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Abstract
In this paper, an equilibrium problem which is also known as the Ky Fan inequality is investigated based on a fixed point

method. Strong convergence theorems for solutions of the equilibrium problem are established in the framework of reflexive
Banach spaces. Applications are also provided to support the main results. c©2017 All rights reserved.
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1. Introduction

Let E be a real Banach space and let C be a convex and closed subset of E. R stands for the set of real
numbers. Let B : C×C→ R be a function. In this paper, we concern with the following inequality, which
was first studied by Ky Fan [10]. Find an x ∈ C such that

B(x,y) > 0, ∀y ∈ C. (1.1)

This inequality is called the Ky Fan inequality. It is also known as the equilibrium problem in the sense
of Blum and Oettli [5]. In what follows, we use Sol(B) to denote the solution set of the Ky Fan inequality.
The Ky Fan inequality, which includes many important problems in convex optimization and nonlinear
functional analysis fields such as game theory, nonlinear complementarity problems, zero point problems,
fixed point problems, and saddle point problems, recently has been extensively studied as a powerful
and effective tool for solving problems which arise in the real world, for instance, economics, finance,
transportation, ecology, and network; see [2, 7, 8, 11, 17, 19] and the references therein.

Mann-type iterative algorithms and Ishikawa-type iterative algorithms are efficient to approximate
fixed points of nonlinear operators. However, they are only weakly convergent in infinite-dimensional
Banach spaces. In many disciplines, including economics, image recovery, and quantum physics problems
arise in infinite dimension spaces. In such problems, strong convergence is often much more desirable
than weak convergence for it translates the physically tangible property that the energy ‖xn − x‖ of the
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error between the iterate xn and the solution x eventually becomes arbitrarily small. Recently, various
regularization methods, in particular, projection methods, have been extensively investigated by many
authors; see [4, 15] and the references therein.

In this paper, we propose a projection method for finding a common solution of an uncountable
family of the Ky Fan inequalities. Strong convergence theorems of common solutions are established in
the framework of real reflexive Banach spaces. The highlights of this paper are the framework of the
space, which do not require the uniform smoothness, the uniform convexness and the parallel projection
method which is efficient for an uncountable family of nonlinear operators. The paper is organized as
follows. In Section 2, we provide some necessary definitions, properties and lemmas. In Section 3, the
main strong convergence theorems are established in the framework of real reflexive Banach spaces. In
Section 4, some applications are provided to support our main results.

2. Preliminaries

From now on, we use E∗ to stand for the dual space of E. Recall that the normalized duality mapping
J from E to 2E

∗
is defined by

Jf := {g∗ ∈ E∗ : ‖g∗‖2 = ‖f‖2 = 〈f,g∗〉}.

Let BE be the unit sphere of E. Recall that a Banach space E is said to be strictly convex if and only if ‖x+
y‖ < 2 for all x,y ∈ BE with x 6= y. E is said to be uniformly convex if and only if limn→∞ ‖un − vn‖ = 0,
where {un} and {vn} in BE and limn→∞ ‖un + vn‖ = 2. E is said to have a Gâteaux differentiable norm
or smooth if and only if lims→∞(‖sx+ y‖− s‖x‖) exists for all x,y ∈ UE. E is said to have a uniformly
Gâteaux differentiable norm if for all y ∈ BE, lims→∞(s‖x‖− ‖sx+ y‖) is uniformly obtained ∀x ∈ BE. E
is said to be have a Fréchet differentiable norm if and only if for each x ∈ BE, lims→∞(s‖x‖− ‖sx+ y‖)
is attained uniformly for all y ∈ BE. E is said to be have a uniformly Fréchet differentiable norm if
lims→∞(s‖x‖− ‖sx+ y‖) is attained uniformly for all x,y ∈ BE.

