheme is more suitable
for long time calculations for large time step. In [15], Li and Vu-Quoc said: ”· · · in some areas, the ability
to preserve some invariant properties of the original differential equation is a criterion to judge the suc-
cess of a numerical simulation“. Therefore, constructing a high-order conservative difference scheme is a
significant task.

In [12], although a second-order three-level linear conservative difference scheme for problem (1.1)-
(1.3) is proposed, it can not compute by itself. By the Richardson extrapolation, a new nonlinear Crank-
Nicolson difference scheme, which has the accuracy of O(τ2 + h4) without refined mesh is proposed in
this paper. Moreover, the scheme can compute by itself and simulate two conservative quantities of the
problem well. The existence, the uniqueness and prior estimates of the difference solution are obtained.
Convergence and unconditionally stability are proved.

The rest of this paper is organized as follows. In Section 2, we propose a new finite difference scheme
for the Rosenau-KdV equation. In Section 3, we prove the existence of the difference solutions by Browder
fixed point Theorem and prior estimates are obtained. In Section 4, convergence and unconditionally
stability are proved. Finally, some numerical tests are given in Section 5 to verify our theoretical analysis.

2. Finite difference scheme and conservative laws

Let h and τ be the uniform step size in the spatial and temporal direction respectively. Denote h =

xR−xL
J , xj = xL + jh, (j = −2,−1, 0, 1, 2, · · · , J− 1, J, J+ 1, J+ 2), tn = nτ, (n = 0, 1, · · · ,N, N = [

T

τ
]).

Throughout this paper, we denote C as a general positive constant, which may have different values in
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different occurrences. Let unj ≡ u(xj, tn) be the exact solution of u(x, t) at (xj, tn) and Unj ≈ u(xj, tn) be
the approximation solution of u(x, t) at (xj, tn), respectively. Let enj = unj −Unj and define

Z0
h = {U = (Uj) |U−2 = U−1 = U0 = UJ = UJ+1 = UJ+2 = 0, j = −2,−1, 0, 1, 2, · · · , J, J+ 1, J+ 2}

(Unj )x =
Unj+1 −U

n
j

h
, (Unj )x̄ =

Unj −Unj−1

h
, (Unj )x̂ =

Unj+1 −U
n
j−1

2h
,

(Unj )ẍ =
Unj+2 −U

n
j−2

4h
, (Unj )t =

Un+1
j −Unj
τ

, Un+
1
2

j =
Un+1
j + unj

2
,

〈Un,Vn〉 = h
J−1∑
j=1

Unj V
n
j , ‖Un‖2 = 〈Un,Un〉, ‖Un‖∞ = max

16j6J−1
|Unj |.

Consider the following finite difference scheme for problem (1.1)-(1.3)

(Unj )t +
5
3
(Unj )xxx̄x̄t −

2
3
(Unj )xx̄x̂x̂t +

4
3
(U
n+ 1

2
j )x̂ −

1
3
(U
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2
j )ẍ +

3
2
(U
n+ 1

2
j )xxx̂ −

1
2
(U
n+ 1

2
j )xxẍ

+
4
9

{
U
n+ 1

2
j (U

n+ 1
2

j )x̂ +
[
(U
n+ 1

2
j )2]x̂

}
−

1
9

{
U
n+ 1

2
j (U

n+ 1
2

j )ẍ +
[
(U
n+ 1

2
j )2]ẍ

}
= 0,

j = 1, 2, · · · , J− 1, N = 1, 2, · · · ,N− 1,

(2.1)

U0
j = u0(xj), j = 0, 1, 2, · · · , J, (2.2)

Un ∈ Z0
h, (Un0 )x̂ = (UnJ )x̂, (Un0 )xx = (UnJ )xx, n = 0, 1, 2, · · · ,N. (2.3)

By the homogeneous boundary condition (1.3) and the asymptotic physical boundary condition (1.5),
the discrete boundary condition (2.3) is reasonable. To analyze conveniently, define:

φ(U
n+ 1

2
j ) =

4
9

{
U
n+ 1

2
j (U

n+ 1
2

j )x̂ +
[
(U
n+ 1

2
j )2]x̂

}
,

κ(U
n+ 1

2
j ) =

1
9

{
U
n+ 1

2
j (U

n+ 1
2

j )ẍ +
[
(U
n+ 1

2
j )2]ẍ

}
.

