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Abstract

This paper discusses a problem of the Hopf bifurcation control for a mathematical model of intracellular calcium oscillations
by calculating the curvature coefficient of limit cycle and the bifurcation control theory. We find that the appearance and
disappearance of calcium oscillations in this system are due to the supercritical and subcritical Hopf bifurcation of equilibrium
points, respectively. In addition, a nonlinear feedback controller is proposed to control the frequency and amplitude of periodic
orbits arising from the Hopf bifurcation. Numerical analysis and simulation results are carried out to illustrate the validity of
the feedback controller in controlling Hopf bifurcations. c©2017 All rights reserved.
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1. Introduction

Free calcium ion is one of the important intracellular second messengers in living biological cells.
Oscillations in concentration of calcium ions arise in response to extracellular agonist (neurotransmitter
or hormone) and play a vital role in many cell types [1, 3, 5, 7, 8]. These calcium oscillations, such as
spike, burst and chaos, were observed in a recent biological experiment on cultured cardiac myocytes
[2]. A lot of mathematical models have been established to investigate the dynamical mechanism of
these oscillatory activities. Among them, the model proposed by Kummer and co-workers considers that
depending on the type of receptor, activation of Ga subunit of receptor complex could be self-enhanced.
After binding of an agonist, Ga subunit of G proteins-coupled receptor is activated [4].

It is well-known that oscillatory activities may vary according to certain bifurcation principles and
information is typically encoded in frequency, amplitude, and spatial calcium propagation. Therefore,
numerical analysis and control of bifurcation are fundamental to study the appearance and disappearance
of calcium oscillation in biological cells. The dynamical mechanisms of these calcium oscillations have
been investigated both from theoretical and experimental points of view, over the past twenty years [6, 9–
12].
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2. Model description

Towards a better understanding of the complex calcium oscillations in intracellular signal transduc-
tion, we take the model, proposed by Kummer et al., as an example of the Hopf bifurcation control
systems of calcium oscillations. This model, which consists of three main variables: the free calcium con-
centration in the cytosol (Cacyt), the active PLC(PLC) and Gα subunit concentration (Gα), is considered
to preserve the above dynamics. The equations of this model are given as follows:

dCacyt/dt = k10Gα − k11
Cacyt

Cacyt +K12
,

dGα/dt = k1 + k2Gα − k3PLC
Gα

Gα +K4
− k5Cacyt

Gα

Gα +K6
,

dPLC/dt = k7Gα − k8
PLC

PLC+K9
.

(2.1)

Viewing k2 as a bifurcation parameter, we study the existence and the stability of system (2.1) as k2
is varied. Other parameters are: k1 = 0.212,k3 = 1.52,k5 = 4.88,k7 = 1.24,k8 = 32.24,k10 = 13.58,k11 =
153,K4 = 0.19,K6 = 1.18,K9 = 29.09,K12 = 0.16.

3. Main results

Let x = Cacyt,y = Gα, z = PLC, r = k2, we rewrite system (2.1) as:
ẋ = 13.58y− 153x/(x+ 0.16),
ẏ = ry− 4.88xy/(y+ 1.18) − 1.52yz/(y+ 0.19) + 0.212,
ż = 1.24y− 32.24z/(z+ 29.09).

(3.1)

One can calculate the Jacobian matrix (aij)3×3 of system (3.1), and get the following characteristic
equation:

f(λ) = λ3 +Q1λ
2 +Q2λ+Q3,

where

Q1 = −(a11 + a22 + a33),
Q2 = a11a22 + a11a33 + a22a33 − a13a31 − a12a21 − a32a23,
Q3 = a31a13a22 + a12a21a33 + a32a23a11 − a11a22a33 − a12a23a31 − a13a21a32.

After a simple computation, we get the following conclusions:

(1) system (3.1) has a stable node when r < 1.316;

(2) system (3.1) has a non-hyperbolic equilibrium point O1 = (0.0158, 1.013, 1.1793) when r = 1.316;

(3) system (3.1) has an equilibrium point (saddle) when 1.316 < r < 2.999;

(4) system (3.1) has a non-hyperbolic equilibrium point O2 = (0.8617, 9.5022, 16.7551) when r = 2.999;

(5) system (3.1) has a stable node when r > 2.999.

For r = 1.316 we consider the equilibrium point O1 and calculate the eigenvalues of system (3.1) at
(0.0158, 1.013, 1.1793). Then

α ′(1.316) = real
(
∂α(r)

∂r
|r=1.316

)
= real

(
−
f ′r (λ)

f ′λ (λ)

)
= 0.5003.
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Fig. 1 displays the bifurcation diagram of the equilibrium points of system (3.1). Each point of the
curve (solid line) denotes the stable equilibrium points, and the dashed line indicates unstable equilibrium
points. Filled circles represent stable periodic orbits and open circles are unstable. It is seen that the
equilibrium undergoes two bifurcation points (HB1 and HB2). Corresponding parameter values are k1

2 =
1.316 and k2

2 = 2.999, respectively. When k2 < k
1
2, there exists a stable equilibrium point of system (3.1).

