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Abstract

In this paper, we propose a one-step composite iterative algorithm for solving operator equations involving accretive and
nonexpansive operators. We obtain a weak convergence theorem for these nonlinear operators in the framework of 2-uniformly
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1. Introduction and preliminaries

The iterative construction of solutions to accretive or monotone operator equations, which is a cross
research field between nonlinear functional analysis and the optimization theory, finds a lot of applications
in pure and applied sciences; see [1, 9, 10, 15] and the references therein.

There are a substantial number of numerical methods including projection methods and its variant
forms, auxiliary principle, Wiener-Hopf equations, and descent for solving accretive or monotone operator
equations. It is well-known that the projection methods, Wiener-Hopf equations techniques, and auxiliary
principle techniques cannot be extended and modified for solving variational inclusion problems of multi-
valued monotone operators. This fact motivates to develop another efficient technique, which involves
the use of the resolvent operator associated with m-accretive or maximal monotone operators. For the
technique of resolvent operator, which is recently investigated by many authors; see [7, 13, 17] and the
references therein, we can solve accretive or monotone operator equations via fixed point algorithms.

A Banach space E is said to be uniformly convex if for each δ > 0 there is an ε > 0 such that, ∀x,y ∈ E
with ‖x‖ 6 1, ‖y‖ 6 1, ‖x+ y‖ 6 2 − 2ε and ‖x− y‖ > δ hold. The modulus of convexity of E is defined
by

εE(δ) = inf{1 − ‖x+ y
2
‖ : ‖x− y‖ > δ, ‖x‖ 6 1, ‖y‖ 6 1}, ∀δ ∈ [0, 2].

E is said to be uniformly convex if εE(0) = 0, and ε(δ) > 0 for all 0 < δ 6 2. It is known that a Hilbert
space is 2-uniformly convex, while Lp is max{2,p}-uniformly convex for every p > 1.
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Let SE = {x ∈ E : ‖x‖ = 1}. E is said to be smooth or said to be have a Gâteaux differentiable norm iff
the limit

lim
t→0

(‖x+ ty‖− ‖x‖)/t

exists for each x,y ∈ SE. E is said to have a uniformly Gâteaux differentiable norm if for each y ∈ UE, the
limit is attained uniformly for all x ∈ SE. E is said to be uniformly smooth or said to have a uniformly
Fréchet differentiable norm if the limit is attained uniformly for x,y ∈ SE.

Let ρ(E) : [0, 1)→ [0, 1) be the modulus of smoothness of E defined by

ρ(E)t = sup{
‖x+ y‖+ ‖x− y‖− 2

2
: x ∈ SE, ‖y‖ 6 t}.

A Banach space E is said to be uniform smoothness if ρ(E)(t) → 0 as t → 0. Let q > 1. A Banach space
E is said to be q-uniform smoothness, if there exists a fixed constant c > 0 such that ρ(E)(t) 6 ctq. It is
well-known that E is uniform smoothness iff the norm of E is uniformly Fréchet differentiable. If E is a
q-uniform smoothness Banach space, then q 6 2 and E is uniformly smooth, and hence the norm of E is
uniformly Fréchet differentiable, in particular, the norm of E is Fréchet differentiable. Typical examples
of both uniformly convex and uniformly smooth Banach spaces are Lp, where p > 1. More precisely, Lp
is min{p, 2}-uniformly smooth for p > 1.

Given of strictly increasing continuous real function: ϕ : R+ → R+, where R+ denotes the set of
nonnegative real numbers, such that ϕ(0) = 0 and limr→∞ϕ(r) = ∞, we associate with it a duality map
Jϕ : E→ 2E

∗
, defined as

Jϕ(x) := {x∗ ∈ E∗ : 〈x, x∗〉 = ϕ(‖x‖)‖x‖, ‖x∗‖ = ϕ(‖x‖)}, ∀x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing between E and E∗. In the case that ϕ(x) = x, we write
J for Jϕ and call J the normalized duality mapping.

