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Abstract
In this paper, we first discuss properties of the cone in normed product spaces. As applications, we then derive some
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1. Introduction

A remarkable application of fixed-point theorems is to prove the existence of best approximation point
in best approximation theory [8, 10, 11, 15, 18, 19, 21], which was introduced by Fan in [3] for normed
linear spaces. Various aspects of best approximation theorem have been studied by many authors under
different assumptions and many interesting results are obtained in the last decades [7, 9, 14, 16, 17,
23–25]. As generalization of fixed-points, coupled fixed points of a map f satisfying some contractive
or nonexpansive type condition have been studied by many authors and applied to various problems,
especially to those associated with best approximation. In partially ordered metric spaces, the existence
result of a coupled fixed point for contractions was proved in Bhaskar and Lakshmikantham [4]. This
result was extended by Lakshmikantham and Ćirić [12]. In the paper, they also introduced a coupled
coincidence point term. In [22], Mitrović obtained the existence results of a coupled best approximation
point and derived some coupled coincidence and coupled fixed point results using the KKM technique.
In [2], Amini-Harandi derived some best and coupled best approximations and coupled coincidence
point results in normed spaces and hyperconvex metric spaces. However, some contractive or continuous
conditions are required in the above mentioned work. In this paper, we first introduce the terminologies,
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definitions and notations in partially ordered normed spaces. We prove some fundamental properties of
the cone in normed product spaces. As applications, we then derive some coupled best approximation
and coupled coincidence best approximation point results in partially ordered Banach spaces. Our results
are noteworthy in the sense that no contractive and continuous assumptions is required and they are
obtained by using the increasing characterizations of the metric projection.

2. Preliminaries

Let X be a real topological vector space with the dual space X∗ and K a nonempty closed convex subset
of X. By θ we denote the zero element of X. The closed convex subset K ⊂ X is called a cone if and only
if it satisfies:

(i) λK ⊂ K for all λ > 0;

(ii) K∩ (−K) = θ;

(iii) K is not {θ}.

Given a cone K ⊂ X, we define a partial order � with respect to K by x � y if and only if y− x ∈ K.
Let (X,�) be a partially ordered Banach space induced by K, if every two-element set {x,y} has a least

upper bound sup{x,y}, we say that the cone K is minihedral. For convenience, we denote sup{x,y} = x∨y,
inf{x,y} = x∧ y, x+ = x∨ θ, x− = (−x)∨ θ and |x| = x∨ (−x). The cone K is called normal if there is a
number N > 0, such that for all x,y ∈ X, 0 � x � y implies ‖x‖ 6 N‖y‖. The cone K is called regular if
every increasing sequence which is bounded from above is convergent. That is, if {xn} is a sequence such
that x1 � x2 � · · · � y for some y ∈ X, then there is x ∈ X such that lim

n→∞ ‖xn − x‖ = 0. A set C ⊂ X
is bounded from above with respect to a cone K if there is a y ∈ X such that x � y for all x ∈ C, the
element y is called an upper bound for C. And if supC exists for every nonempty and bounded from
above C ⊂ X, we say the cone K is a strongly minihedral cone. For any 1 6 p < ∞, the norm ‖ · ‖ of X is
called p-additive if

‖x+ y‖p = ‖x‖p + ‖y‖p, ∀x,y ∈ X with |x| ∧ |y| = θ.

We refer the reader [6, 13] for the needed terminology and notation on the partial order.
Let (X,�) be a real partially ordered Banach space. Given u0, v0 ∈ X such that u0 ≺ v0, the set

[u0, v0] = {z ∈ X : u0 � z � v0} is called an ordered interval. F : X→ X is called increasing if

x � y implies F(x) � F(y).

Let (X,�) be a real partially ordered Banach space with the dual space X∗ and K a cone in X. Recall
that

K∗ = {z∗ ∈ X∗ : 〈z∗, x〉 > 0, ∀x ∈ K},

is called the dual cone of K.
We denote by J the normalized duality mapping from X to 2X

∗
defined by

Jx = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x∗‖‖x‖, ‖x‖ = ‖x∗‖}, x ∈ X.