It is known if E is uniformly smooth, then J is uniformly norm-to-norm continuous on every bounded
subset of E; if E is a smooth Banach space, then J is single-valued and demicontinuous, i.e., continuous
from the strong topology of E to the weak star topology of E; if E is a strictly convex Banach space, then J
is strictly monotone; if E is a reflexive and strictly convex Banach space with a strictly convex dual E∗ and
J∗ : E∗ → E is the normalized duality mapping in E∗, then J−1 = J∗; if E is a smooth, strictly convex, and
reflexive Banach space, then J is single-valued, one-to-one, and onto; if E is a uniformly smooth, then it is
smooth and reflexive. It is also known that E∗ is uniformly convex if and only if E is uniformly smooth.

From now on, we use symbols → and ⇀ to denote the strong convergence and weak convergence,
respectively. Recall that E has the Kadec-Klee property (KKP) [9] if xn ⇀ x and ‖xn‖ → ‖x‖, then
‖xn − x‖ → 0 as n → ∞, where {xn} is any sequence in E, and x is a point in E. We also remark here
that there exist uniformly convex Banach spaces which have neither the Opial’s property nor the Fréchet
differentiable norm but their duals have the KKP; see [12] and the references therein.

Example 2.1 ([12]). Let E be the Lp[0, 1], where 1 6 p <∞ but p 6= 2. Let F be R2 with the standard norm.
The Cartesian product of E and F furnished with the l2-norm is a uniformly convex space, its norm is not
Fréchet differentiable, and it also does not have the Opial’s property. But its dual has the KKP.

Let M be a mapping on E. In this paper, we use Fp(M) to stand for the fixed point set of M. Recall
that a point q is said to be an asymptotic fixed point of M iff E contains a sequence xn ⇀ q such that
‖xn −Mxn‖ → 0 as n→∞. The set of asymptotic fixed points of M is denoted by Afp(M) in this paper.

Let E be a real smooth Banach space in which J is single-valued. We investigate the functional which
is defined by

φ(x,y) := ‖x‖2 + ‖y‖2 − 2〈x, Jy〉, ∀x,y ∈ E.

Let C be a convex and closed subset of a real Hilbert space H. For any x ∈ H, there exists a unique
nearest point in C, denoted by PCx, such that ‖x− y‖ > ‖x− PCx‖ for all y ∈ C. The operator PC is called
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the metric projection from H onto C. It is known that PC is firmly nonexpansive, that is, ‖PCx− PCy‖2 6
〈PCx−PCy, x−y〉. In [3], a new operator ProjC was introduced based on operator PC in the framework of
Banach spaces. The generalized projection ProjC : E → C is a mapping that assigns to an arbitrary point
x ∈ E the minimum point of φ(x,y). From the definition, we have the following inequality

‖x‖2 + ‖y‖2 − 2〈x, Jy〉 = φ(x,y) > (‖x‖− ‖y‖)2,∀x,y ∈ E.

Recall that a mapping M is said to be relatively asymptotically nonexpansive [1] iff, ∀q ∈ Afp(M) =
Fp(M) 6= ∅, ∀p ∈ E,∀n > 1,

φ(q,Mnp) 6 φ(q,p) + µnφ(q,p),

where {µn} ⊂ [0,∞) is a sequence such that µn → 0 as n→∞.
M is said to be relatively nonexpansive [6] iff, ∀q ∈ Afp(M) = Fp(M) 6= ∅, ∀p ∈ E,

φ(q,Mp) 6 φ(q,p).

M is said to be asymptotically quasi-φ-nonexpansive [15] iff, ∀q ∈ Fp(M) 6= ∅, p ∈ E, ∀n > 1,

φ(q,Mnx) 6 φ(q,p) + µnφ(q,p),

where {µn} ⊂ [0,∞) is a sequence such that µn → 0 as n→∞.
M is said to be quasi-φ-nonexpansive [14] iff, ∀q ∈ Afp(M) 6= ∅,∀p ∈ E,

φ(q,Mp) 6 φ(q,p).

Remark 2.2. The class of quasi-φ-nonexpansive mappings is more desirable than the class of relatively
nonexpansive mappings. Quasi-φ-nonexpansive mappings, which are reduced to quasi-nonexpansive
mappings in the framework of Hilbert spaces (

√
φ(x,y) = ‖x − y‖), do not require strong restriction

Fp(M) = Afp(M); see [14] and the references therein.
The following conditions are essential in this paper for studying equilibrium problem (1.1).

