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Abstract

In this paper, we give some strong and weak convergence algorithms to find a common element of the solution set of a
split equilibrium problem and the fixed point set of a relatively nonexpansive mapping in Banach spaces. Our algorithms only
involve the operator A itself and do not need any conditions of the adjoint operator A* of A and the norm ||A|| of A which are
different from the other results in the literature. By applying our main results, we show the existence of a solution of a split
feasibility problem in Banach spaces. Finally, we give an example to illustrate the main results of this paper. (©2017 All rights
reserved.
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1. Introduction and preliminaries

Throughout this paper, let R denote the set of all real numbers and IN denote the set of all positive
integers. Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Let F: C x C =+ R
be a bifunction.

The equilibrium problem for F is to find z € C such that

F(z,y) >0, (1.1)
for all y € C. The set of all solutions of the problem (1.1) is denoted by EP(F), i.e.,
EP(F)={ze C:F(z,y) >0, Vy € C}L.

Many problems in physics, optimization, economics and others can be reduced to find a solution of the
problem (1.1) and so the equilibrium problems have been investigated by many authors (see [5, 7, 8, 11—
14, 16, 18, 20, 22-27, 30, 32] and the reference therein).

Recently, Kazmi and Rizvi [17] considered a problem, which is called a split equilibrium problem.
Let Hi, Habe two real Hilbert spaces and C, Q be nonempty closed and convex subsets of H; and Hy,
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respectively. Let F; : C x C = R, F2: Q x Q — RR be two bifunctions and A : H; — H; be a bounded linear
operator. The split equilibrium problem is to find x* € C such that

Fi1(x*,x) >0, Vxe€ C and y=Ax" € Q suchthat F(y*,y)>0, VyeQ. (1.2)

Also, they introduced the following iterative algorithm to find a solution of the split equilibrium problem
(1.2):
Un = T (xn + YA (T2 = DAxy),
Yn = PC(un - }\nDun)/ (13)
Xn+1 = 0n + Pn +¥YnSyn,
for eachn > 1, where S : C — C is a nonexpansive mapping, D : C — H; is a T-inverse strongly monotone
mapping, A* is the adjoint of A, {otn}, {Bn}, {Yn} C (0,1), {An} C (0,27), {rn} C (0,00), vy € (0, %), where L
is the spectral radius of the operator A*A. Under some suitable conditions on the control sequences, they
proved some strong convergence theorems of the algorithm (1.3).
In 2014, Bnouhachem [2] introduced the following iterative method to solve the split equilibrium
problem and hierarchical fixed point problem:

Un = Ti (xm + YA (T{2 — D Axn),
Yn = anxn + (1 - Bn)unr (1'4)
Xni1 = PelonpUxn + (I — o tF) Tynl,

for each n > 1, where S, T are two nonexpansive mappings and U is a Lipschitzian mapping and F is
a Lipschitz and strongly monotone mapping and A is a bounded linear operator and A* is the adjoint
mapping of A, and proved some strong convergence theorems of the algorithm (1.4) under some certain
conditions on the parameters.

In the algorithms (1.3) and (1.4), the bifunction F; is required to be upper semi-continuous in the first
argument besides satisfying the conditions (A1)-(A4). In order to relax the restriction, Wang et al. [31]
introduced a new iterative algorithm to solve the split equilibrium problem as follows:

Ui =TL (I—yAHI-T{HA)Xn, i=1,--- Ny,
yn = Pc (I_An(zli\g YiBi))(NL] ZP:H ui,n)/ (1.5)
Xn+1 = &nV+ Y i (otic1 — &i)Siyn,

foreachn > 1, where F: Cx C = R, Fy,---,Fn; : Q x Q — R are bifunctions, Ay, -+, AN, : Hi = H»
are linear bounded operators, By,---,Bn, : C — H; are inverse strongly monotone mappings, for each
i>1, S;: C — Cis nonexpansive mapping. Under some suitable conditions on the control sequences
{rn}, {an}, {An}, they proved that the sequence {x,} generated by (1.5) converges strongly to an element
z = Pgv, where © = N° ;Fix(S;) NT'N Q, where

I'= ﬂ]i\leI(C,Bi), Q={zeC:z€EP(F),Aiz€ EP(Fi),i=1,--- ,Nq¢}

In fact, in the algorithm (1.5), the bifunctions Fy, - - - , Fn;, are not required to be upper semi-continuous in
the first argument.

Recently, split feasibility problems [3, 4, 6, 9, 29, 34, 35], split variational inequality problems [10, 21]
and split equilibrium problems [2, 17, 31] have been investigated by many authors. However, most of
the results on these kinds of these problems are investigated only in Hilbert spaces, only a few works
are considered in Banach spaces. So, in this paper, we consider some results on convergence analysis to
solutions of these kinds of problems in Banach spaces.