Let T : E → E be a mapping. We use Fix(T) to denote the fixed point of T . Recall that T is said to be
nonexpansive iff

‖Tx− Ty‖ 6 ‖x− y‖, ∀x,y ∈ C.

Recently, fixed point theory of nonexpansive mappings has been applied to the variational inclusion
problem of accretive or monotone operators; see [3, 16, 24] and the references therein.

The basic idea is to reduce inclusion problems to fixed point problems of nonexpansive operators,
which is initially investigated in the work of Browder [5]. Rockafellar [21] introduced this iterative algo-
rithm and called it the proximal point algorithm, which is now recognized as the Rockafellar’s proximal
point algorithm: for any initial point x0 ∈ H, a sequence {xn} is generated by xn+1 = (I+ rnA)

−1(en+xn),
∀n > 0, where A is a accretive operator, {rn} is a positive real number sequence and {en} is an error se-
quence. He proved the weak convergence of sequence {xn} under appropriate restrictions imposed on
{rn}. To find the strong convergence, Bruck [6] proposed the following algorithm: for any initial point
x0 ∈ H and fixed point u ∈ H, xn+1 = (I + rnA)

−1u, ∀n > 0. He proved the strong convergence of
sequence {xn} under appropriate restrictions imposed on {rn}. In the case of A = S+ T , where S and T are
accretive operators, splitting algorithms have recently been investigated for solving inclusion problems;
see [2, 8, 11, 18] and the references therein. These algorithms in the framework of Hilbert spaces are based
on the good properties of resolvent operators, but these properties are not available in the framework of
general Banach spaces; see [20] and the references therein. It is our aim to establish convergence theorems
for two accretive operators via a fixed point method of a nonexpansive mapping.

Let I denote the identity operator on E. An operator A ⊂ E× E with domain D(A) = {z ∈ E : Az 6= ∅}
and range R(A) = ∪{Az : z ∈ D(A)} is said to be accretive iff, for t > 0 and x,y ∈ D(A),

‖x− y‖ 6 ‖x− y+ tu− tv‖, ∀u ∈ Ax, v ∈ Ay.

Kato [14] proved that A is accretive iff, for x,y ∈ D(A), there exists jq(x1 −x2) such that 〈u− v, jq(x−y)〉 >
0. An accretive operator A is said to be m-accretive iff Ran(rA+ I) = E for all r > 0.
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Recall that a single-valued operator A : E → E is said to be α-inverse strongly accretive if there exists
a constant α > 0 and some j(x− y) ∈ J(x− y) such that

α‖Ax−Ay‖2 6 〈Ax−Ay, j(x− y)〉, ∀x,y ∈ E.

For an accretive operator A, we can define a nonexpansive single-valued mapping JAr : Ran(I+ rA) →
Dom(A) by JAr = (I+ rA)−1 for each r > 0, which is called the resolvent of A. In a real Hilbert space, an
operator A is m-accretive iff A is maximal monotone. In this paper, we use A−1(0) to denote the set of
zeros of A.

Lemma 1.1 ([19]). Let E be a real Banach space and let C be a nonempty closed and convex subset of E. Let
B : E→ 2E be an m-accretive operator and let A : C→ E be a single-valued operator. Then

Fix((I+ rB)−1(I− rA)) = (B+A)−1(0), ∀r > 0.

Lemma 1.2 ([6]). Let E be a real uniformly convex Banach space and let C be a nonempty closed convex and
bounded subset of E. Then there is a strictly increasing and continuous convex function ψ : [0,∞) → [0,∞) with
ϕ(0) = 0 such that, for every Lipschitzian continuous mapping T : C → C and, for all x,y ∈ C and t ∈ [0, 1],
the following inequality holds: Lψ−1

(
‖x−y‖− L−1‖Tx− Ty‖

)
> ‖T(tx+ (1− t)y) − (tTx+ (1− t)Ty)‖, where

L > 1 is the Lipschitz constant of T .

Lemma 1.3 ([23]). Let E be a real 2-uniformly smooth Banach space. Then the following inequalities hold: ‖x‖2 +
2〈y, J(x+ y)〉 > ‖x+ y‖2 and ‖x‖2 + 2〈y, J(x)〉+ K‖y‖2 > ‖x+ y‖2, ∀x,y ∈ E, where K is some fixed positive
constant.