Lemma 2.1. For any two discrete functions U,V ∈ Z0
h, we have

〈Ux,V〉 = −〈U,Vx〉,

and
〈V ,Uxx〉 = −〈Ux,Vx〉,

from summation by parts (see [28]). Thus,

〈U,Ux̂〉 = 0, 〈U,Uẍ〉 = 0, ‖Ux‖2 = ‖Ux‖2, 〈Uxx,U〉 = −〈Ux,Ux〉 = −‖Ux‖2. (2.4)

And if (U0)xx = (UJ)xx = 0, then
〈Uxxx̄x,U〉 = ‖Uxx‖2.

Lemma 2.2 (See [17]). For all U ∈ Z0
h, by Cauchy-Schwarz inequality and summation by parts (see [25]), we have

‖Uẍ‖2 6 ‖Ux̂‖2 6 ‖Ux‖2.

The following theorem shows how the difference scheme (2.1)-(2.3) simulates the conservative law
(1.6) and (1.7) numerically.
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Theorem 2.3. The difference scheme (2.1)-(2.3) is conservative for the following discrete energy,

Qn = h

J−1∑
j=1

Unj = Qn−1 = · · · = Q0, (2.5)

En = ‖Un‖2 +
5
3
‖Unxx‖2 −

2
3
‖Unxx̂‖2 = En−1 = · · · = E0, (2.6)

for n = 1, 2, · · · ,N.

Proof. Multiplying h in the two sides of (2.1) and summing up for j from 1 to J− 1, from boundary (2.3)
and Lemma 2.1, we obtain

h

J−1∑
j=1

(Unj )t = 0. (2.7)

From the definition of Qn, (2.5) is deduced from (2.7).
Taking the inner product of (2.1) with 2Un+

1
2 , from boundary (2.3) and Lemma 2.1, we get

‖Un‖2
t +

5
3
‖Unxx‖2

t −
2
3
‖Unxx̂‖2

t +
8
3
〈Un+

1
2

x̂ ,Un+
1
2 〉− 2

3
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1
2
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2
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2
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2 ),Un+
1
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2 ),Un+
1
2 〉 = 0. (2.8)
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1
2
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(
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2
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)2
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2
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= 0,

(2.10)

〈κ(Un+
1
2 ),Un+

1
2 〉 = 1

9

J−1∑
j=1

{
U
n+ 1

2
j (U

n+ 1
2

j )ẍ + [(U
n+ 1

2
j )2]ẍ

}
U
n+ 1

2
j

=
1
9
h
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(U
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2
j )2(U

n+ 1
2

j )ẍ +
1
9
h
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j

=
1
9
h
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2
j )2(U
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2

j )ẍ −
1
9
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2
j )2(U

n+ 1
2

j )ẍ
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(2.11)

Substituting (2.9), (2.10), (2.11) into (2.8), we get

(‖Un+1‖2 − ‖Un‖2) +
5
3
(‖Un+1

xx ‖2 − ‖Unxx‖2) −
2
3
(‖Un+1

xx̂ ‖
2 − ‖Unxx̂‖2) = 0. (2.12)

From the definition of En, we get (2.6) by deducing (2.12).
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3. Solvability and prior estimation

In order to prove the solvability of difference scheme, we present the following Browder fixed point
theorem [1].

Lemma 3.1 (Browder fixed point theorem). Let H be a finite dimensional inner product space. Suppose that
g : H → H is a continuous operator and there exists α > 0 such that 〈g(x), x〉 > 0 for all x ∈ H with ‖x‖ = α.
Then there exists x∗ ∈ H such that g(x∗) = 0 and ‖x∗‖ 6 α.

