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Abstract
In this paper, we study a split common fixed-point problem for demicontractive mappings and quasi-nonexpansive map-

pings, and propose some cyclic iterative schemes. Moreover we prove some strong convergence theorems. The results obtained
in this paper generalize and improve the recent ones announced by many others. c©2017 All rights reserved.
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1. Introduction

Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and H2, respectively, and
let A : H1 → H2 be a bounded linear operator. The split feasibility problem (SFP) originally introduced in
Censor and Elfving [1] is to find a point x∗ ∈ C with the property:

x∗ ∈ C and Ax∗ ∈ Q. (1.1)

It serves as a model for many inverse problems where constraints are imposed on the solutions in the
domain of a linear operator as well as in these operator’s ranges. There are a number of significant
applications of the SFP in intensity-modulated radiation therapy, signal processing, image reconstruction
and so on. Recently the SFP has been widely studied by many authors (see, e.g., [3, 12, 13, 14]).

In the case where C and Q in the SFP (1.1) are the intersections of finitely many fixed-point sets of
nonlinear operators, the problem (1.1) is called by Censor and Segal [2] the split common fixed-point
problem (SCFP). More precisely, the SCFP requires to seek an element x∗ ∈ H1 satisfying

x∗ ∈ ∩pi=1Fix(Ui) and Ax∗ ∈ ∩sj=1Fix(Tj), (1.2)
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where p, s > 1 are integers, Fix(Ui) and Fix(Tj) denote the fixed point sets of two classes of nonlinear
operators Ui : H1 → H1 (i = 1, 2, · · · ,p), Tj : H2 → H2 (j = 1, 2, · · · , s). In particular, if p = s = 1, the
problem (1.2) is reduced to find a point x∗ with the property:

x∗ ∈ Fix(U) and Ax∗ ∈ Fix(T), (1.3)

which is usually called the two-set SCFP. To solve the two-set SCFP (1.3), Censor and Segal [2] proposed
the following iterative method: for any initial guess x1 ∈ H1, define {xn} recursively by

xn+1 = U(xn − λA∗(I− T)Axn),

where U and T are directed operators. The further generalization of this algorithm was studied by
Moudafi [8] for demicontractive operators. Under suitable conditions he proved that the sequence {xn}

converges weakly to a point of the two-set SCFP (1.3).
Recently, Wang and Xu [10] proposed the following cyclic algorithm:

xn+1 = U[n](xn − λA∗(I− T[n])Axn),

where Ui and Ti are directed operators for i = 1, 2, · · · ,p, [n] = n (mod p). They proved that the sequence
{xn} generated by this algorithm converges weakly to a solution of the problem (1.2) if p = s.

Since the existing algorithm for the SCFP (1.2) has only weak convergence in infinite-dimensional
spaces (see [8, 10]), Cui et al. [3] proposed a new iterative scheme as follows:

xn+1 = (1 −βn)xn +βnU[n][(1 −αn)(xn − λnA
∗(I− T[n])Axn)],

where Ui and Ti are directed operators for i = 1, 2, · · · ,p. They proved that the sequence {xn} converges
strongly to a solution of the problem (1.2) if p = s.

Motivated by the above works, we propose two algorithms for solving the SCFP (1.2) in the more
general case of mappings which are demicontractive and quasi-nonexpansive, including nonexpansive
mappings and directed operators in infinite-dimensional spaces and establish some strong convergence
theorems.

2. Preliminaries

Throughout this paper, let N and R be the set of positive integers and real numbers, respectively. Let
H be a real Hilbert space with inner product 〈·, ·〉, and norm ‖ · ‖. When {xn} is a sequence in H, we denote
the strong convergence of {xn} to x ∈ H by xn → x and the weak convergence by xn ⇀ x. Let T be a
mapping of C into H. We denote by Fix(T) the set of fixed points of T .

In order to facilitate our investigation in this paper, we recall some definitions as follows.

Definition 2.1. A mapping T : H→ H is said to be

(i) nonexpansive if
‖Tx− Ty‖ 6 ‖x− y‖, ∀ x,y ∈ H;

(ii) quasi-nonexpansive if
‖Tx− q‖ 6 ‖x− q‖, ∀ (x,q) ∈ H× Fix(T);

(iii) firmly nonexpansive if
‖Tx− Ty‖2 6 〈x− y, Tx− Ty〉, ∀ x,y ∈ H;

(iv) directed if
‖Tx− q‖2 6 ‖x− q‖2 − ‖x− Tx‖2, ∀ (x,q) ∈ H× Fix(T);
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(v) µ-demicontractive if there exists a constant µ ∈ (−∞, 1) such that

‖Tx− q‖2 6 ‖x− q‖2 + µ‖x− Tx‖2, ∀ (x,q) ∈ H× Fix(T),

which is equivalent to

〈x− Tx, x− q〉 > 1 − µ

2
‖x− Tx‖2.