Many properties of the normalized duality mapping J have been studied. For the details, one may see [1].
K is called orthogonal if 〈J(x),y〉 = 0 for any x,y ∈ X with |x| ∧ |y| = θ. The cone K is called subdual if

J(K) ⊆ K∗ and superdual if J∗(K∗) ⊆ K.
Let X be a real Banach space and C a non-empty, closed and convex subset of X. The set-valued

mapping PC : X→ 2C,
PC(x) = {z ∈ C : ‖x− z‖ = inf

y∈C
‖x− y‖}, x ∈ X,

is called the metric projection operator from X onto C.
In [26], the metric projection operator satisfies the following variational characterization:
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Lemma 2.1 ([26]). Let X be a reflexive, strictly convex and smooth Banach space and C a closed and convex subset
of X,

x∗ = PC(x)⇔ 〈J(x− x∗),y− x∗〉 6 0, ∀ y ∈ C.

This inequality is called the basic variational principle for PC in X.

Definition 2.2. Let X be a partially ordered space and D a subset of X. Then the map f : D×D → X is
said to be mixed monotone, if f(x,y) is increasing in x and is decreasing in y, that is, for any x,y ∈ D,

x1, x2 ∈ D, x1 � x2 ⇒ f(x1,y) � f(x2,y),

and
y1,y2 ∈ D, y1 � y2 ⇒ f(x,y1) � f(x,y2).

Definition 2.3. Let (X,�) be a normed space and D a subset of X. Let f : D×D→ X and g : D→ X.

(i) An element (x∗,y∗) ∈ D×D is called a coupled fixed point of f if

x∗ = f(x∗,y∗), y∗ = f(y∗, x∗).

(ii) An element (x∗,y∗) ∈ D×D is called a coupled coincidence point of f and g if

g(x∗) = f(x∗,y∗), g(y∗) = f(y∗, x∗).

(iii) An element (x∗,y∗) ∈ D×D is called a coupled best approximation point of f if

‖x∗ − f(x∗,y∗)‖+ ‖y∗ − f(y∗, x∗)‖ = inf
(x,y)∈D×D

{‖x− f(x∗,y∗)‖+ ‖y− f(y∗, x∗)‖}.

(iv) For a p > 1, an element (x∗,y∗) ∈ D×D is called a p-coupled best approximation point of f if

‖x∗ − f(x∗,y∗)‖p + ‖y∗ − f(y∗, x∗)‖p = inf
(x,y)∈D×D

{‖x− f(x∗,y∗)‖p + ‖y− f(y∗, x∗)‖p}.

(v) An element (x∗,y∗) ∈ D×D is called a coupled coincidence best approximation point of f if

‖g(x∗) − f(x∗,y∗)‖+ ‖g(y∗) − f(y∗, x∗)‖ = inf
(x,y)∈D×D

{‖g(x) − f(x∗,y∗)‖+ ‖g(y) − f(y∗, x∗)‖}.

(vi) For a p > 1, an element (x∗,y∗) ∈ D×D is called a p-coupled coincidence best approximation point
of f if

‖g(x∗) − f(x∗,y∗)‖p + ‖g(y∗) − f(y∗, x∗)‖p

= inf
(x,y)∈D×D

{‖g(x) − f(x∗,y∗)‖p + ‖g(y) − f(y∗, x∗)‖p}.

In the following context, let (X,�) be a partially ordered Banach space with respect to a cone K of X
and X∗ the dual space of X. Denote by ‖ · ‖ and ‖ · ‖∗ the norms of X and X∗ and take

K̃ = {(x,y) ∈ X×X : x � θ,y � θ}.

Obviously, K̃ is a cone in X×X. Then we induce the following partial order by K̃:

(x1,y1) �K̃ (x2,y2), if and noly if x1 � x2, y1 � y2.

We define the norm of X×X as:

‖(x,y)‖ = (‖x‖p + ‖y‖p)
1
p , ∀(x,y) ∈ X×X.