Let E4, E; be two Banach spaces and C, Q be nonempty closed convex subsets of E; and Ej, respectively.
Let A : E; — E; be a nonlinear operator. Let F: C x C — R and H: Q x Q — R be two bifunctions. Let Q
denote the set of solutions of the split equilibrium problem on F and H, that is,

Q={zeC:ze€EP(F), Az€ EP(H)}.
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In fact, it is difficult to compute the adjoint A* and the norm ||A|| of ||A| if the operator A is complex,
which is a common topic to solve.

In this paper, we introduce some new strong and weak convergence algorithms to find an element
in Q NF(S), where F(S) is the set of fixed points of a relatively nonexpansive mapping in Banach space
E. Our algorithms involve only the operator A, but do not use the adjoint A* of the operator A and the
norm ||A]| of A and so our algorithms can be more convenient and effective to prove our main results. As
applications of our main results, we can solve some split feasibility problems in Banach spaces. Finally,
we give an example to illustrate the main results in this paper. Our results extend and improve the
corresponding results of others in the literature.

2. Preliminaries

Let H be a Hilbert space and C be a nonempty closed subset of H. For any x € H, there exists a unique
nearest point of C, denoted by Pcx, such that

X = Pex|| < [x—yl,

for all y € C. Such a mapping Pc is called the metric projection from H onto C. It is well-known that P¢
is a firmly nonexpansive mapping from H onto C, i.e.,

IPex—Peyl? < (Pex—Pey,x—y),
for all x,y € H. Further, for any x € Hand z € C,
z=Pcx << (x—zz—y) =0,

forally € C.

Let E be a Banach space and E* be the topological dual space of E. For all x € E and x* € E*, we
denote the value of x* at x by (x,x*). It is known that the normalized duality mapping ] on E is defined
by

J(x) = {x* € B (o, x%) = [Ix|I = x|,
for each x € E. Then J(x) is nonempty.

A Banach space E is said to be strictly convex, if w < 1forx,y € Ewith ||x]| = |jy]| =1 and x #y.
It is said to be uniformly convex, if for each € € (0, 2], there exists & > 0 such that w < 1-—56 for all
x,y € E with ||x]| = ||ly|| =1 and ||x —y]| > €. A Banach space E is said to be smooth, if the limit

Ll tyl x|
t—0 t

4

exists for all x,y € S(E), where S(E) ={z € E: |z|| = 1}. E is said to be uniformly smooth, if the limit
exists uniformly in x,y € S(E). If E is smooth, strictly convex and reflexive, then the duality mapping J is
single-valued, one-to-one and onto.

Let E be a smooth, strictly convex and reflexive Banach space and C be a nonempty closed convex
subset of E. Let ¢ be the function on E x E defined by

b0xy) = [yll* —2(x, Jy) + x|,

for all x,y € E. The generalized projection Ilc [1] from E onto C is defined by

T (x) = argmin ¢ (y,x),

for all x € E. If E is a Hilbert space, then ¢(y,x) = ||y —x||?> and Il¢ is the metric projection P of H onto
C.
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Let S : C — C be a nonlinear mapping. We denote the set of fixed points of S by F(S). A pointp € C
is said to be an asymptotic fixed point of S, if there exists {x,,} in C which converges weakly to p and
limy, 00 || Xn — Sxn || = 0. Denote the set of all asymptotic fixed points of S by S(S). The mapping S is said
to be relatively nonexpansive [19], if the following conditions hold:

(1) F(S) is nonempty;
(2) d(p,Sx) < d(p,x) forall p € F(S) and x € C;
(3) F(S) =F(S).

If E is a smooth, strictly convex and reflexive Banach space, then the set F(S) of fixed points of the
relatively nonexpansive mapping S is closed and convex [19].
Next, the following lemmas are used in the next section:

Lemma 2.1 ([28]). Let C be a nonempty closed convex subset of a uniformly smooth, strictly convex and reflexive
Banach space E. Suppose that F : C x C — R satisfies the following conditions:

(Al) F(x,x) =0 forallx € C;

(A2) Fis monotone, i.e., F(x,y)+F(y,x) <0 forall x,y € C;

(A3) foreachx,y,z € C, limg o F(tz+ (1 —t)x,y) < F(x,y);

(A4) for each x € C,y — F(x,y) is convex and lower semi-continuous.

For any x € E and v > 0, define a mapping Tf : E — C by
1
TF(x) ={ze€ C:Flz,y) + ;(y —z,Jz—]Jx) >0, Yy € C}.

Then T is well-defined and the followings hold:
(1) TFis single-valued;
(2) TF is firmly nonexpansive, i.e., for any x,y € E,

(Trx =Ty, JTix = JTy) < (Tix =Ty, Jx = Jy);

(3) Fix(T]) =EP(F);
(4) EP(F) is closed and convex.

Lemma 2.2 ([1, 15]). Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach
space E. Then

d(x, Icy) + d(Ilcy,y) < d(x,y),
forallx € Candy € E.