It is worth noting that the class of demicontractive mappings contains important mappings such as
quasi-nonexpansive mappings and directed operators.

Remark 2.2. Notice that 0-demicontractive is exactly quasi-nonexpansive. In particular, we say that it is
quasi-strictly pseudo-contractive [7], if 0 6 µ < 1. Moreover, if µ 6 0, every µ-demicontractive mapping
becomes quasi-nonexpansive. So, it seems to be sufficient to only take µ ∈ (0, 1) in (v) of Definition
2.1 in Hilbert spaces. However, as seen in (iv) of Definition 2.1, every directed operator is obvious (-1)-
demicontractive.

Recall that the metric (or nearest point) projection from H onto C is the mapping P : H → C which
assigns to each point x ∈ H the unique point PCx ∈ C satisfying the property

‖x− PCx‖ = inf
y∈C
‖x− y‖.

It is well-known that PCx is characterized by the inequality

〈x− PCx,y− PCx〉 6 0, ∀ y ∈ C. (2.1)

Let us also recall that I− T is said to be demiclosed at origin, if for any sequence {xk} ⊂ H and x∗ ∈ H,
we have

xk ⇀ x∗

(I− T)xk → 0

}
⇒ x∗ = Tx∗.

As a special case of the demicloseness principle on uniformly convex Banach spaces given by [4], we
know that if C is a nonempty closed convex subset of a Hilbert space H, and T : C→ H is a nonexpansive
mapping. Then the mapping I− T is demiclosed on C. Now the following question is naturally raised:
If T : C → H is quasi-nonexpansive, is I− T still demiclosed on C? The answer is negative even at 0 as
follows.

Example 2.3 (see [9, Example 2.11]). The mapping T : [0, 1]→ [0, 1] is defined by

Tx =

{
x
5 , x ∈ [0, 1

2 ],
x sinπx, x ∈ ( 1

2 , 1].

Then T is a quasi-nonexpansive mapping, but I− T is not demiclosed at 0.

Remark 2.4. Notice that a demicontractive mapping could enjoy the demiclosedness property at origin,
for example, let H = `2 and let T : C → H be defined by Tx = −kx, for arbitrary x ∈ `2, where k > 1
(see [9, Example 2.5]). Then T is not quasi-nonexpansive but µ-demicontactive, where µ = k−1

k+1 . However,
I− T is obviously demiclosed at 0. For, whenever {xn} is any sequence in `2 such that xn ⇀ x ∈ `2 and
‖xn − Txn‖ → 0, we readily see that x = 0 ∈ F(T).

In what follows, we give some lemmas needed for the convergence analysis of our algorithms. Let H1
and H2 be two real Hilbert spaces.

Lemma 2.5 ([11]). Assume that {an} is a sequence of non-negative real numbers such that

an+1 6 (1 − γn)an + γnbn,

where {γn} is a sequence in (0, 1) and {bn} is a sequence in R such that
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(i)
∑∞
n=1 γn =∞;

(ii) lim supn→∞ bn 6 0 or Σ∞n=1γn|bn| <∞.

Then limn→∞ an = 0.

Lemma 2.6 ([10]). Assume that A : H1 → H2 is a bounded linear operator and T : H2 → H2 is a demicontractive
operator. Let Vλ = I− λA∗(I− T)A with λ > 0. Then

Fix(Vλ) = A
−1(Fix(T)),

whenever A−1(Fix(T)) = {x ∈ H1 : Ax ∈ Fix(T)}.

Lemma 2.7 ([8]). Assume that A : H1 → H2 is a bounded linear operator and T : H2 → H2 is a µ-demicontractive
operator. Let Vλ = I− λA∗(I− T)A, λ ∈ (0, (1 − µ)/ρ) with ρ being the spectral radius of the operator A∗A. Then

(i)
‖Vλx− z‖2 6 ‖x− z‖2 − λ(1 − µ− ρλ)‖(I− T)Ax‖2, ∀ z ∈ A−1(Fix(T)),

consequently,

(ii)
‖Vλx− z‖ 6 ‖x− z‖, ∀ z ∈ A−1(Fix(T)).