Naturally, the norm of X∗ ×X∗ is

‖(x,y)‖∗ = (‖x‖q∗ + ‖y‖q∗ )
1
q , ∀(x,y) ∈ X∗ ×X∗,

where p > 0, q > 0 such that 1
p + 1

q = 1. It is known that if X is a reflexive, strictly convex and smooth
Banach space, then X× X with the above norm is also a reflexive, strictly convex and smooth Banach
space.
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Proposition 2.4. Let X be a reflexive, strictly convex and smooth Banach space and K a minihedral cone in X.
Suppose that K is orthogonal. Then K̃ is a orthogonal cone in X×X.

Proof. Now we prove that, for any θ 6= (x,y) ∈ X×X, we have

J(x,y) =
(
‖x‖p−2Jx

‖(x,y)‖p−2 ,
‖y‖p−2Jy

‖(x,y)‖p−2

)
. (2.1)

Indeed, since 1
p + 1

q = 1, we have

∥∥∥∥( ‖x‖p−2Jx

‖(x,y)‖p−2 ,
‖y‖p−2Jy

‖(x,y)‖p−2

)∥∥∥∥2

∗
=

(∥∥∥∥ ‖x‖p−2Jx

‖(x,y)‖p−2

∥∥∥∥q
∗
+

∥∥∥∥ ‖y‖p−2Jy

‖(x,y)‖p−2

∥∥∥∥q
∗

) 2
q

=

(
‖x‖(p−2)q

‖(x,y)‖(p−2)q ‖Jx‖
q
∗ +

‖y‖(p−2)q

‖(x,y)‖(p−2)q ‖Jy‖
q
∗

) 2
q

=

(
‖x‖pq−q

‖(x,y)‖(p−2)q +
‖y‖pq−q

‖(x,y)‖(p−2)q

) 2
q

=

(
‖x‖p + ‖y‖p

‖(x,y)‖(p−2)q

) 2
q

=

(
‖(x,y)‖p

‖(x,y)‖(p−q)

) 2
q

= ‖(x,y)‖2.

Also since 〈(
‖x‖p−2Jx

‖(x,y)‖p−2 ,
‖y‖p−2Jy

‖(x,y)‖p−2

)
, (x,y)

〉
=
‖x‖p−2 〈Jx, x〉
‖(x,y)‖p−2 +

‖y‖p−2 〈Jy,y〉
‖(x,y)‖p−2

=
‖x‖p + ‖y‖p

‖(x,y)‖p−2 =
‖(x,y)‖p

‖(x,y)‖p−2

= ‖(x,y)‖2,

we get that (2.1) holds. Take (x1,y1), (x2,y2) ∈ X × X such that |(x1,y1)| ∧ |(x2,y2)| = (θ, θ). By the
definition of K̃, we obtain that |x1| ∧ |x2| = θ, (−|y1|)∨ (−|y2|) = θ, that is, |x1| ∧ |x2| = θ, |y1| ∧ |y2| = θ. If
(x1,y1) = (θ, θ), it is easy to see that 〈J(x1,y1), (x2,y2)〉 = 0. If (x1,y1) 6= (θ, θ), as K is orthogonal, we have
〈Jx1, x2〉 = 0 and 〈Jy1,y2〉 = 0, which implies that

〈J(x1,y1), (x2,y2)〉 =
‖x1‖p−2 〈Jx1, x2〉
‖(x1,y1)‖p−2 +

‖y1‖p−2 〈Jy1,y2〉
‖(x1,y1)‖p−2 = 0.

Thus K̃ is orthogonal. The assertion is proved.

Proposition 2.5. Let X be a reflexive, strictly convex and smooth Banach space and K a cone in X. Suppose that K
is subdual. Then K̃ is a subdual cone in X×X.

Proof. If (x1,y1) = (θ, θ), it is obvious that J(x1,y1) ∈ K̃∗. From Proposition 2.4, we get that, for any
θ 6= (x1,y1) ∈ K̃,

J(x1,y1) =

(
‖x1‖p−2Jx1

‖(x1,y1)‖p−2 ,
‖y1‖p−2Jy1

‖(x1,y1)‖p−2

)
.