Lemma 2.3 ([1, 15]). Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach
space E. Then, for any x € E and z € C we have

z=IIcx < (y—zJx—Jz) <0,
forally € C.
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Lemma 2.4 ([15]). Let E be a smooth and uniformly convex Banach space. Suppose that {xn} and {yn} are the
sequences in E such that either {xn} or {yn} is bounded. If limn_, o $(Xn,yn) =0, then limn o ||Xn —ynl|| = 0.

Lemma 2.5 ([33]). Let E be a uniformly convex Banach space and let v > 0. Then there exists a strictly increasing,
continuous and convex function g : [0,2r] — R such that g(0) = 0 and

I+ (1 =ty 2 < x>+ (1= Olly[> — 1 = g(llx—yl),
forall x,y € By and t € [0,1], where B, ={z € E: ||z|| <}

Lemma 2.6 ([15]). Let E be a smooth and uniformly convex Banach space and let v > 0. Then there exists a strictly
increasing, continuous and convex function g : [0,2r] — R such that g(0) = 0 and

g(llx—yll) < d(x,y),

forall x,y € By, where By ={z € E: ||z|| <1}

Lemma 2.7 ([28]). Let C be a closed convex subset of a smooth, strictly convex and reflexive Banach space E, F

be a bifunction from C x C — R satisfying the conditions (Al)-(A4) and let v+ > 0. Then, for any x € E and
q € Fix(T)),

$(q, T x) + d(Tix,x) < d(q,%).

3. Strong convergence theorems

Theorem 3.1. Let Eq be a uniformly smooth and uniformly convex Banach space and E; be a uniformly smooth,
strictly convex and reflexive Banach space. Let A : E1 — Ep be a linear and continuous operator. Let C and Q be
nonempty closed convex subsets of 1 and E, respectively. Let S : C — C be a relatively nonexpansive mapping
and F: Cx C —= R, H: Q x Q — R be two bifunctions satisfying the conditions (A1)-(A4) with Q NF(S) # 0.
Define an iterative scheme {xn} by the following manner:

take x; = x € By, find v € Eq such that Av € Q,
Vh={xek:|x—v|[|<n},
U, ={x € Vh:Ax € Q},
1
F(un/y) + ?<y _un/]un _]Xn> >0, Vy e C,

n

1 1
H(Azn, Ay) + s*<y —Zn,JzZn —Jun) 20, Yy € Uy, (1)

Yn = ]_1(“n]un +(1—- O‘n)]SHCZn)r
Ch={z€C:dlz,yn) < dlz,xn)},
DTI — m{t:1Ci,

Xn+1 = HDnX/

foreach n > 1, where {rn} C [r, 00) with v > 0, {sn} C [s, 00) with s > 0. Then the sequence {xn} defined by (3.1)
converges strongly to a point Il nrix(s)X, wWhere I1onp(s) is the generalized projection of By onto Q N Fix(S).

Proof. First, we see that, for each n > 1, the sets V;; and U, are nonempty closed and convex. Now, we
show that, for each n > 1, D, is closed and convex. Since

bz, yn) < Pz xn) = [[ynl® = xnl® —2(z Jyn — Jxn) <0,

each C,, is closed and convex and so each D, is also closed and convex.
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Let G(x,y) = H(Ax, Ay) for all x,y € Uy. Then each G is a bifunction from U, x U, into R satisfying
(A1)-(A4), since A is linear and continuous. We rewrite

1
H(Azn, Ay) + :(y —2Zn, Jzn — Jun) 20,
mn

as
1
G(Zn/y) + ?(Q _anlzn - ]un> >0,

n

for all y € Uy. Let p € QN Fix(S). It follows that p = T} p and H(Ap,z) > 0 for all z € Q. Since U, C Q
and Az € Q for all z € U,,, one has H(Ap, Az) > 0 for all z € U,,. It follows that G(p,z) > 0 for all z € U,
and so p = TSan. Note that p € C, up =T] xy and zn = TSGnun. By Lemma 2.2 and Lemma 2.7, we have

d(p,un) < d(p,xn) and
(I)(p/SHCZn) < q)(erCZn) < (I)(p/zn) = d)(p/Tanun) < d)(p/un) < (I)(P/Xn)- (3.2)
Thus, by (3.1) and (3.2), we have
(I)(p/yn) = d)(p/ ]_1(0‘11]1[11 +(1—- O‘n)]SHCZn))
= HPHZ —2(p, onJun + (1 — o )]SI czn) + || otn Jun + (1 — fxn)]SHCZnHZ
< HPHZ — 20t (P, Jun) —2(1 — on )(p, JSIIczn) + “n”unHZ +(1— CXn)HSHCanz
= (xnd)(p/un) + (1 - ‘Xn)d)(pr SHCZTL)