As k2 increases, the equilibrium point loses its stability at HB1, and returns to be stable at HB2.

Figure 1: Equilibrium curve of (3.1) in (k2,Cacyt) plane.

Suppose  x

y

z

 =

 0.0158
1.013
1.1793

+ P

 u

v

w

 ,

where

P =

 0 1 1
0.0541 58.3276 0.0028
−33.4393 46.6649 −0.000004455

 .

Hence  u̇

v̇

ẇ

 =

 0 −0.7348 0
0.7348 0 0
0 0 −791.9855

 ·
 u

v

w

+

 Q1
Q2
Q3

 ,

where

Q1 = 0.355789v− 0.000352u− 0.000018w+ 0.962889a+ 0.010257b− 0.116611c+ 0.036321d− 0.001517,
Q2 = 1.278389v− 0.733614u+ 0.000061w− 0.000893a+ 0.007336b− 0.083561c+ 0.026027d+ 0.025832,
Q3 = 790.8104v+ 0.733492u+ 792.023w+ 0.000893a− 153.0073b+ 0.083561c− 0.026027d+ 13.7307,

a =
σ1 − 1.1793
σ1 − 30.2693

, b =
v+w+ 0.0158
v+w+ 0.1758

, c =
(v+w+ 0.0158) (σ2 + 1.013)

(σ2 + 2.193)
, d =

(σ1 − 1.1793) (σ2 + 1.013)
σ2 + 1.203

,

σ1 = 33.4393u− 46.6649v+ 0.000004455w, σ2 = 0.0541u+ 58.3276v+ 0.0028w.

To facilitate the following discussion, we do the following hypotheses:

(t1, t2, t3) = (u, v,w), Lijk =
∂Qi
∂tj∂tk

∣∣
(t1,t2,t3,r)=(0,0,0,1.316) , Lijks =

∂Qi
∂tj∂tk∂ts

∣∣
(t1,t2,t3,r)=(0,0,0,1.316) .

One can calculate the following characteristic quantities for r = 1.316 and (u, v,w) = (0, 0, 0),

g20 = 0.25(L1
11 − L

1
22 + 2L2

12 + i(L
2
11 − L

2
22 − 2L1

12)),
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g11 = 0.25(L1
11 + L

1
22 + i(L

2
11 + L

2
22)),

G110 = 0.5(L1
13 + L

2
23 + i(L

2
13 − L

1
23)),

G101 = 0.5(L1
13 − L

1
23 + i(L

2
13 + L

1
23)),

w11 =
1

4× 791.9855
(L3

11 + L
3
22),

w20 =
1

4× (2× 0.7348i+ 791.9855)
· (L3

11 − L
3
22 − 2iL3

12),

G21 =
1
8
(L1

111 + L
1
122 + L

2
112 + L

2
222 + i(L

2
111 + L

2
122 − L

1
112 − L

1
222)).

After the computation, we have

g20 = 3.049079 − 3.92752i, g11 = −0.832716 + 0.59769i, G110 = −0.814186 + 1.135644i,
G101 = 0.813086 − 1.136432i, w11 = 2.843756, w20 = −2.843748 + 0.00949i, G21 = −177.3318 + 1.155082i.

Then the curvature coefficient of limit cycle is described by

σ = Re

{
g20g11

2× 0.7348
i+G110w11 +

G21 +G101w20

2

}
= −95.5975.

For | r− 0.2345 |� 1, the amplitude of limit cycle of (3.1) is

R�
√

−
α ′(1.316)

σ
(r− 1.316) = 0.0515

√
r− 1.316.

Summarizing the discussion above, we draw the following conclusion based on the Hopf bifurcation
theory:

Conclusion 3.1. A supercritical Hopf bifurcation occurs when r passes through r0 = 1.316 of system (3.1).
When r < r0, the equilibrium point O1 is stable. When r > r0, the equilibrium point O1 will lose its
stability, meanwhile the neighborhood around it has a stable periodic solution and the (3.1) begins to
oscillate.

For r0 = 2.999, the characteristic roots of equilibrium point O2 = (0.8617, 9.5022, 16.7551) of (3.1) are
ξ1 = −20.9912, ξ2 = 1.3674i, ξ3 = C1.3674i, respectively.

α ′(2.999) = real
(
∂α(r)

∂r
|r=2.999

)
= real

(
−
f ′r (λ)

f ′λ (λ)

)
= 0.55703.

Then the curvature coefficient of limit cycle is described by

σ = Re
{

g20g11

2× 1.3674
i+G110w11 +

G21 +G101w20

2

}
= −0.7892,

where

g20 = 0.615496 + 1.322315, g11 = −0.627172 − 1.322487i, G110 = −2.63636 + 1.23378,
G101 = 2.635154 − 1.236266i, w11 = 0.609733, w20 = −0.599604 + 0.078183i, G21 = 1.918087 − 0.900265i.

Conclusion 3.2 can be inferred when α ′(2.999) > 0 and σ < 0.