Thus, for any (x,y) ∈ K̃,

〈J(x1,y1), (x,y)〉 = ‖x1‖p−2〈Jx1, x〉
‖(x1,y1)‖p−2 +

‖y1‖p−2〈Jy1,y〉
‖(x1,y1)‖p−2 .
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Since K is subdual, we have 〈Jx1, x〉 > 0 and

〈Jy1,y〉 = 〈J(−y1),−y〉 > 0.

Hence
〈J(x1,y1), (x,y)〉 > 0.

It follows that J(x1,y1) ∈ K̃∗. Then K̃ is a subdual cone.

Proposition 2.6. Let X be a normed space and K a minihedral cone in X. Suppose that the norm ‖ · ‖ of X is
p ′-additive and the norm to X×X is defined by

‖(x,y)‖ = (‖x‖p ′ + ‖y‖p ′)
1
p ′ , ∀(x,y) ∈ X×X,

where p ′ > 1. Then the norm of X×X is p ′-additive.

Proof. Take any (x1,y1), (x2,y2) ∈ X×X such that |(x1,y1)| ∧ |(x2,y2)| = (θ, θ). Then

(θ, θ) = (|x1|,−|y1|)∧ (|x2|,−|y2|) = (|x1| ∧ |x2|, (−|y1|)∨ (−|y2|)),

which implies that
|x1| ∧ |x2| = θ, |y1| ∧ |y2| = −(−|y1|)∨ (−|y2|) = θ.

Since the norm ‖ · ‖ of X is p ′-additive, we obtain that

‖(x1,y1) + (x2,y2)‖p
′
= ‖(x1 + x2,y1 + y2)‖p

′

= ‖x1 + x2‖p
′
+ ‖y1 + y2‖p

′

= ‖x1‖p
′
+ ‖x2‖p

′
+ ‖y1‖p

′
+ ‖y2‖p

′

= ‖(x1,y1)‖p
′
+ ‖(x2,y2)‖p

′
.

The assertion is proved.

3. Coupled best approximation theorem

We obtain some characterizations of the cone in product spaces in the above section. Now we prove
the following coupled best approximation theorems by the above properties.

Theorem 3.1. Let X be a reflexive, strictly convex and smooth Banach space and K a minihedral, orthogonal and
subdual cone. Suppose that the following conditions are satisfied:

(i) f : K×K→ X is mixed monotone;

(ii) f is bounded from above;

(iii) there exists an (x0,y0) ∈ K×K such that y0 � f+(y0, x0), f+(x0,y0) � x0, where f+(x,y) = f(x,y)∨ θ.

Then f has the minimum p-coupled best approximation point.

Proof. Define h : K×K→ X×X and F : K×K→ K×K as

h(x,y) = (f(x,y), f(y, x)), ∀(x,y) ∈ K×K,

and
F(x,y) = PK×K(h(x,y)), ∀(x,y) ∈ K×K.
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Take any (x,y) ∈ X×X, (z1, z2) ∈ K×K, by orthogonality of K, we have

〈J((x,y) − (x+,y+)), (x+,y+) − (z1, z2)〉 = 〈−J((x−,y−)), (x+,y+) − (z1, z2)〉
= −〈J((x−,y−)), (x+,y+)〉+ 〈J((x−,y−)), (z1, z2)〉
= 〈J(x−,y−), (z1, z2)〉.

Following the same argument as the proof of Proposition 2.5, we can obtain that

〈J(x−,y−), (z1, z2)〉 > 0.

From Lemma 2.1, we have
PK×K(x,y) = (x+,y+), ∀(x,y) ∈ X×X.

Thus
F(x,y) = (f+(x,y), f+(y, x)), ∀(x,y) ∈ K×K.

Let D = {(x,y) ∈ K× K : (x,y) �K̃ F(x,y)}. It is easy to see that (x0,y0) ∈ D, which implies that D is
nonempty. From Proposition 2.5, we have K̃ is subdual. It follows that K̃ is normal. As X is reflexive, K̃
is regular. By [5, Theorem 2.3.1], we have K̃ is strongly minihedral. Since f is bounded from above, we
have there exists a lower bound of D. Then there exists an (x∗,y∗) = infD. As f is mixed monotone, h is
increasing, which implies that F is increasing. Since (x,y) ∈ D such that (x,y) �K̃ (x∗,y∗), we obtain that

(x,y) �K̃ F(x,y) �K̃ F(x
∗,y∗).