< Oénd)(P/Xn) +(1— Oén)(b(P/Xn)
= ‘P(P/Xn)-

Thus p € C,, and further p € Dy, for each n > 1. It follows that Q N F(S) C Dy, for each n > 1. Hence
{xn} is well-defined. By the definitions of x,,4; and IIp, , we have

d)(anrl/ X) < d) (Z, X)/

for all z € Dy,. Since x* = IIg~r(s)x € QNF(S) C Dy, one has

d)(XnJrl/X) < d)(X*/ X)/

and so {¢(xn,x)} is bounded. Thus {x,} is bounded and so are {u,} and {z,}. Since xn4» = Ilp ,,x €
Dny1 C Dy, we have

d)(XTLJrl/ X) < d)(XTL-O-ZI X)'

Thus the limit of {¢d(xn, x)} exists, since {d(xn, x)} is bounded. For each m > 1, since xpn4+m € Dnym_1 C
Dy _1, by Lemma 2.2, we have

¢ (Xntm,Xn) = G(Xntrm, HDn,lx)

< P (Xnym, x) — d(xn, x).

Since the limit of {¢(xn, x)} exists, it follows that

lim ¢(xn+m,xn) =0, (3.3)

n—oo

for each m > 1. From Lemma 2.4, it follows that

lim ||Xn —Xn4ml| =0, (3.4)
n—oo
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for each m > 1. Thus the sequence {x,} is a Cauchy sequence. Therefore, there exists a point q € C such
that xn, — q as 1 — oco. From (3.3), we have

lim ¢(xn41,%n) = 0. (3.5)

n—o0

On the other hand, from (3.1), it follows that

S (xn+1,2zn) + Gxni1, un) < 2¢0(Xny1,Xn),

which, with (3.5), implies that

lim d)(zn,an) = lim (I)(XnJrl/un) =0.
n—o0 n—oo

By Lemma 2.4, we have
Bim [z —xn 1] = M fun — x| =0. (3.6)
Combining (3.4) with X,y = xn41 and (3.6), we have

lim ||zn —xn| = lim [Jun —xn| =0.
n—oo n—oo

Since ] is uniformly norm-to-norm continuous on bounded sets, we have
lim ||Jzn —Jxn|| = im [[Jun —Jxn| =0.
n—oo n—oo
Therefore, we have
Un —(, Zpn —(, asn — oo.

Now, we prove that q = IIoqp(s)x. Since X1 = IIp,x and QN F(S) C Dy, by Lemma 2.3, we have

(Y —xny1, Jx—=Jxng1) <0, (3.7)
for ally € QNF(S). Letting n — oo in (3.7) and noting that x,, — q, we have

<U _q,IX_]q> <0,
for all y € QNF(S), which from Lemma 2.3, implies that

q =Ilonr(s)x-

This completes the proof. O

If E; = E», C = Q and A = I (the identity mapping) in Theorem 3.1, by the similar proof, we have the
following:

Corollary 3.2. Let E be a uniformly smooth and uniformly convex Banach spaces and C be a nonempty closed
convex subset of E. Let S : C — C be a relatively nonexpansive mapping and F,H : C x C — R be two bifunctions
satisfying the conditions (A1)-(A4) with EP(F) N EP(H) NF(S) # 0. Define an iterative scheme {xn} by the
following manner:

X1 =% € Ey,

Flun,y) + %(y —Un, Jun —Jxn) 20, Yy € C,

n

1
H(zn,y) + —(Y —2zn,Jzn —Jun) 20, Vy € C,
Sn (3.8)
Yn = Jil((xnun +(1— “n)]szn)/
Cn = {V eC: d)(vryn) < d)(len)};
Dn = m?:l Ci/
Xn+1 = Pp,X,
for each n > 1, where {rn} C [r,00) with v > 0 and {sn} C [s,00) with s > 0. Then the sequence {xn} defined by
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(3.8) converges strongly to the point ITgp(FynEp(H)AF(S)X-

Corollary 3.3. Let E be a uniformly smooth and uniformly convex Banach space and C be a nonempty closed convex
subset of E. Let S : C — C be a relatively nonexpansive mapping and F : C x C — R be a bifunction satisfying the
conditions (A1)-(A4) with EP(F) N F(S) # (. Define an iterative scheme {xn} by the following manner:

X1 :XEEl,

1
Flun,y) + 7<y —Un, Jun —Jxn) =0, Yy € C,

Yn = J_l(“nun+(1_“n)lsun)/ (3.9)
Ch={veC: (b(vryn) < d(v,xn)h,
DT]. e m?:1Ci,

Xn41 = PDnX/

for each n > 1, where {rn} C [r,00) with v > 0 and {sn} C [s,00) with s > 0. Then the sequence {xn} defined by
(3.9) converges strongly to the point ITgp(F)nF(s)X

Remark 3.4. In [28, Theorem 3.1], the sequence {x, } is required to satisfy the condition lim inf, o ot (1 —
an) > 0. In Corollary 3.3, there is no any restrictions on {o;, } and so Corollary 3.3 improves [28, Theorem
3.1]. The proof of Theorem 3.1 is also simpler than the one of [28, Theorem 3.1].