Lemma 1.4 ([5]). Let E be a real uniformly convex Banach space, C a nonempty closed and convex subset of E,
and T : C → C a nonexpansive mapping. Then I− T is demiclosed at zero, that is, (I− T)xn → 0 as n → ∞ and
xn ⇀ κ implies (I− T)κ = 0.

Lemma 1.5 ([23]). Let p > 1 and r > 0 be two fixed real numbers. Then a Banach space E is uniformly convex if
and only if there exists a continuous strictly increasing convex function ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 such
that

‖ax+ (1 − a)y‖p 6 a‖x‖p + (1 − a)‖y‖p −
(
ap(1 − a) + (1 − a)pa

)
ϕ(‖x− y‖),

for all x,y ∈ Br(0) := {x ∈ E : ‖x‖ 6 r} and a ∈ [0, 1]. In particular, we have the following

‖ax+ (1 − a)y‖2 6 a‖x‖2 + (1 − a)‖y‖p − a(1 − a)ϕ(‖x− y‖).

Lemma 1.6 ([12]). Let E be a real uniformly convex Banach space such that its dual E∗ has the Kadec-Klee property.
Suppose that {xn} is a bounded sequence such that limn→∞ ‖axn − p2 + (1 − a)p1‖ exists for all a ∈ [0, 1] and
p1,p2 ∈ ωw(xn), where ωw(xn) = {x : ∃xni ⇀ x} denotes the weak ω-limit set of {xn}. Then ωw(xn) is a
singleton.

2. Main results

Theorem 2.1. Let E be a real uniformly convex and 2-uniformly smooth Banach space with constant K. Let
B : D(B) ⊂ E→ 2E be an m-accretive operator, A : E→ E an α-inverse strongly accretive operator, and T : E→ E

a nonexpansive mapping such that (B+A)−1(0) ∩ Fix(T) 6= ∅. Let {rn} be a positive number sequence and let
{αn} be a real number sequence in (0, 1) such that {αn} ⊂ [α, ᾱ], where α and ᾱ are two constants in (0, 1) and
{rn} ⊂ [r, r̄], where r and r̄ are two constants in (0, 2α

K ). Let {xn} be a sequence generated in the following manner:
x0 ∈ E and xn+1 = T(I+ rnB)

−1(xn − rnAxn) + αn(xn − T(I+ rnB)
−1(xn − rnAxn)), ∀n > 0, then {xn}

converges weakly to some point in (A+B)−1(0)∩ Fix(T).
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Proof. Using Lemma 1.3, we have

‖(I− rnA)x− (I− rnA)y‖2 6 Kr2
n‖Ax−Ay‖2 − 2rn〈Ax−Ay, J(x− y)〉+ ‖x− y‖2

6 Kr2
n‖Ax−Ay‖2 − 2rnα‖Ax−Ay‖2 + ‖x− y‖2

= (Krn − 2α)rn‖Ax−Ay‖2 + ‖x− y‖2.

(2.1)

Since 0 < r 6 rn 6 r̄ < 2α
K , we find that I− rnA is a nonexpansive mapping. Set JBrn = (I+ rnB)

−1 and fix
p ∈ (A+B)−1(0)∩ Fix(T). By using Lemma 1.1, we see that

‖xn+1 − p‖ 6 αn‖xn − p‖+ (1 −αn)‖TJBrn(xn − rnAxn) − TJ
B
rn
(p− rnAp)‖

6 (1 −αn)‖JBrn(xn − rnAxn) − J
B
rn
(p− rnAp)‖+αn‖xn − p‖

6 (1 −αn)‖(xn − rnAxn) − (p− rnAp)‖+αn‖xn − p‖
6 ‖xn − p‖.