Lemma 2.8 ([5]). For any x,y ∈ H and λ ∈ R, the following hold:

(a) ‖λx+ (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x− y‖2;

(b) ‖x+ y‖2 6 ‖x‖2 + 2〈y, x+ y〉.

Lemma 2.9 ([7, Proposition 2.1]). Assume C is a closed convex subset of a Hilbert space H. Let T : C → C be
a self-mapping of C. If T is a µ-demicontractive mapping (which is also called µ-quasi-strict pseudo-contraction in
[7]), then the fixed point set F(T) is closed and convex.

3. Main results

In this section, let H1 and H2 be two real Hilbert spaces. We consider the SCFP (1.2) with p = s to find
an element x∗ ∈ H1 satisfying

x∗ ∈ ∩pi=1Fix(Ui) and Ax∗ ∈ ∩pi=1Fix(Ti), (3.1)

where p is a positive integer. Denote the solution set of the SCFP (3.1) by Ω, i.e.,

Ω = (∩pi=1Fix(Ui))
⋂
A−1(∩pi=1Fix(Ti)).

Note that the problem (3.1) is a special case of the problem (1.2). However, this is not restrictive.
Because following an idea in [10], one can easily extend the results to the general case.

For fixed positive integer p and each n > 1, the p-mod function [n] is defined by

[n] =

{
p, if r = 0,
r, if 0 < r < p,

whenever n = kp+ r for some k > 0.

Lemma 3.1. Let {uk} be a bounded sequence of a Hilbert space H. Let p be a positive integer and I = {1, 2, · · · ,p}.
If limk→∞ ‖uk+1 − uk‖ = 0 and x∗ ∈ ωw(uk), then for any i ∈ I, there exists a subsequence {ukm} of {uk} such
that [km] = i and ukm ⇀ x∗.
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Proof. Obviously, ωw(uk) 6= ∅ from boundedness of {uk}. Now for any i ∈ I, since limk→∞ ‖uk+1 −uk‖ =
0, we have

‖uk+i − uk‖ 6 ‖uk+i − uk+i−1‖+ ‖uk+i−1 − uk+i−2‖+ · · ·+ ‖uk+1 − uk‖ → 0.

It follows from x∗ ∈ ωw(uk) that there exists a subsequence {utm} of {uk} such that utm ⇀ x∗. So
due to ‖uk+i − uk‖ → 0 we obtain utm+i ⇀ x∗ for all i ∈ I. For any i ∈ I, there exists t1 + i1 ∈
{t1 + 1, t1 + 2, · · · , t1 + p} such that [t1 + i1] = i. We choose k1 = t1 + i1. And there exists t2 + i2 ∈
{t2 + 1, t2 + 2, · · · , t2 + p} such that [t2 + i2] = i. If t2 + i2 > k1, we choose k2 = t2 + i2; if t2 + i2 6 k1, we
skip it and go to the t3. Repeating this process continuously, we can choose a subsequence {km} such that
[km] = i for all m > 1 and ukm ⇀ x∗ too.

Theorem 3.2. Let Ui be quasi-nonexpansive and Ti be µi-demicontractive such that I−Ui and I− Ti are demi-
closed at origin for every i = 1, 2, · · · ,p. Let A : H1 → H2 be a bounded linear operator. Assume that Ω 6= ∅ and ρ
is as in Lemma 2.7. For any x1 ∈ H1, define the sequence {xn} by

xn+1 = (1 −βn)xn +βnUn[(1 −αn)(xn − λnA
∗(I− Tn)Axn)], (3.2)

where Un = U[n], Tn = T[n] and {αn} ⊂ (0, 1), {βn} ⊂ [0, 1], {λn} ⊂ [0,+∞) satisfying the following conditions:

(i) 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1;

(ii) limn→∞ αn = 0,
∑∞
n=1 αn =∞;

(iii) 0 < lim infn→∞ λn 6 lim supn→∞ λn < 1 − µ

ρ
, µ = max

16i6p
{µi}.

Then the sequence {xn} converges strongly to PΩ(0).