So F(x∗,y∗) is a lower bound of D. It follows that

(x∗,y∗) �K̃ F(x
∗,y∗). (3.1)

Thus, F(x∗,y∗) �K̃ F(F(x
∗,y∗)). Consequently, F(x∗,y∗) ∈ D. And hence,

F(x∗,y∗) �K̃ (x∗,y∗). (3.2)

By (3.1) and (3.2), we have F(x∗,y∗) = (x∗,y∗), that is,

PK×K(f(x
∗,y∗), f(y∗, x∗)) = (x∗,y∗).

Therefore,
‖(x∗,y∗) − (f(x∗,y∗), f(y∗, x∗))‖ = inf

(x,y)∈K×K
‖(x,y) − (f(x∗,y∗), f(y∗, x∗))‖.

By the definition of the norm on X×X, we obtain that

‖x∗ − f(x∗,y∗)‖p + ‖y∗ − f(y∗, x∗)‖p

= inf
(x,y)∈K×K

{‖x− f(x∗,y∗)‖p + ‖y− f(y∗, x∗)‖p}.

If (x,y) is another p-coupled best approximation point, we have (x,y) ∈ D. It follows that (x,y) � (x∗,y∗).
Then (x∗,y∗) is the minimum p-coupled best approximation point. The assertion is proved.

Example 3.2. Let (X,�) = (`np ,�), where 1 < p <∞ and � is induced by the cone

K = {(x1, x2, · · · , xn) : x1 > 0, x2 > 0, · · · , xn > 0}.

Obviously, K̃ = K× (−K) is a minihedral, orthogonal and subdual cone in X× X. Take x0,y0 ∈ K, such
that y0 � 1

2x0. Define f : K×K→ X as

f(x,y) =


(x−

1
2
x0)∨ (−y+ 2y0), (x,y) �K̃ (x0,y0),

−
1
2
x0, (x,y) 6�K̃ (x0,y0).
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It is easy to prove that f is mixed monotone. Since

f+(y0, x0) =
1
2
x0 � y0, f+(x0,y0) =

1
2
x0 ∨ 2y0 � x0.

Take (x ′0,y ′0) = ( 1
6x0, 8x0) ∈ K× K, it is easy to see that if (x,y) �K̃ (x ′0,y ′0), f

+(x,y) = 1
2x0 � x, f+(y, x) =

y− 1
2x0 � y. Then all conditions of Theorem 3.1 are satisfied. Thus f has the minimum p-coupled best

approximation point in K×K.

Theorem 3.3. Let X be a reflexive, strictly convex and smooth Banach space and K a minihedral, orthogonal and
subdual cone. Let u0, v0 ∈ X and u0 ≺ v0. Suppose that the following conditions are satisfied:

(i) f : [u0, v0]× [u0, v0]→ X is mixed monotone;

(ii) the norm ‖ · ‖ on X is p-additive.

Then f has a p-coupled best approximation point (x∗,y∗) in [u0, v0]× [u0, v0]. Moreover,

u0 � u1 � · · · � un � · · · � x∗ � · · · � vn � · · · � v1 � v0,
u0 � u1 � · · · � un � · · · � y∗ � · · · � vn � · · · � v1 � v0,

(3.3)

where
f1(x,y) = (f(x,y)∨ u0)∧ v0, f2(x,y) = (f(y, x)∧ v0)∨ u0,

un = f1(un−1, vn−1), vn = f2(un−1, vn−1), (n = 1, 2, 3, · · · ).
(3.4)

Proof. Define h : [u0, v0]× [u0, v0]→ X×X and F : [u0, v0]× [u0, v0]→ [u0, v0]× [u0, v0] as

h(x,y) = (f(x,y), f(y, x)), ∀(x,y) ∈ [u0, v0]× [u0, v0],

and
F(x,y) = P[u0,v0]×[u0,v0](h(x,y)), ∀(x,y) ∈ [u0, v0]× [u0, v0].