4. Weak convergence theorems

Lemma 4.1. Let By be a uniformly smooth and uniformly convex Banach space and E, be a uniformly smooth,
strictly convex and reflexive Banach space. Let A : By — Ep be a linear and continuous operator and C, Q be
nonempty closed convex subsets of €1 and Ey, respectively. Let S : C — C be a relatively nonexpansive mapping
and F: CxC — R, H: Q x Q — R be two bifunctions satisfying the conditions (A1l)-(A4) with Q NF(S) # 0.
Define an iterative scheme {xn} by the following manner:

take x; = x € By, find v € Eq such that Av € Q,
Vh={x€eE  [[x—v||<n}, Uy ={x € Vn:Ax € Q},

1

n

1
H(Azn, Ay) + S—(y —zn, Jzn — Jun) =0, Vy € Uy,
n

Xn+1 = Iil((xnlun + (1 - (xn)ISHCZn)/

for each m > 1, where {rn} C [r,00) with v > 0, {sn} C [s,00) with s > 0 and {0t} C (0,1). Then the sequence
{ITonF(s)xn} converges strongly to a point x* € Q NF(S), where I1nr(s) is the generalized projection of E1 onto
an F(S).

Proof. For each p € QNF(S), we have

dp, xny1) = d(p, ] (“n]un+(1_“n)JSHCZn))

HPHZ 2(p, onJun + (1 — on)JSIczn) + [JonJun + (1 — )]SHCanZ
Ipl1> = 2(p, otnJun + (1= 0n)JSIczn) + otn [[un [|* + (1 — o) [ ST czn |12
ond(p,un) + (1—oan)d(p, SIczn) (4.2)
oxn n) + (1 —on)d(p, Iczn)
on®(p, un) + (1 —an)d(p, zn)
d(p, un) < d(p,xn).

N

pu
pu
, U

NN N



B. H. Guo, P. Ping, H. Q. Zhao, Y. J. Cho, J. Nonlinear Sci. Appl., 10 (2017), 2886-2901 2894

It follows that {¢(p, xn )} is convergent and so it is bounded, which implies that {x,,} is bounded. Further,
{un}, {zn} and {SIIcz,} are bounded. Let yn = I1nF(s)Xn. Then {y,} is bounded. Since y, € QNF(S),
by (4.2), we have

S Yn, xns1) < G(Yn, xn). (4.3)
By Lemma 2.2, we have
GYnt1,Xnr1) = P TonFix(s)Xn+1, Xn+1)
S (Yn, Xnt1) — d(Yn, Ynt1)
$(Yn, Xn+1),

NN

which with (4.3), implies that
¢(Un+1z Xn—!—l) < ¢) (Unl XTL)/
and so the limit of {¢(yn, xn)} exists.
On the other hand, by (4.3), it follows that, for each m > 1,

d)(ynzxn—l—m) < (b(ynlxn—l—m—l) <0 < ¢(Un,Xn+1) < d)(ynzxn)-

By Lemma 2.2, we have

¢(yn/yn+m) + ¢(yn+mzxn+m) < ¢(ynlxn+m) < (b(ynrxn)/

and so
S (Yn, Ynt+m) < ¢(Yn, xn) — O(Unt+m, Xntm),

for each m > 1. Since the limit of {$(yn, xn )} exists, we have

hm ¢(Unzyn+m) = O/

n—o0

for each m > 1. From Lemma 2.4, it follows that

nlgr;o [Yn —Yn+ml =0,

for each m > 1. It follows that {yn } is a Cauchy sequence and hence there exists x* € QO N Fix(S) such that
{yn} converges strongly to x*. This completes the proof. O

Theorem 4.2. Let Eq be a uniformly smooth and uniformly convex Banach space and E; be a uniformly smooth,
strictly convex and reflexive Banach space. Let C, Q be nonempty closed convex subsets of Eq, By, respectively. Let
A : By — Ep be a linear and continuous operator with Q C A(Eq), S : C — C be a relatively nonexpansive mapping
and F: CxC = R, H: Q x Q — R be two bifunctions satisfying the conditions (A1l)-(A4) with Q NF(S) # 0.
Define an iterative scheme {xn} by (4.1). If liminf, o on (1 — &n) > 0 and ] is weakly sequentially continuous,
then the sequence {xr} converges weakly to the point x* € Q NF(S), where x* = limn ;0o ITonF(s)Xn-

Proof. By Lemma 4.1, {u,,} and {SIIcz,} are bounded. Set

a = max{sup ||un||,sup ||SIIczn ||}
n>1 n>1

For all x,y € Bq = {x € Ey : ||x]|* < a}, by Lemma 2.5, there exists a continuous, strictly increasing and
convex function g with g(0) = 0 such that