Theorem 3.2. There exists Un ∈ Z0
h(1 6 n 6 N) which satisfies difference scheme (2.1)-(2.3).

Proof. We use the mathematical induction to prove our theorem. From (2.2), the difference solution exists
for n = 0. Suppose that there exist U0,U1, · · · ,Un satisfy difference scheme (2.1)-(2.3) for n 6 N− 1. Next
we prove there exists Un+1 satisfying difference scheme (2.1)-(2.3).

Let g be an operator on Z0
h defined by

g(v) = 2v− 2Un +
10
3
vxxxx̄ −

10
3
Unxxxx −

4
3
vxxx̂x̂ +

4
3
Unxxx̂x̂ +

4
3
τvx̂ −

1
3
τvẍ

+
3
2
vxxx̂ −

1
2
τvxxẍ + τφ(v) − τκ(v). (3.1)

Taking the inner product of (3.1) with v, similar to (2.9), (2.10), (2.11), we have

〈vx̂, v〉 = 0, 〈vẍ, v〉 = 0, 〈vxxx̂, v〉 = 0, 〈vxxẍ, v〉 = 0, 〈φ(v), v〉 = 0, 〈κ(v), v〉 = 0,

and
〈g(v), v〉 = 2‖v‖2 − 2〈Un, v〉+ 10

3
‖vxx‖2 −

10
3
〈Unxx, vxx〉−

4
3
‖vxx̂‖2 +

4
3
〈Unxx̂, vxx̂〉. (3.2)

By Lemma 2.1 and Lemma 2.2, we obtain easily that

〈Unxx̂, vxx̂〉 =
1
4
〈Unxx, vxx〉+

1
4
〈Unxx, vxx̄〉+

1
4
〈Unxx̄, vxx〉+

1
4
〈Unxx, vxx̄〉, (3.3)

‖Unxx‖2 = ‖Unxx‖2, ‖vxx̄‖2 = ‖vxx‖2, ‖vnxx̂‖2 6 ‖vxx‖2. (3.4)

Substituting (3.3) into (3.2), by Cauchy-Schwarz inequality and (3.4), we have

〈g(v), v〉 > 2‖v‖2 − 2〈Un, v〉+ 2‖vxx‖2 − 3〈Unxx, vxx〉+
1
3
〈Unxx, vxx̄〉+

1
3
〈Unxx̄, vxx〉+

1
3
〈Unxx, vxx̄〉

> 2‖v‖2 − (‖Un‖2 + ‖v‖2) + 2‖vxx‖2 −
3
2
(‖Unxx‖2 + ‖vxx‖2) −

1
2
(‖Unxx‖2 + ‖vxx‖2)

> ‖v‖2 − (‖Un‖+ 2‖Unxx‖2).

Therefore, for any v ∈ Z0
h, if ‖v‖2 = ‖Un‖2 + 2‖Unxx‖2 + 1, then 〈g(v), v〉 > 0. From Lemma 3.1, there

exists v∗ ∈ Z0
h such that g(v∗) = 0. Let Un+1 = 2v∗ −Un, and Un+1 is the solution of difference scheme

(2.1)-(2.3).

Next, we present some prior estimates for the solutions of difference scheme (2.1)-(2.3).

Theorem 3.3. Suppose u0 ∈ H2
0[xL, xR], then the solutions of difference scheme (2.1)-(2.3) satisfy:

‖Un‖ 6 C, ‖Unx ‖ 6 C, ‖Unxx‖ 6 C, ‖Un‖∞ 6 C, ‖Unx ‖∞ 6 C, (n = 1, 2, · · · ,N).

Proof. It follows from Lemma 2.2 that
‖Unxx̂‖2 6 ‖Unxx‖2.