Proof. From Lemma 2.9, for every i ∈ {1, 2, · · · ,p}, we notice that Fix(Ti) and Fix(Ui) are closed and
convex. Thus

⋂p
i=1 Fix(Ti) and

⋂p
i=1 F(Ui) are also closed and convex. Since A is bounded and linear,

A−1(∩pi=1Fix(Ti)) is closed and convex. Therefore, Ω is closed and convex.
Let Wn = I− λnA

∗(I− Tn)A, yn = (1 − αn)Wnxn. Let z = PΩ(0). Noting that for every i(1 6 i 6
p), µi 6 µ, so from Lemma 2.7 and the condition (iii) we have

‖Wnxn − z‖2 6 ‖xn − z‖2 − λn(1 − µ− λnρ)‖(I− Tn)Axn‖2 (3.3)

6 ‖xn − z‖2. (3.4)

It follows from (3.4) that

‖yn − z‖ = ‖(1 −αn)(Wnxn − z) −αnz‖
6 (1 −αn)‖Wnxn − z‖+αn‖z‖
6 (1 −αn)‖xn − z‖+αn‖z‖,

then

‖xn+1 − z‖ 6 (1 −βn)‖xn − z‖+βn‖Unyn − z‖
6 (1 −βn)‖xn − z‖+βn‖yn − z‖
6 (1 −βn)‖xn − z‖+βn[(1 −αn)‖xn − z‖+αn‖z‖]
= (1 −αnβn)‖xn − z‖+αnβn‖z‖
6 max{‖x1 − z‖, ‖z‖}.
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Thus {xn} is bounded and so are {yn} and {Wnxn}. From (3.3), the quasi-nonexpansivity of Un and
Lemma 2.8 (b), we obtain

‖Unyn − z‖2 6 ‖yn − z‖2

= ‖(1 −αn)(Wnxn − z) −αnz‖2

6 (1 −αn)‖Wnxn − z‖2 + 2αn〈z, z− yn〉
6 (1 −αn)‖xn − z‖2 + 2αn〈z, z− yn〉
− λn(1 −αn)(1 − µ− λnρ)‖(I− Tn)Axn‖2. (3.5)

It follows from (3.2), (3.5) and Lemma 2.8 (a) that

‖xn+1 − z‖2 = ‖(1 −βn)(xn − z) +βn(Unyn − z)‖2

= (1 −βn)‖xn − z‖2 +βn‖Unyn − z)‖2 −βn(1 −βn)‖Unyn − xn‖2

6 (1 −βn)‖xn − z‖2 −βn(1 −βn)‖Unyn − xn‖2

+βn[(1 −αn)‖xn − z‖2 + 2αn〈z, z− yn〉
− λn(1 −αn)(1 − µ− λnρ)‖(I− Tn)Axn‖2]

= (1 −αnβn)‖xn − z‖2 + 2αnβn〈z, z− yn〉
−βn(1 −βn)‖Unyn − xn‖2 − λnβn(1 −αn)(1 − µ− λnρ)‖(I− Tn)Axn‖2,

i.e., we have the following inequality

sn+1 6 (1 −αnβn)sn + 2αnβn〈z, z− yn〉− cn (3.6)
6 (1 −αnβn)sn + 2αnβn〈z, z− yn〉, (3.7)

where sn = ‖xn − z‖2 and

cn = λnβn(1 −αn)(1 − µ− λnρ)‖(I− Tn)Axn‖2 +βn(1 −βn)‖Unyn − xn‖2.

It follows from (3.6) that
cn 6Mαnβn + sn − sn+1, (3.8)

where M = 2 supn>1{‖z‖ · ‖z− yn‖}.
Finally we will prove sn → 0. To see this, let us consider two possible cases on such a sequence and

employ an idea developed by Mainge [6].

Case I. Assume that there exists an integerN1 such that sn > sn+1 for all n > N1. In this case {sn} must be
convergent. So due to (3.8) and the conditions (i)-(iii), we have both {‖(I− Tn)Axn‖} and {‖Unyn − xn‖}
converge to zero. Then we obtain

‖xn+1 − xn‖ = βn‖Unyn − xn‖ → 0, (3.9)

and

‖yn − xn‖ = ‖(1 −αn)(xn − λnA
∗(I− Tn)Axn) − xn‖

= ‖(1 −αn)λnA
∗(I− Tn)Axn +αnxn‖

6 (1 −αn)λn‖A∗‖ · ‖(I− Tn)Axn‖+αn‖xn‖ → 0. (3.10)