[tx + (1= t)yl* < tllx] + (1= 1)y = t(1 = t)g(lx —yl),

forall x,y € Bqand t € [0,1].
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For any p € QO NF(S), from

b(p,xni1) = d(p, ] (ot Jun + (1 — an)JSIczn))

= [Ip)* = 2(p, otnJun + (1 — atn)JSIIczn) + [lotn Jun + (1 — an ) JSITczn |2
< Ipll* -2 (p,ocn]un—i—(l on )]SI czn) + onlin > + (1 — 0n)[|SHTczn |12
—an(l— g([[Jun —JSITczn||)

=ond(p,u ) (1—ocn) $(p,SIczn) — an (1 —an)g([[Jun —JSITcznl|)
< ond(p,un) + (1 —otn)d(p, zn) — oxn (1 — an)g([|Jun —JSITczn||)
< ond(p,xn) + (1= otn)b(p, xn) — ot (1 — o) g([|Jun — JSITczn )
= (P, xn) —an(1—on)g(|[Jun —JSITczn )
< ¢(p,xn),
it follows that
on (1= o) g(|[Jun —JSITczn|)) < (P, xn) — d(p, Xn41) — 0.

Since liminf o 0tn (1 — ) > 0, we have
lim g(||Jun —JSIIczn|) =0
n—oo

From the property of g, we have
lim ||Jun —JSIIcznl|| =0.
n—oo

Since J~! is uniformly norm-to-norm continuous on bounded sets, we have

lim |Jun — SITczn|| = 0. (4.4)

n—oo

From Lemma 2.6, there exists a continuous, strictly increasing and convex function g; with g;(0) =0
such that

[x—yl) < dxy),

for all x,y € By, where

b = max{sup [|xn |, sup [tnl, sup [lzn |, sup [Tcza])
n>1 n>1 n>1 n>1

From (4.2), we have
d)(plxn+1) d)(qun) S Cb(Pan)-

Since the limit of {¢&(p, xn )} exists, the limit of {¢(p, un )} also exists and

im_ (p,un) = lim $(p,xn).

n—,oo
From Lemma 2.7, it follows that

(Un, xn)

¢
d(p,xn) — d(p, un)
¢
0

1([[un =xnl])

(p/unfl) - ‘b(P/Un)
. asn — oo,

LA A A

and so

T}gn g1([[un —xnl]) =
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From the property of g; we have
lim |un —xn|| =0. (4.5)

From (4.2), we see
¢(P/Xn+1) - q)('Prxn) < “n(d)(p/un) - dD(P,Xn)) +(1— Oén)((l)(P/Zn) - d?(P/Xn)) <0.

Since liminfy ;o otn (1 — &) > 0 implies that limsup, . an < 1, by using

llm (I)(p,un) = lgrl CI)(P/Xn)r

n—oo
we have
lim d)(przn) = lim ‘b(p/Xn)- (46)
n—oo n—oo
Similarly, we can obtain
lim ¢(p,SIlczn) = lim ¢(p,Ilczn) = lim ¢(p,xn). (4.7)
n—oo n—oo n—oo

By Lemma 2.2, we have
d)(HCZn/Zn) < d)(przn) - d)(p/HCZn)'

By (4.6) and (4.7), we have
lim ¢(IIczn,zn) =0.

n—o0

From Lemma 2.4, it follows that
lim ||zn —IIczn| =0. (4.8)

n—oo

By Lemma 2.7 and (4.6), we have

< O(zn, un)
< ¢(P/un)—¢(P,Zn)
< o(p,xn) —d(p,zn) -0, asn — oco.

g1(llzn —unll)

From the property of g;, we have
lim ||zn —un| =0. (4.9)
n—oo

From (4.4), (4.8), (4.9) and
[SIczn —ezn | < ISIIczn — unl| + [[un — znll + [[zn — czn||,
it follows that
lim ||SITczny —IIcznl| =0. (4.10)
n—oo
Since | is uniformly norm-to-norm continuous on bounded sets, it follows from (3.6) and (4.9) that
li_r)r;o [Tun = Jxn| = T}E};O [Jzn — Jun|| = 0.