By Theorem 2.3, we have

‖Un‖2 + ‖Unxx‖2 6 En = ‖Un‖2 +
5
3
‖Unxx‖2 −

2
3
‖Un‖2 = E0 = C,

that is,
‖Un‖ 6 C, ‖Unxx‖ 6 C.
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From (2.4) and Cauchy-Schwarz inequality, we get

‖Unx ‖2 6 ‖Un‖.‖Unxx‖ 6
1
2
(‖Un‖2 + ‖Unxx‖2), (3.5)

that is,
‖Unx ‖ 6 C.

Finally, by discrete Sobolev inequality [28], we have ‖Un‖∞ 6 C, ‖Unx ‖∞ 6 C.

4. Convergence, stability and uniqueness of solution

The truncation error of difference scheme (2.1)-(2.3) is

rnj = (unj )t +
5
3
(unj )xxxxt −

2
3
(unj )xxx̂x̂t +

4
3
(u
n+ 1

2
j )x̂ −

1
3
(u
n+ 1

2
j )ẍ +

3
2
(u
n+ 1

2
j )xxx̂

−
1
2
(u
n+ 1

2
j )xxẍ +φ(u

n+ 1
2

j ) − κ(u
n+ 1

2
j ), j = 1, 2, · · · , J− 1, n = 1, 2, · · · ,N− 1, (4.1)

u0
j = u0(x), j = 1, 2, · · · , J− 1, (4.2)

un ∈ Z0
h, (un0 )x̂ = (unJ )x̂, (un0 )xx = (unJ )xx, n = 0, 1, 2, · · · ,N. (4.3)

By Taylor expansion, as h, τ→ 0,
|rnj | = O(τ

2 + h4). (4.4)

Lemma 4.1 (See [12]). Suppose u0 ∈ H2
0[xL, xR], then the solution of problem (1.1)-(1.3) satisfies:

‖u‖L2 6 C, ‖ux‖L2 6 C, ‖uxx‖L2 6 C, ‖u‖L∞ 6 C, ‖ux‖L∞ 6 C.

Theorem 4.2. Suppose u0 ∈ H2
0[xL, xR], then the solution Un of difference scheme (2.1)-(2.3) converges to the

solution of problem (1.1)-(1.3) in the sense of norm ‖ · ‖∞, and the convergent rate is O(τ2 + h4).

Proof. Subtracting (4.1), (4.2), (4.3) from (2.1)-(2.3), we have

rnj = (enj )t +
5
3
(enj )xxxxt −

2
3
(enj )xxx̂x̂t +

4
3
(e
n+ 1

2
j )x̂ −

1
3
(e
n+ 1

2
j )ẍ +

3
2
(e
n+ 1

2
j )xxx̂ −

1
2
(e
n+ 1

2
j )xxẍ

+φ(u
n+ 1

2
j ) −φ(U

n+ 1
2

j ) − κ(u
n+ 1

2
j ) + κ(U

n+ 1
2

j ), j = 1, 2, · · · , J− 1, n = 1, 2, · · · ,N− 1,
(4.5)

e0
j = 0, j = 1, 2, · · · , J− 1, (4.6)

en ∈ Z0
h, (en0 )x̂ = (enJ )x̂, (en0 )xx = (enJ )xx, n = 0, 1, 2, · · · ,N. (4.7)

Taking the inner product of (4.5) with 2en+
1
2 , from (4.7) and Lemma 2.1, we get

〈rn, 2en+
1
2 〉 = ‖en‖2

t +
5
3
‖enxx‖2

t −
2
3
‖enxx̂‖2

t +
8
3
〈en+

1
2

x̂ , en+
1
2 〉− 2

3
〈en+

1
2

ẍ , en+
1
2 〉

+ 3〈en+
1
2

xxx̂ ), en+
1
2 〉− 〈en+

1
2

xxẍ , en+
1
2 〉+ 2〈φ(un+

1
2 ) −φ(Un+

1
2 ), en+

1
2 〉

− 2〈κ(un+
1
2 ) − κ(Un+

1
2 ), en+

1
2 〉.