Therefore

‖Unyn − yn‖ 6 ‖Unyn − xn‖+ ‖xn − yn‖ → 0,
‖yn+1 − yn‖ 6 ‖yn+1 − xn+1‖+ ‖xn+1 − xn‖+ ‖xn − yn‖ → 0.
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Take a subsequence {ynk} of {yn} such that

lim sup
n→∞ 〈z, z− yn〉 = lim

k→∞〈z, z− ynk〉.
Without loss of generality, we assume that {ynk} converges weakly to an element y∗, then by (3.10) we
have y∗ ∈ ωw(xn). Let an index i ∈ {1, 2, · · · ,p} be fixed. Noting that the pool of indices is finite and (3.9),
by Lemma 3.1 we can find a subsequence {xmk

} ⊂ {xn} such that xmk
⇀ y∗ and [mk] = i for all k > 1. So

from (3.10) we obtain ymk
⇀ y∗. Since

‖Uiymk
− ymk

‖ = ‖Umk
ymk

− ymk
‖ → 0,

and Ui − I is demiclosed at origin, we obtain y∗ ∈ Fix(Ui). It follows from (3.10) and the weak continuity
of A that Axmk

⇀ Ay∗. Furthermore, since I− Ti is demiclosed at origin and ‖(I− Ti)Axmk
‖ → 0, we

have Ay∗ ∈ Fix(Ti). Since the index i is arbitrary, we have y∗ ∈ Ω. Thus by (2.1) and z = PΩ(0), we obtain

lim sup
n→∞ 〈z, z− yn〉 = 〈z, z− y∗〉 6 0. (3.11)

Now since all the hypotheses of Lemma 2.5 are fulfilled, we conclude that sn → 0.

Case II. Assume that there exists a subsequence {smk
} of {sn} such that smk

< smk+1 for all k > 1.
Employing [6, Lemma 3.1] in Maingé, we can take a nondecreasing sequence {τ(n)}n>n1 of integers
satisfying the following properties:

sτ(n) 6 sτ(n)+1 and sn 6 sτ(n)+1,

for all n > n1. Then from (3.8) and αn → 0 we have

cτ(n) 6 sτ(n) − sτ(n)+1 +ατ(n)βτ(n)M 6 ατ(n)βτ(n)M→ 0.

So it follows from the conditions (i)-(iii) that both {‖(I− Tτ(n))Axτ(n)‖} and {‖Uτ(n)yτ(n) − xτ(n)‖} con-
verge to zero. Being similar to the proof of (3.9) and (3.11) in Case I, we have

lim
n→∞ ‖xτ(n) − xτ(n)+1‖ = 0,

lim sup
n→∞ 〈z, z− yτ(n)〉 6 0. (3.12)

From (3.7) and sτ(n) 6 sτ(n)+1, we have

sτ(n) 6 2〈z, z− yτ(n)〉.

Hence from (3.12) we have lim supn→∞ sτ(n) 6 0, which implies that sτ(n) → 0. Furthermore,

sτ(n)+1 6 |sτ(n)+1 − sτ(n)|+ sτ(n)

6 ‖xτ(n)+1 − xτ(n)‖(‖xτ(n)+1 − z‖+ ‖xτ(n) − z‖) + sτ(n) → 0.

Therefore, it follows from sn 6 sτ(n)+1 that sn → 0.

Remark 3.3. Compared with [3, Theorem 1], Theorem 3.2 relaxes the conditions on {Ti} from directed map-
pings to demicontractive mappings and {Un} from directed mappings to quasi-nonexpansive mappings.

Theorem 3.4. Let Ui be quasi-nonexpansive and Ti be µi-demicontractive such that I−Ui and I− Ti are demi-
closed at origin for every i = 1, 2, · · · ,p. Let A : H1 → H2 be a bounded linear operator. Assume that Ω 6= ∅ and ρ
is as in Lemma 2.7. For any x1 ∈ H1, define the sequence {xn} by

xn+1 = (1 −βn)Wnxn +βnUn[(1 −αn)Wnxn], (3.13)

where Un = U[n], Tn = T[n], Wnxn = xn − λnA
∗(I − Tn)Axn and {αn} ⊂ (0, 1), {βn} ⊂ [0, 1], {λn} ⊂

[0,+∞) satisfying the following conditions:
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(i) 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1;

(ii) limn→∞ αn = 0,
∑∞
n=1 αn =∞;

(iii) 0 < lim infn→∞ λn 6 lim supn→∞ λn < 1 − µ

ρ
, µ = max

16i6p
{µi}.