From r, > r > 0and s, > s > 0, we have

fim Mo =Ixnll _ gy zn —Junll (4.11)
n—o00 TTL n—oo STL

Since {xy, } is bounded, there exists a subsequence {xy, } of {xn} such that {x,,, } converges weakly to x’ € C.
From (4.5), it follows that {uy, } converges weakly x’. By putting u, = Tfnxn, we have

1
F(un/y) + r(y — Un, ]U-n - IXn> >0,

n
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for all y € C. Replacing n with ny, it follows from (A2) that

1
7(9 _unk’Ju’nk - Ixnk> = _F(unk’y) 2 F(y/u’ﬂk)/

Tn,
for all y € C. Letting k — oo, it follows from (4.11) and (A4) that
Fy,x') <0,
forally € C. Forany t with0 <t <landy € C, letyy =ty+ (1 —t)x’. Sincey € C and x’ € C, one has
Yyt € C and so F(y,x’) < 0. Then, by (Al) and (A4), we obtain
0 =F(yt, yt)
< Ry y) + (1= F(ye, x')
< th(ye, y).
It follows that
Flyt,y) 20,
forally € C. Letting t | 0, from (A3), we have
F(x',y) >0,

for all y € C. Therefore, x” € EP(F). By (4.1), we have
1
H(Azn, Ay) + S—(y —2Zn, Jzn — Jun) 20, (4.12)
n

forally € U,. Since Vi C Vo C --- C Vi, C --- and limp 00 Vi = USX_Vin = Eg, onehas Uy C Uy --- C
U, C -+ and limp 0 Uy = UL Un = {x € By : Ax € Q}. Replacing n with ny in (4.12) , from (A2), we
have

1
— (Y —2zn,,JzZn, — Jun,) = —H(Azn,, Ay) > H(Ay, Auy, ), (4.13)

Snk

for ally € Uy, . Letting k — oo, by (4.13) and (A4), we obtain
0 > H(Ay, Ax'),
forally € {x € E; : Ax € Q}. Since Q C A(E;), we have
0> H(y, Ax'),

for all y € Q. By the similar process with x” € EP(F), we can prove that Ax’ € EP(H). Therefore, x’ € Q.

Now, we show that x’ € F(S). From (4.5), (4.8) and (4.9), we see that IIcz, weakly converges to x'.
From (4.10), it follows that x’ € F(S) = F(S). Let y,, = IToAF(s)Xn. From Lemma 2.3 and x” € QNF(S),
we have

(Yn, —x', Jxn, — Jyn,) = 0. (4.14)
By Lemma 4.1, it follows that {y,} converges strongly to x* € QO NF(S). Since | is weakly sequentially
continuous, by letting k — oo in (4.14), we have

(x*—x', ]x" = Jx*) > 0.
On the other hand, since ] is monotone, we have
(x*—x', ]x" = Jx*) <0,

and so it follows that
(x* —x/,Jx" —Jx*) = 0.

Since E; is strictly convex, one has x* = x’. Therefore, the sequence {x,} converges weakly to x* €
QNF(S), where x* = limn 00 [IoAF(s)Xn. This completes the proof. O
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Corollary 4.3. Let E be a uniformly smooth and uniformly convex Banach spaces and C be a nonempty closed and
convex subset of E. Let F,H : C x C — R be two bifunctions satisfying the conditions (Al)-(A4) and S: C — C
be a relatively nonexpansive mapping with EP(F) N EP(H) NF(S) # 0. Define an iterative scheme {xn} by the
following manner:

x1 =x € C,

1
Flun,y) + r(y —Un, Jun —Jxn) =0, Yy € C,

1‘ (4.15)
H(zn,y) + ;(y —2zZn,Jzn —Jun) 20, Yy € C,

n

Xn+1 = Iil(o‘n]un +(1—oan)JSzn),

forallm > 1, where {rn} C [r,00) witht > 0, {sn} C [s,00) with s > 0 and {xn} C (0,1). If liminfy, 0 an(1—
an) > 0and | is weakly sequentially continuous, then the sequence {xn } generated by (4.15) converges weakly to a
point x* € EP(F) NEP(H) N F(S), where x* = limy 00 ITgp(F)nEP (H)NF(S)Xn-

Remark 4.4. Theorem 3.1 and Theorem 4.2 extend the results of Takahashi and Zembayashi [28] from
equilibrium problems to split equilibrium problems. In Theorem 3.1 of Takahashi and Zembayashi [28],
the sequence {xy,} is required to satisfy the condition liminf,, ;o &n(1—an) > 0. In our Theorem 3.1,
there is no any restrictions on the control condition {&,,} and so Theorem 3.1 improves the result of
Takahashi and Zembayashi [28]. The proof method of our Theorem 3.1 is also simpler than the one of
Takahashi and Zembayashi [28].