(4.8)

Similar to (2.9), we have

〈en+
1
2

x̂ , en+
1
2 〉 = 0, 〈en+

1
2

ẍ , en+
1
2 〉 = 0, 〈en+

1
2

xx̄x̂ , en+
1
2 〉 = 0, 〈en+

1
2

xxẍ , en+
1
2 〉 = 0. (4.9)
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From Theorem 3.3, Lemma 4.1, Lemma 2.2 and Cauchy-Schwarz inequality, we obtain

〈φ(un+
1
2 )−φ(Un+

1
2 ), en+

1
2 〉

=
4h
9

J−1∑
j=1

[u
n+ 1

2
j (u

n+ 1
2

j )x̂ −U
n+ 1

2
j (U

n+ 1
2

j )x̂]e
n+ 1

2
j +

4h
9

J−1∑
j=1

[(u
n+ 1

2
j )2 − (U

n+ 1
2

j )2]x̂e
n+ 1

2
j

=
4h
9

J−1∑
j=1

[u
n+ 1

2
j (e

n+ 1
2

j )x̂ + e
n+ 1

2
j (U

n+ 1
2

j )x̂]e
n+ 1

2
j −

4h
9

J−1∑
j=1

[e
n+ 1

2
j (u

n+ 1
2

j +U
n+ 1

2
j )](e

n+ 1
2

j )x̂

6 C(‖en+1‖2 + ‖en‖2 + ‖en+1
x̂ ‖2 + ‖enx̂ ‖2)

6 C(‖en+1‖2 + ‖en‖2 + ‖en+1
x ‖2 + ‖enx ‖2),

(4.10)

and

〈κ(un+
1
2 )+κ(Un+

1
2 ), en+

1
2 〉

=
h

9

J−1∑
j=1

[u
n+ 1

2
j (u

n+ 1
2

j )ẍ −U
n+ 1

2
j (U

n+ 1
2

j )ẍ]e
n+ 1

2
j +

h

9

J−1∑
j=1

[(u
n+ 1

2
j )2 − (U

n+ 1
2

j )2]ẍe
n+ 1

2
j

=
h

9

J−1∑
j=1

[u
n+ 1

2
j (e

n+ 1
2

j )ẍ + e
n+ 1

2
j (U

n+ 1
2

j )ẍ]e
n+ 1

2
j −

h

9

J−1∑
j=1

[e
n+ 1

2
j (u

n+ 1
2

j +U
n+ 1

2
j )](e

n+ 1
2

j )ẍ

6 C(‖en+1‖2 + ‖en‖2 + ‖en+1
ẍ ‖2 + ‖enẍ ‖2)

6 C(‖en+1‖2 + ‖en‖2 + ‖en+1
x ‖2 + ‖enx ‖2),

(4.11)

〈rn, 2en+
1
2 〉 = 〈rn, en+1 + en〉 6 ‖rn‖2 + ‖en+1‖2 + ‖en‖2. (4.12)

Substituting (4.9), (4.10), (4.11), (4.12) into (4.8), we have

‖en‖2
t +

5
3
‖enxx‖2

t −
2
3
‖enxx̂‖2

t 6 ‖rn‖2 +C(‖en+1‖2 + ‖en‖2 + ‖en+1
x ‖2 + ‖enx ‖2). (4.13)

Similar to (3.5), we have

‖enx ‖2 6
1
2
(‖en‖2 + ‖enxx‖2), ‖en+1

x ‖2 6
1
2
(‖en+1‖2 + ‖en+1

xx ‖2), (4.14)

and (4.13) can be rewritten as

‖en‖2
t +

5
3
‖enxx‖2

t −
2
3
‖enxx̂‖2

t 6 ‖rn‖2 +C(‖en+1‖2 + ‖en‖2 + ‖en+1
xx ‖2 + ‖enxx‖2). (4.15)

Letting Bn = ‖en‖2 +
5
3
‖enxx‖2 −

2
3
‖enxx̂‖2, and summing up (4.15) from 0 to n− 1:

Bn 6 B0 +Cτ

n−1∑
l=0

‖rl‖2 +Cτ

n∑
l=0

(‖el‖2 + ‖elxx‖2). (4.16)

By (4.4) and (4.6), we get

τ

n−1∑
l=0

‖rl‖2 6 nτ max
06l6n−1

‖rl‖2 6 T ·O(τ2 + h4)2,

B0 = O(τ2 + h4)2.
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Similar to (3.4), we have
‖enxx̂‖ 6 ‖enxx‖,

then it follows from (4.16) that

‖en‖2 + ‖enxx‖2 6 Bn 6 O(τ2 + h4)2 +Cτ

n∑
l=0

(‖el‖2 + ‖elxx‖2).