It follows that limn→∞ ‖xn − p‖ exists, in particular, {xn} is a bounded sequence. Note that B is an
m-accretive operator. Setting yn = JBrn(xn − rnAxn), we find from Lemma 1.5 that

4‖yn − p‖2 6 4
∥∥∥yn +

rn

2

(xn − rnAxn − yn
rn

−
(I− rnA)p− p

rn

)
− p
∥∥∥2

= 2
∥∥yn +

(
(I− rnA)xn − (I− rnA)p

)
− p
∥∥2

6 2
(
‖yn − p‖2 + ‖(I− rnA)xn − (I− rnA)p‖2

−
1
2
ϕ
(
‖(yn − p) −

(
(I− rnA)xn − (I− rnA)p

)
‖
))

6 4‖(I− rnA)xn − (I− rnA)p‖2

−ϕ
(
‖(yn − p) −

(
(I− rnA)xnn− (I− rnA)p

)
‖
)

6 4(Krn − 2α)rn‖Axn −Ap‖2 + 4‖xn − p‖2

−ϕ
(
‖(yn − p) −

(
(I− rnA)xn − (I− rnA)p

)
‖
)

.

(2.2)

Since ‖ · ‖2 is a convex function, we find from (2.1) and (2.2) that

4‖xn+1 − p‖2 6 4αn‖xn − p‖2 + 4(1 −αn)‖Tyn − p‖2

6 4αn‖xn − p‖2 + 4(1 −αn)‖yn − p‖2

6 4rn(1 −αn)(Krn − 2α)‖Axn −Ap‖2 + 4‖xn − p‖2

− (1 −αn)ϕ
(
‖(yn − p) −

(
(I− rnA)xn − (I− rnA)p

)
‖
)

.

Since 0 < r 6 rn 6 r̄ < 2α
K and 0 < α 6 αn 6 ᾱ < 1, we find that

lim
n→∞ ‖(yn − xn) − rn(Ap−Axn)‖ = 0 (2.3)

and
lim
n→∞ ‖Axn −Ap‖ = 0. (2.4)

From (2.3) and (2.4) and the fact that

‖yn − xn‖ 6 ‖(rnAp− rnAxn) − (yn − xn)‖+ ‖rnAp− rnAxn‖,

we have
lim
n→∞ ‖xn − JBrn(xn − rnAxn)‖ = 0. (2.5)
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Since B is an m-accretive operator, we have〈
J
(
JBr (I− rA)xn − JBrn(I− rnA)xn

)
,
xn − JBr (I− rA)xn

r
−
xn − JBrn(I− rnA)xn

rn

〉
> 0.

It follows that

rn‖JBr (I− rA)xn − JBrn(I− rnA)xn‖
2 6 (rn − r)〈xn − JBrn(I− rnA)xn, J

(
JBr (I− rA)xn − JBrn(I− rnA)xn

)
〉

6 rn‖xn − JBrn(I− rnA)xn‖‖J
B
r (I− rA)xn − JBrn(I− rnA)xn‖.

Therefore, we have

‖JBr (I− rA)xn − JBrn(I− rnA)yn‖ 6 ‖xn − JBrn(I− rnA)xn‖.

Following (2.5), one arrives at
lim
n→∞ ‖JBr (xn − rAxn) − xn‖ = 0.

On the other hand, we have from Lemma 1.5 that

‖xn+1 − p‖2 6 (1 −αn)‖Tyn − p‖2 +αn‖xn − p‖2 +αn(αn − 1)ϕ(‖Tyn − xn‖)
6 (1 −αn)‖yn − p‖2 +αn‖xn − p‖2 +αn(αn − 1)ϕ(‖Tyn − xn‖)
6 αn(αn − 1)ϕ(‖xn − Tyn‖) + ‖xn − p‖2.

Hence, we have

(1 −αn)αnϕ(‖xn − Tyn‖) 6 (‖xn − p‖+ ‖xn+1 − p‖)(‖xn − p‖− ‖xn+1 − p‖)
6M(‖xn − p‖− ‖xn+1 − p‖),

where M is an appropriate constant such that M > supn>1{‖xn − p‖+ ‖xn+1 − p‖}. Since the limit of
{‖xn+1 − p‖} exists, we obtain that

lim
n→∞ ‖xn − Tyn‖ = 0. (2.6)

Note that
‖Txn − Tyn‖+ ‖Tyn − xn‖ > ‖Txn − xn‖ > 0.