Conclusion 3.2. A subcritical Hopf bifurcation occurs when r passes through r0 = 2.999 of system (3.1).
When r < r0, the equilibrium point O2 is unstable, and system (3.1) is going to oscillate. However, when
r > r0, the equilibrium point O2 is stable, and oscillatory phenomena of system (3.1) disappear.
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Next, a nonlinear feedback controller is introduced to avoid re-computing values of the equilibrium
points and the Hopf bifurcation points of (3.1). We therefore assume the suitable controller form given
by:

U(X, r) =
[
k(y− 9.5022)2 0 0

]T .

We have the following control system by adding the above term on the right of the first equation of
system (3.1): 

dCacyt/dt = k10Gα − k11
Cacyt

Cacyt +K12
+ k(y− 9.5022)2,

dGα/dt = k1 + k2Gα − k3PLC
Gα

Gα +K4
− k5Cacyt

Gα

Gα +K6
,

dPLC/dt = k7Gα − k8
PLC

PLC+K9
.

(3.2)

According to the analysis of amplitude of limit cycle, we get u̇

v̇

ẇ

 =

 0 −1.3674 0
1.3674 0 0
0 0 −20.9912

 ·
 u

v

w

+

 Q̃1

Q̃2

Q̃3

 ,

where  Q̃1

Q̃2

Q̃3

 =

 Q1
Q2
Q3

+

 U1
U2
U3

 ,

 U1
U2
U3

 =

 −0.0533 0.2522 −0.7020
−0.1136 0.6304 0.0457
1.1136 −0.6304 −0.0457

 ·U(X, r).

Similar to our previous analysis, it is concluded that

g̃20 = g20 + k(0.0595 + 0.1885i), g̃11 = g11 − k(0.0798 + 0.1699i),

G̃110 = G110 − k(0.0365 − 0.0146i), G̃101 = G101 + k(0.0345 − 0.0187i),

w̃11 = w11 + 0.0794k, w̃20 = w20 + k(−0.0787 + 0.00103i), G̃21 = G21.

When | r− 2.999 |� 1, the curvature coefficient of limit cycle is described by

σ̃ = Re

{
g̃20g̃11

2× 1.3674
i+ G̃110w̃11 +

G̃21 + G̃101w̃20

2

}
= σ+ Re

{
k2(0.00495 + 0.01189i) + k(−0.19535 + 0.30554i)

}
= 0.00495k2 − 0.19535k− 0.78924.

The amplitude of limit cycle of system (3.2) is given as

R̃�
√
−
α ′(2.999)

σ
(r− 2.999).

Furthermore, defining P =
R

R̃
, then we have

P =
√

1 + 0.1061k− 0.6537k2.

Hopf bifurcation control can be accomplished in the range −1.1554 < k < 1.3169 of the control
parameter k under appropriate conditions. The goal is to indirectly change the value of P, thereby
controlling the frequency and amplitude of the limit cycles.
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In order to illustrate the effectiveness of the proposed method, we now choose the control parameters
k = 1.29 and K2 = 2.05. Fig. 2 shows the manipulation of frequency and amplitude of calcium oscillation.
Fig. 2 (a) is the above oscillation behavior with parameters K2 = 2.05 and k = 0. The corresponding phase
portraits is also plotted in Fig. 2 (c). Fig. 2 (b) is the control oscillation with parameters K2 = 2.05 and
k = 1.29. The corresponding phase portraits is plotted in Fig. 2 (d). One can observe that an increase of
the control parameter k correlates with reduction of the frequency and amplitude of the above calcium
oscillations.

Figure 2: Comparison of frequency and amplitude manipulation of calcium oscillation for K2 = 2.05. (a) Time series for k = 0.
(b) Time series under control for k = 1.29. (c) Corresponding phase portraits for k = 0. (d) Phase portraits under control for
k = 1.29.

Figure 3: Comparison of frequency and amplitude manipulation of calcium oscillation for K2 = 2.05. (a) Time series for k = 0.
(b) Time series under control for k = −0.802. (c) Corresponding phase portraits for k = 0. (d) Phase portraits under control for
k = −0.802.

Unlike the previous case, we consider an increased frequency of calcium waves. For this purpose, we
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choose k = −0.802 and K2 = 2.05. Fig. 3 (a) and (c) in left column are the same to Fig. 2. Fig. 3 (b)
and (d) are the control oscillation with parameter k = −0.802. It is seen that an increase in number of
spikes in Fig. 3 (b) with varying the control parameter. Fig. 3 (d) is the corresponding phase portrait and
incorporates the manipulation of amplitude of spike.

4. Conclusion

In this article, we study the frequency and amplitude control problem of Hopf bifurcation in a math-
ematical model proposed by Kummer et al. under a nonlinear feedback controller. It is shown that the
supercritical and subcritical Hopf bifurcations play a vital role in occurrence of calcium oscillations. Ex-
plicit control formula and amplitude approximation are given by calculating the curvature coefficient of
limit cycle. In addition, numerical simulations are drawn and verified the manipulation of frequency and
amplitude of intracellular calcium oscillations by changing the control parameter.
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