By discrete Gronwall inequality [28], we obtain

‖en‖ 6 O(τ2 + h4), ‖enxx‖ 6 O(τ2 + h4).

From (4.14), we have
‖enx ‖ 6 O(τ2 + h4).

Finally, by discrete Sobolev inequality [28], we get:

‖en‖∞ 6 O(τ2 + h4).

According to Theorem 4.2, we have the following theorems.

Theorem 4.3. Under the condition of Theorem 4.2, the solution Un of difference scheme (2.1)-(2.3) is stable in the
sense of norm ‖ · ‖∞.

Theorem 4.4. The solution of difference scheme (2.1)-(2.3) is unique.

5. Numerical simulations

The scheme (2.1)-(2.3) is a nonlinear system of equations which can be solved with Newton iteration.
In our experiments, we take xL = −70, xR = 100, T = 40 and

u0(x) =
(
−

35
24

+
35
312

√
313
)

sech4
( 1

24

√
−26 + 2

√
313x

)
.

For some different values of τ and h, we list errors at several different time in Table 1 and verify the
accuracy of the difference scheme in Table 2 by using the method of [11]. The numerical simulation of
two conservative quantities (1.6) and (1.7) is listed in Table 3.

Table 1: The errors estimates of numerical solution with various h and τ.

τ = 0.4,h = 0.2 τ = h = 0.1 τ = 0.025,h = 0.05
‖en‖ ‖en‖∞ ‖en‖ ‖en‖∞ ‖en‖ ‖en‖∞

t = 10 5.70350e-3 2.24638e-3 3.58600e-4 1.41368e-4 2.24209e-5 8.83941e-6
t = 20 1.04463e-2 3.92536e-3 6.57457e-4 2.47330e-4 4.11090e-5 1.54677e-5
t = 30 1.44616e-2 5.27150e-3 9.10990e-4 3.32470e-4 5.69649e-5 2.07909e-5
t = 40 1.80102e-2 6.42816e-3 1.13536e-3 4.05860e-4 7.09986e-5 2.53821e-5
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Table 2: The verification of the convergence rate O(τ2 + h4).

‖en(h, τ)‖
/
‖e4n

(
h
2 , τ4

)
‖ ‖en(h, τ)‖∞/‖e4n

(
h
2 , τ4

)
‖∞

τ = 0.4 τ = 0.1 τ = 0.025 τ = 0.4 τ = 0.1 τ = 0.025
h = 0.2 h = 0.1 h = 0.05 h = 0.2 h = 0.1 h = 0.05

t = 10 – 15.9049 15.9939 – 15.8902 15.9929
t = 20 – 15.8890 15.9930 – 15.8709 15.9900
t = 30 – 15.8746 15.9921 – 15.8555 15.9911
t = 40 – 15.8629 15.9913 – 15.8383 15.9899

Table 3: Numerical simulations on the conservation invariant Qn and En.

τ = 0.1,h = 0.1 τ = 0.025,h = 0.05
Qn En Qn En

t = 0 5.498173680817 1.984390174779 5.498173680817 1.989782937260
t = 10 5.498173679973 1.989782938890 5.498173679780 1.989782939868
t = 20 5.498173679905 1.989782938887 5.498173679065 1.989782939212
t = 30 5.498173660051 1.989782938891 5.498173676733 1.989782938309
t = 40 5.498174221000 1.989782938904 5.498173712324 1.989782938511

From these computational results, it shows that our proposed algorithm is efficient and reliable.
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