5. Applications

Let Eq, E> be two Banach spaces and C, Q be nonempty closed convex subsets of Ey, E;, respectively.
Let A : E; — E; be an operator. The split feasibility problem is to find x* € C such that

Ax* € Q. (5.1)

For more results on split feasibility problems, the readers refer to [3, 4, 6, 9, 29, 34, 35].
Now, by Theorem 3.1 and Theorem 4.2, we give the following results on split feasibility problems in
Banach spaces:

Theorem 5.1. Let By be a smooth and uniformly convex Banach space and Ey be a smooth, strictly convex and
reflexive Banach space. Let C and Q be nonempty closed convex subsets of 1 and Ey, respectively. Let A : E; — Ep
be a linear and continuous operator. Suppose that Q # (), where Q denotes the solution set of the problem (5.1).
Define an iterative scheme {xn} by the following manner:

take x; =x € C, find v € Eq such that Av € Q,
Vh={x€k:|x—v|<n},

U, ={x e Vy:Ax € Q},

zn = Iy, Xn,

Yn =] (o )xn + (1= on) [ czn),
Cn={z€C:d(z,yn) < d(z,xn)},

Dn =N, Gy,

Xn+1 = HDnX/

(5.2)

for each n > 1. Then the sequence {xn} defined by (5.2) converges strongly to a point I1ox, where Il is the
generalized projection of E1 onto Q.



B. H. Guo, P. Ping, H. Q. Zhao, Y. J. Cho, J. Nonlinear Sci. Appl., 10 (2017), 2886-2901 2899

Proof. In Theorem 3.1, let F(x,y) = 0 for all x,y € C and H(x,y) = 0 for all x,y € Q. By Lemma 2.3,
we have u,, = Ilcxn and z, = Iy un. Since x, € C for each n > 1, we have u,, = x,, and hence the
algorithm (3.1) is deduced to (5.2) by setting S = I in Theorem 3.1. Therefore, by Theorem 3.1, we can
obtain the desired result. This completes the proof. O

Theorem 5.2. Let Ey be a smooth and uniformly convex Banach space and £, be a smooth, strictly convex and
reflexive Banach space. Let C and Q be the nonempty closed and convex subsets of 1 and E;, respectively. Let
A : E1 — B be a linear and continuous operator with Q C A(Eq). Suppose that Q) # (. Define an iterative scheme
{xn} by the following manner:

take x; =x € C, find v € By such that Av € Q,

Vhi={xek |x—v|<n},

U, ={x e V,:Ax € Q}, (5.3)
in = nUan/

Xnt1 =] HomJxn + (1 — o) czn),

foreach n > 1. If liminfn o an (1 — &n) > 0 and ] is weakly sequentially continuous, then the sequence {xn}
defined by (5.3) converges weakly to a point x* € Q, where x* = limn_,oc IToXn.

Finally, for the sake of simplicity, we give an example in finite dimension Euclidean spaces to illustrate
Theorem 3.1 as follows:

Example 5.3. Let E; = R and E; = R%. Let A : E; — E; be a mapping defined by Ax = (x,x/2) for
all x € E;. Let C = [0,10] and Q = [10,+00) x [5,+00). Let F(x,y) = x—y for any x,y € C and
H(x,y) = y1 +y2 —x1 —x2 for any x = (x1,%2),y = (y1,Y2) € Q. It is obvious that F and H satisfy the
conditions (A1)-(A4) and Q = {10}. Take x; = x =2, v = 12 and for simplicity, set &, = % andrp, =s, =1
for eachn > 1.

For any x,, € C, we need to find u, € C such that

Flun,y) + <y —Un,Un _Xn> =Un —Y+ (Y —un)(Un —xn)
= (un_xn_l)y +u-n(1 —Un +Xn)
=0,

for ally € C. Hence u,, =1+ xy, if xn <9 and un, =10 if x, > 9.
For each u,,, we need to find z,, € U, such that

H(Azn, AY) 4+ (Y —zn,Zn —Un) = - — —— + (Y —zn ) (zZn — Un)

forally € Uy.
If up, — % < Ly, (zn—un —i—% > 0 for all z, € U,), where Ly,, = min,ey, X, then z, = Ly, since
Un+2Zn

(zn —un + %)y —zn(zZn —un + %) > 0 forally € Uy, implies that z, <y forally € U,. Theny, = *5
By the simple computation, we obtain some results on Vi, Uy, Dy, Yn, zn, un and x,, as follows:

n| Vun U, Dy Yn Zn Un Xn
1 | [11,13] | [11,13] [4.5,10] 7 11 3 2

2 | [10,14] | [10,14] [6.125,10] 7.75 10 5.5 45

31 [9,15] | [10,15] [7.34375,10] 8.5625 10 7.125 6.125
4 | [8,16] | [10,16] | [8.2579125,10] | 9.171875 | 10 | 8.34375 | 7.34375

Therefore, by Theorem 3.1, the sequence {x } converges to an element x* € Q, i.e.,, x* = 10.
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6. Conclusions

In this paper, we introduce some new strong and weak convergence algorithms to solve split equilib-
rium problems and fixed point problems for relatively nonexpansive mappings in Banach spaces. In our
algorithms, we first construct two sets V;,, Uy, and transform the bifunction H on Q x Q to the bifunction
HA on the set U,,. The algorithms of this paper only involve the operator A itself and do not use any
restrictions on the adjoint A* and the norm ||A|| of A and so our algorithms can be implemented more
effectively.
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