Then the sequence {xn} converges strongly to PΩ(0).

Proof. Let yn = (1 −αn)Wnxn and z = PΩ(0). It follows from (3.4) and (3.13) that

‖xn+1 − z‖ 6 (1 −βn)‖Wnxn − z‖+βn‖Un[(1 −αn)Wnxn] − z‖
6 (1 −βn)‖Wnxn − z‖+βn‖(1 −αn)Wnxn − z‖
6 (1 −βn)‖Wnxn − z‖+βn(1 −αn)‖Wnxn − z‖+αnβn‖z‖
6 (1 −αnβn)‖xn − z‖+αnβn‖z‖
6 max{‖x1 − z‖, ‖z‖},

which implies that {xn} is bounded, further, {Wnxn} is bounded too. Since

‖yn − z‖ 6 (1 −αn)‖Wnxn − z‖+αn‖z‖
6 (1 −αn)‖xn − z‖+αn‖z‖,

{yn} is also bounded. It follows from (3.4), (3.5), (3.13) and Lemma 2.8 (a) that

‖xn+1 − z‖2 = ‖(1 −βn)(Wnxn − z) +βn(Unyn − z)‖2

= (1 −βn)‖Wnxn − z‖2 +βn‖Unyn − z)‖2 −βn(1 −βn)‖Unyn −Wnxn‖2

6 (1 −βn)‖xn − z‖2 +βn[(1 −αn)‖xn − z‖2 + 2αn〈z, z− yn〉
− λn(1 −αn)(1 − µ− λnρ)‖(I− Tn)Axn‖2] −βn(1 −βn)‖Unyn −Wnxn‖2

= (1 −αnβn)‖xn − z‖2 + 2αnβn〈z, z− yn〉−βn(1 −βn)‖Unyn −Wnxn‖2

−βn(1 −αn)λn(1 − µ− λnρ)‖(I− Tn)Axn‖2,

i.e.,
sn+1 6 (1 −αnβn)sn + 2αnβn〈z, z− yn〉− cn, (3.14)

where
cn = βn(1 −βn)‖Unyn −Wnxn‖2 +βn(1 −αn)λn(1 − µ− λnρ)‖(I− Tn)Axn‖2,

and sn = ‖xn − z‖2. First, in a similar way to the proof of Case I in Theorem 3.2, we have both {‖(I−
Tn)Axn‖} and {‖Unyn −Wnxn‖} converge to zero. Since

‖Wnxn − xn‖ 6 λn‖A∗‖ · ‖(I− Tn)Axn‖ → 0, (3.15)

we have

‖Unyn − xn‖ 6 ‖Unyn −Wnxn‖+ ‖Wnxn − xn‖ → 0, (3.16)
‖yn − xn‖ 6 ‖(1 −αn)Wnxn − xn‖

6 ‖Wnxn − xn‖+αn‖Wnxn‖ → 0. (3.17)

It follows from (3.13), (3.15) and (3.16) that

‖xn+1 − xn‖ 6 (1 −βn)‖Wnxn − xn‖+βn‖Unyn − xn‖ → 0. (3.18)



Y. Q. Wang, T.-H. Kim, X. L. Fang, H. M. He, J. Nonlinear Sci. Appl., 10 (2017), 2976–2985 2984

From (3.16), (3.17), (3.18) we have

‖Unyn − yn‖ 6 ‖Unyn − xn‖+ ‖xn − yn‖ → 0, (3.19)
‖yn+1 − yn‖ 6 ‖yn+1 − xn+1‖+ ‖xn+1 − xn‖+ ‖xn − yn‖ → 0. (3.20)

By virtue of (3.14), (3.18), (3.19), (3.20), and ‖(I− Tn)Axn‖ → 0, mimicking the proof of Case I and Case II
in Theorem 3.2, we conclude that the sequence {xn} defined by (3.13) converges strongly to z = PΩ(0).

Now we shall give an example which satisfies all the conditions of the solution set Ω of the SCFP (3.1),
the mappings {Ui}

p
i=1, and {Ti}

p
i=1 in Theorems 3.2 and 3.4.