By (2.5) and (2.6), we have
lim
n→∞ ‖xn − Txn‖ = 0.

From the demiclosed principal, we have ωw(xn) ⊂ Fix(JBr (I+ rA))∩ Fix(T) = (B+A)−1(0)∩ Fix(T).
Next, we show that ωw(xn) is a singleton set. This shows that {xn} converges weakly to some point in

(B+A)−1(0)∩Fix(T). Define mappingsWn : E→ E byWnx := TJBrn(I− rnA)x−αnTJ
B
rn
(I− rnA)x+αnx,

∀x ∈ C. Set
Wn,m =Wn+m−1Wn+m−2 · · ·Wn, ∀n,m > 1.

Since Wn is nonexpansive, we find that Wn,m is also nonexpansive and Wn,mxn = xn+m. For all t ∈ [0, 1]
and n,m > 1, put

bn(t) = ‖txn + p1 − p2 − tp1‖,

and
cn,m = ‖Wn,m(txn + (1 − t)p1) − (1 − t)p1 − txn+m‖,

where p1 and p2 are in (B+A)−1(0)∩ Fix(T). From Lemma 1.2, we have

ψ−1(‖xn − p1‖− (‖xn+m − p1‖− ‖p1 −Wn,mp1‖)
)
> ψ−1(‖xn − p1‖− ‖xn+m − p1 −Wn,mp1 + p1‖

)
= ψ−1(‖xn − p1‖− ‖Wn,mxn −Wn,mp1‖

)
> cn,m > 0.
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Hence, {cn,m} converges uniformly to zero as n→∞ for all m > 1. On the other hand, we have

bn+m(t) 6 ‖p2 −Wn,m(txn + (1 − t)p1)‖+ cn,m

6 ‖Wn,mp2 −Wn,m(txn + (1 − t)p1)‖+ ‖Wn,mp2 − p2‖+ cn,m

6 bn(t) + ‖Wn,mp2 − p2‖+ cn,m.

Taking lim sup as m→∞ and then the lim inf as n→∞, we find that

lim inf
n→∞ bn(t) > lim sup

n→∞ bn(t).

This proves that limn→∞ bn(t) exists for any t ∈ [0, 1]. This implies from Lemma 1.6 that ωw(xn) is a
singleton set. This proves the proof.

For the sum of two accretive operators, we have the following result.

Corollary 2.2. Let E be a real uniformly convex and 2-uniformly smooth Banach space with constant K. Let
B : D(B) ⊂ E → 2E be an m-accretive operator and let A : E → E be an α-inverse strongly accretive operator
such that (B + A)−1(0) 6= ∅. Let {rn} be a positive number sequence and let {αn} be a real number sequence
in (0, 1) such that {αn} ⊂ [α, ᾱ], where α and ᾱ are two constants in (0, 1) and {rn} ⊂ [r, r̄], where r and r̄
are two constants in (0, 2α

K ). Let {xn} be a sequence generated in the following manner: x0 ∈ E and xn+1 =
(I+ rnB)

−1(xn − rnAxn) + αn(xn − (I+ rnB)
−1(xn − rnAxn)), ∀n > 0, then {xn} converges weakly to some

point in (B+A)−1(0).

Further, we have the following result on common solutions of zero point problem of m-accretive
operators and fixed point problem of nonexpansive operator.

Corollary 2.3. Let E be a real uniformly convex and 2-uniformly smooth Banach space with constant K. Let B :
D(B) ⊂ E→ 2E be an m-accretive operator, and T : E→ E a nonexpansive mapping such that B−1(0)∩ Fix(T) 6=
∅. Let {rn} be a positive number sequence and let {αn} be a real number sequence in (0, 1) such that {αn} ⊂ [α, ᾱ],
where α and ᾱ are two constants in (0, 1) and {rn} ⊂ [r, r̄], where r and r̄ are two constants in (0, 2α

K ). Let {xn} be
a sequence generated in the following manner: x0 ∈ E and xn+1 = T(I+ rnB)

−1xn +αn(xn − T(I+ rnB)
−1xn),

∀n > 0, then {xn} converges weakly to some point in B−1(0)∩ Fix(T).