From Proposition 2.6, we know the norm of X×X is also p-additive. By [20, Lemma 2.5], we have

F(x,y) = (h(x,y)∨ (u0, v0))∧ (v0,u0) = ((f(x,y)∨ u0)∧ v0, (f(y, x)∧ v0)∨ u0).

Since f is mixed monotone, we have F is increasing. From Proposition 2.5, we know K̃ is subdual, which
implies K̃ is normal. Since X is reflexive, we have K̃ is regular. From [5, Theorem 3.1.4], we obtain that
there exists (x∗,y∗) in [u0, v0]× [u0, v0] such that

F(x∗,y∗) = (x∗,y∗),

moreover
(u0, v0) � F(u0, v0) � · · · � Fn(u0, v0) � · · · � (x∗,y∗)

� · · · � Fn(v0,u0) � · · · � F(v0,u0) � (v0,u0).

Then (3.3) and (3.4) hold.

Remark 3.4. If X is a reflexive, strictly convex and smooth Banach lattice and f is continuous, P[u0,v0]×[u0,v0]

in Theorem 3.3 is continuous, then un → x∗, vn → y∗(n→∞).

4. Coupled coincidence best approximation theorem

In this section, based on the results on coupled coincidence points, which were introduced by Laksh-
mikantham and Ćirić [12], we obtain the following coupled coincidence best approximation theorem.

Definition 4.1 ([12]). Let (X,�) be a partially ordered space and D a nonempty subset of X. Let f :
D×D → X and g : D → X. Then f is said to be g-mixed monotone if f(x,y) is g-increasing in x and is
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g-decreasing in y, that is, for any x,y ∈ D,

x1, x2 ∈ D, g(x1) � g(x2)⇒ f(x1,y) � f(x2,y),

and
y1,y2 ∈ D, g(y1) � g(y2)⇒ f(x,y1) � f(x,y2).

Definition 4.2 ([12]). Let X be a vector space and D a nonempty subset of X. Let f : D×D → D and
g : D→ D. Then f and g are said to be commutable if

g(f(x,y)) = f(g(x),g(y)), ∀x,y ∈ D.

Theorem 4.3. Let X be a reflexive, strictly convex and smooth Banach space and K a minihedral, orthogonal and
subdual cone. Suppose that f : K×K→ X and g : K→ X satisfy the following conditions:

(i) f is g-mixed monotone and f+(K×K) ⊂ g(K);

(ii) f+ and g are continuous and commutable;

(iii) there exists a v ∈ K such that f+(K×K) � v;

(iv) there exists an (x0,y0) ∈ K×K such that g(x0) � f+(x0,y0), f+(y0, x0) � g(y0).

Then f has at least one p-coupled coincidence best approximation point (x∗,y∗) in K×K. Moreover, if

g(xn) = f
+(xn−1,yn−1), g(yn) = f+(yn−1, xn−1), (n = 1, 2, 3, · · · ),

then
g(xn)→ x∗, g(yn)→ y∗ (n→∞).

Proof. We define h : K×K→ X×X and F : K×K→ K×K as

h(x,y) = (f(x,y), f(y, x)), ∀(x,y) ∈ K×K,

and
F(x,y) = PK×K(h(x,y)), ∀(x,y) ∈ K×K.

Since f is g-mixed monotone, we obtain that h is g-increasing in x and y. From Proposition 2.4 and
Proposition 2.5, we obtain that K̃ is a minihedral, orthogonal and subdual cone, which implies that
PK×K(x,y) = (x+,y+) is increasing. Thus

F(x,y) = (f+(x,y), f+(y, x)), ∀(x,y) ∈ K×K,

is g-increasing in x and y. By f+(y0, x0) � g(y0), f+(x0,y0) � g(x0), we have

(g(x0),g(y0)) �K̃ F(x0,y0).

Since f+(K × K) ⊂ g(K), there exists an (x1,y1) ∈ K × K such that (g(x1),g(y1)) = F(x0,y0). Using
f+(K×K) ⊂ g(K), there exists an (x2,y2) ∈ K×K such that (g(x2),g(y2)) = F(x1,y1). By induction, there
exists a sequence {(xn,yn)} ⊂ K×K such that

(g(xn+1),g(yn+1)) = F(xn,yn).