Example 3.5. Let H1 = H2 = H3 = `2. For each i ∈ {1, 2, · · · ,p}, let Ui, Ti : `2 → `2 be defined by

Uix = (

i︷ ︸︸ ︷
0, · · · , 0, x1, x2, · · · ),

and Tix = −(i+ 1)x for all x = (x1, x2, · · · ) ∈ `2. Then

Ω = (∩pi=1Fix(Ui))
⋂
A−1(∩pi=1Fix(Ti)) = {0}.

Furthermore, for each i ∈ {1, 2, · · · ,p}, Ui is quasi-nonexpansive, Ti is µ-demicontractive with µ = i
i+2 , I−Ui

and I− Ti are demiclosed at 0.

In fact, since ∩pi=1Fix(Ui) = {0} = ∩pi=1Fix(Ti), it results that Ω = {0}. Now we show the demicloseness
property of I−Ui at 0 (i = 1, 2, · · ·p). To this end, for any i ∈ {1, 2, · · ·p}, let xn ⇀ z and (I−Ui)xn → 0,
where xn = (x

(n)
1 , x(n)2 , · · · ) ∈ `2 and z = (z1, z2, · · · ) ∈ `2. The weak convergence of {xn} to z implies that

x
(n)
j → zj for each j > 1. Since

‖(I−Ui)xn‖2 =

i∑
k=1

|x
(n)
k |2 +

∞∑
k=i+1

|x
(n)
k−i − x

(n)
k |2 → 0,

it follows that for each fixed 1 6 k 6 i, x(n)k → 0 = zk. Hence

z1 = z2 = · · · = zi = 0. (3.21)

Also, for k > i+ 1, x(n)k−i − x
(n)
k → 0 = zk−i − zk. Using (3.21) we see

zi+1 = zi+2 = · · · = z2i = 0. (3.22)

Using (3.22) again, we have z2i+1 = z2i+2 = · · · = z3i = 0. Continuing this process, we get all zj = 0 for all
j > 1, which implies z = (0, 0, · · · ) = 0 ∈ Fix(Ui). Hence I−Ui is demiclosed at 0.

Furthermore, it is obvious that each Ti is µ-demicontactive, where µ = i
i+2 ; see [9, Example 2.5]. How-

ever, for each i ∈ {1, 2, · · ·p}, I− Ti is obviously demiclosed at 0 by Remark 2.4.

If Ui = U, Ti = T , i = 1, 2, · · · ,p in Theorem 3.2, we obtain the following conclusion.

Corollary 3.6. Let U be quasi-nonexpansive and T be µ-demicontractive such that I−U and I− T are demiclosed
at origin. Let A : H1 → H2 be a bounded linear operator. Assume that Ω = Fix(U)

⋂
A−1(Fix(T)) 6= ∅. Let ρ be

as in Lemma 2.7. For any x1 ∈ H1, define the sequence {xn} by

xn+1 = (1 −βn)xn +βnU[(1 −αn)(xn − λnA
∗(I− T)Axn)],

where {αn} ⊂ (0, 1), {βn} ⊂ [0, 1], {λn} ⊂ [0,+∞) satisfying the following conditions:
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(i) 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1;

(ii) limn→∞ αn = 0,
∑∞
n=1 αn =∞;

(iii) 0 < lim infn→∞ λn 6 lim supn→∞ λn < 1 − µ

ρ
.

Then the sequence {xn} converges strongly to PΓ (0), where Γ is the solution set of the two-set SCFP (1.3).

If Ui = U, Ti = T , i = 1, 2, · · · ,p in Theorem 3.4, we obtain the following conclusion.

Corollary 3.7. Let U be quasi-nonexpansive and T be µ-demicontractive such that I−U and I− T are demiclosed
at origin. Let A : H1 → H2 be a bounded linear operator. Assume that Ω 6= ∅ and ρ is as in Lemma 2.7. For any
x1 ∈ H1, define the sequence {xn} by

xn+1 = (1 −βn)Wnxn +βnU[(1 −αn)Wnxn],

where Wnxn = xn− λnA
∗(I− T)Axn and {αn} ⊂ (0, 1), {βn} ⊂ [0, 1], {λn} ⊂ [0,+∞) satisfying the following

conditions:

(i) 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1;

(ii) limn→∞ αn = 0,
∑∞
n=1 αn =∞;

(iii) 0 < lim infn→∞ λn 6 lim supn→∞ λn < 1 − µ

ρ
.

Then the sequence {xn} converges strongly to PΓ (0), where Γ is the solution set of the two-set SCFP (1.3).
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