For a single m-accretive operator, we have the following result.

Corollary 2.4. Let E be a real uniformly convex and 2-uniformly smooth Banach space with constant K. Let
B : D(B) ⊂ E→ 2E be an m-accretive operator such that B−1(0) 6= ∅. Let {rn} be a positive number sequence and
let {αn} be a real number sequence in (0, 1) such that {αn} ⊂ [α, ᾱ], where α and ᾱ are two constants in (0, 1) and
{rn} ⊂ [r, r̄], where r and r̄ are two constants in (0, 2α

K ). Let {xn} be a sequence generated in the following manner:
x0 ∈ E and xn+1 = (I+ rnB)

−1xn+αn(xn−(I+ rnB)
−1xn), ∀n > 0, then {xn} converges weakly to some point

in B−1(0).

3. Applications

First, we give a version of Hilbert spaces of Theorem 2.1.

Theorem 3.1. Let E be a real Hilbert space. Let B : D(B) ⊂ E→ 2E be a maximal monotone operator, A : E→ E an
α-inverse strongly monotone operator and T : E→ E a nonexpansive mapping such that (B+A)−1(0)∩Fix(T) 6= ∅.
Let {rn} be a positive number sequence and let {αn} be a real number sequence in (0, 1) such that {αn} ⊂ [α, ᾱ],
where α and ᾱ are two constants in (0, 1) and {rn} ⊂ [r, r̄], where r and r̄ are two constants in (0, 2α). Let {xn} be
a sequence generated in the following manner: x0 ∈ E and xn+1 = T(I+ rnB)

−1(xn − rnAxn) +αn(xn − T(I+
rnB)

−1(xn − rnAxn)), ∀n > 0, then {xn} converges weakly to some point in (B+A)−1(0)∩ Fix(T).
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Proof. Note that in this case the concept of monotonicity coincides with the concept of accretivity. And
every uniformly convex and 2-uniformly smooth Banach space is a Hilbert space. Setting K = 1, we obtain
from Theorem 3.1 the desired conclusion.

Next, we give some results of minimization problems of proper lower and semicontinuous convex
functions, and equilibrium problems, respectively.

For a lower semicontinuous convex function g : H → (−∞,∞], the subdifferential mapping ∂g is
defined by

∂g(x) = {x∗ ∈ H : 〈y− x, x∗〉+ g(x) 6 g(y), ∀y ∈ H}, ∀x ∈ H.

Rockafellar [21] proved that ∂g is a maximal monotone operator and 0 ∈ ∂g(v) if and only if g(v) =
minx∈H g(x).

Theorem 3.2. Let E be a real Hilbert space. Let g : E → (−∞,+∞] be a proper convex lower semicontinuous
function and let T be a nonexpansive mapping on E such that (∂g)−1(0) ∩ Fix(T) is not empty. Let {rn} be a
positive number sequence and let {αn} be a real number sequence in (0, 1) such that {αn} ⊂ [α, ᾱ], where α
and ᾱ are two constants in (0, 1) and {rn} ⊂ [r, r̄], where r and r̄ are two constants in (0, 2α). Let {xn} be
a sequence generated in the following manner: x0 ∈ E and xn+1 = Tyn + αn(xn − Tyn), ∀n > 0, where
yn = arg minz∈H{

‖z−xn‖2

2rn
+ g(z)}. Then {xn} converges weakly to some point in (∂g)−1(0)∩ Fix(T).

Proof. Since g : H→ (−∞,∞] is a proper convex and lower semicontinuous function, we see that subdif-
ferential ∂g of g is maximal monotone. Noting that

yn = arg min
z∈H

{g(z) +
‖z− xn‖2

2rn
}

is equivalent to

∂g(yn) +
1
rn

(yn − xn) 3 0,

it follows that
yn + rn∂g(yn) 3 xn.