Now we prove that {(g(xn),g(yn))} is increasing. When n = 0,

(g(x0),g(y0)) �K̃ F(x0,y0) = (g(x1),g(y1)).
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Thus, for n = 0,
(g(x0),g(y0)) �K̃ (g(x1),g(y1)).

Assume that for n = k, (g(xk),g(yk)) �K̃ (g(xk+1),g(yk+1)) holds, that is,

g(xk) � g(xk+1), g(yk) � g(yk+1).

As F is g-mixed monotone, we have

(g(xk+2),g(yk+2)) = F(xk+1,yk+1) �K̃ F(xk,yk) = (g(xk+1),g(yk+1)).

Therefore, {(g(xn),g(yn))} is increasing, that is,

(g(x1),g(y1)) �K̃ (g(x2),g(y2)) �K̃ · · · �K̃ (g(xn),g(yn)) �K̃ · · · .

Since f+(K×K) � v, (g(xn+1),g(yn+1)) = (f+(xn,yn), f+(yn, xn)), we have

(g(x1),g(y1)) �K̃ (g(x2),g(y2)) �K̃ · · · �K̃ (g(xn),g(yn)) �K̃ · · · �K̃ (v, θ).

Since K̃ is subdual, we have K̃ is normal. Also since X is reflexive, it follows that K̃ is regular. Thus
(g(xn),g(yn)) is convergent. Let lim

n→∞(g(xn),g(yn)) = (x∗,y∗). As g is continuous, we have

lim
n→∞(g(g(xn+1)),g(g(yn+1))) = (g(x∗),g(y∗)).

Since g and f+ are commutable, we obtain that

(g(g(xn+1)),g(g(yn+1))) = (g(f+(xn,yn)),g(f+(yn, xn)))
= (f+(g(xn),g(yn)), f+(g(yn),g(xn))).

Applying continuity of f+, we obtain that

(g(x∗),g(y∗)) = lim
n→∞(g(g(xn+1)),g(g(yn+1)))

= lim
n→∞(g(f+(xn,yn)),g(f+(yn, xn)))

= lim
n→∞(f+(g(xn),g(yn)), f+(g(yn),g(xn)))

= (f+( lim
n→∞g(xn), lim

n→∞g(yn)), f+( lim
n→∞g(yn), lim

n→∞g(xn)))
= (f+(x∗,y∗), f+(y∗, x∗)).

Thus
(g(x∗),g(y∗)) = PK×K(f(x∗,y∗), f(y∗, x∗)).

Then
‖(g(x∗),g(y∗))−(f(x∗,y∗), f(y∗, x∗))‖

= inf
(x,y)∈K×K

‖(x,y) − (f(x∗,y∗), f(y∗, x∗))‖.

By the definition of the norm on X×X, we have

‖g(x∗) − f(x∗,y∗)‖p + ‖g(y∗) − f(y∗, x∗)‖p

= inf
(x,y)∈K×K

{‖x− f(x∗,y∗)‖p + ‖y− f(y∗, x∗)‖p}.

The assertion is proved.

Remark 4.4. When g is the identity mapping, Theorem 4.3 becomes the coupled best approximation theo-
rem.
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Example 4.5. Let (X,�) = (`np ,�), where 1 < p < ∞. The cone is the same as that in Example 3.2. Take
v ∈ K. We define f : K×K→ X as

f(x,y) =

{
x− y, (x,y) �K̃ (v, v),
θ, (x,y) 6�K̃ (v, v).

For any x ∈ K, g(x) = 2x. It is easy to see that f is g-mixed monotone. We have f(K×K) is bounded from
above and g(f+(x,y)) = θ = f+(g(x),g(y)). Take (x0,y0) = (θ, θ), it is easy to prove that (x0,y0) satisfies
the condition (iv). Thus all conditions in Theorem 4.3 are satisfied. Then f has at least one p-coupled
coincidence best approximation point in K×K.
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