Putting A = 0, we derive from Theorem 3.1 the desired conclusion immediately.

Finally, we consider the problem of finding a solution of an equilibrium problem in the terminology
of Blum and Oettli [4].

Let C be a closed and convex subset of E and F be a bifunction of C×C into R, where R denotes the
set of real numbers. Recall the following equilibrium problem:

Find x ∈ C such that F(x,y) > 0, ∀y ∈ C.

The solution set of the problem is denoted by Sol(F) in this section.
To study the equilibrium problem, we need to assume that F satisfies the following conditions:

(i) F(x,y) + F(y, x) 6 0, ∀x,y ∈ C;

(ii) for each x ∈ C, y 7→ F(x,y) is lower semi-continuous and convex;

(iii) F(x,y) > lim supt→0 F(tz+ (1 − t)x,y), ∀x,y, z ∈ C, where t ∈ (0, 1);

(iv) F(x, x) = 0, ∀x ∈ C.

We remark here that F is said to be monotone iff F(x,y) + F(y, x) 6 0 for all x,y ∈ C. y 7→ F(x,y) is
convex iff F(tx+ (1 − t)y, z) 6 tF(x, z) + (1 − t)F(y, z) for all x,y, z ∈ C and t ∈ (0, 1). y 7→ F(x,y) is lower
semi-continuous iff F(x,yn)→ F(x,y) whenever yn → y as n→∞. It is known that the indicator function
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of an open set is lower semi-continuous. There are many bifunctions satisfying restrictions (i), (ii), (iii),
and (iv), for example, let E = R and C = [1,∞) and F(x,y) = y− x, then F satisfies the restrictions and
Sol(F) = {1}.

Lemma 3.3 ([22]). Let F : C×C→ R be a bifunction with (i), (ii), (iii), and (iv). Then, for any r > 0 and x ∈ H,
there exists z ∈ C such that rF(z,y) > 〈z− y, z− x〉, ∀y ∈ C. Further, define

TFr x =
{
z ∈ C : rF(z,y) > 〈z− y, z− x〉, ∀y ∈ C

}
for all r > 0 and x ∈ H. Then TFr is a single-valued (firmly) nonexpansive mapping such that Fix(TFr ) = Sol(F) is
closed and convex. Let AF be a multivalued mapping of H into itself defined by

AFx =

{
∅, x /∈ C,
{z ∈ H : 〈y− x, z〉 6 F(x,y), ∀y ∈ C}, x ∈ C.

Then AF is a maximal monotone operator with D(AF) ⊂ C, A−1
F (0) = Sol(F), and TFr x = (I+ rAF)

−1x, ∀x ∈
H, r > 0.

Theorem 3.4. Let E be a real Hilbert space. Let F : C×C→ R be a bifunction with (i), (ii), (iii), and (iv) and let
T : C→ C a nonexpansive mapping such that Sol(F)∩ Fix(T) is not empty. Let {rn} be a positive number sequence
and let {αn} be a real number sequence in (0, 1) such that {αn} ⊂ [α, ᾱ], where α and ᾱ are two constants in (0, 1)
and {rn} ⊂ [r, r̄], where r and r̄ are two constants in (0, 2α). Let {xn} be a sequence generated in the following
manner: x0 ∈ E and xn+1 = TTrn(xn − rnAxn) + αn(xn − TTrn(xn − rnAxn)), ∀n > 0, then {xn} converges
weakly to some point in Sol(F)∩ Fix(T).

Proof. Putting A = 0 in Theorem 3.1, we find that JBrn = Trn . By using Theorem 3.1 and Lemma 3.3, we
draw the desired conclusion immediately.

Figure 1

Finally, we give the following numerical results (using software Matlab 7.0) to illustrate the effective-

ness of the algorithm in Theorem 2.1. Put αn = n+e
1
n

2n . Let E be the set of real numbers and C = [−π,π].
Let A = x− sin x and let B be the subdifferential of the indicator function of C. Then the zero point of the
sum B and A is 0. If we choose x0 ∈ C arbitrarily, then for 20 different initials, we see all the results are
convergent in Figure 1.
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