(C-1) B(s, s) = 0,∀s ∈ C;

(C-2) B(s, r) > lime→0+ B((1 − e)s+ et, r), ∀s, t, r ∈ C;

(C-3) 0 > B(t, s) +B(s, t),∀s, t ∈ C;

(C-4) for each s ∈ C, t 7→ B(s, t) is weakly lower semi-continuous and convex.

In addition, we also need the following lemmas to obtain our main results.

Lemma 2.3 ([3]). Let E be a reflexive, strictly convex, and smooth Banach space. Let C be a convex and closed
convex subset of E. Let s ∈ E. Then

φ(t, ProjCs) 6 φ(t, s) −φ(ProjCs, s), ∀t ∈ C.

Lemma 2.4 ([3]). Let E be a smooth Banach space E and let C be a convex and closed subset of E. Let s0 ∈ C and
s ∈ E. Then inf{φ(t, s) : z ∈ C} = φ(s0, s) iff

0 6 〈s0 − r, Js− Js0〉, ∀r ∈ C.

Lemma 2.5. Let E be a smooth, strictly convex and reflexive Banach space E and let C be a convex and closed subset
of E. Let B be a bifunction with (C-1)-(C-4). Let r > 0 and x ∈ E. Then

(a) there exists v ∈ C such that [5]

rB(v, t) > 〈v− t, Jv− Js〉, ∀t ∈ C;

(b) define a mapping Sr,B : E→ C by ([14, 18])

Sr,Bs = {v ∈ C : rB(v, t) > 〈v− t, Jv− Js〉, ∀t ∈ C}.

Then the following conclusions hold:



A. Latif, A. S. Alhomaidan, X. Qin, J. Nonlinear Sci. Appl., 10 (2017), 2828–2836 2831

(1) Fp(Sr) = Sol(B);

(2) Sr,B is quasi-φ-nonexpansive and satisfies the inequality

φ(Sr,Bx, x) 6 φ(q, x) −φ(q,Sr,Bx),∀q ∈ Fp(Sr).

Remark 2.6. If B(s, t) ≡ 0 for all s, t ∈ C, then Sr,B is reduced to PC, the metric projection, in the framework
of Hilbert spaces.

Remark 2.7 ([14]). Let ProjC be the generalized projection operator from a smooth, strictly convex, and
reflexive Banach space E onto a convex and closed subset C of E. Then ProjC is a closed and quasi-φ-
nonexpansive mapping with Fp(ProjC) = C.

Remark 2.8 ([14]). Let E be a strictly convex, reflexive, and smooth Banach space, and M is a maximal
monotone mapping with a nonempty zero point setM−1(0). Then Jr,M = (J+ rM)−1J : E→ D(M), where
D(M) denotes the domain of M, is a closed quasi-φ-nonexpansive mapping with A−1(0) = Fp(Jr,M),
where r > 0 is real number.

Example 2.9. Let E be any smooth Banach space and define a mapping S on E by

Sx =

{
−x, x 6= ( 1

3 +
1

3n )x
′,

( 1
3n+1 +

1
3)x
′, x = ( 1

3 +
1

3n )x
′,

for n = 1, 2, 3 · · · , where x ′ is a nonzero element in E. Then S is a quasi-φ-nonexpansive mapping but not
relatively nonexpansive mapping. From the definition, we see that S has a unique fixed point 0. Note that

‖Sx‖2 − ‖x‖2

2
6 〈JSx− Jx, 0〉 = 〈JSx− Jx,p〉.

It follows that
‖p‖2

2
− 〈p, JSx〉+ ‖Sx‖

2

2
6
‖p‖2

2
− 〈p, Jx〉+ ‖x‖

2

2
for all x ∈ E, that is, φ(p, x) > φ(p,Sx). S is quasi-φ-nonexpansive. Next, we prove that T is not a
relatively nonexpansive. Let

xn = (
1
3
+

1
3n

)x ′.

Using the definition, we have

(
1
3
+

1
3n+1 )x

′ = Sxn.

This implies limm→∞ ‖xm − Sxm‖ = 0 and xm ⇀ x ′ as m→∞. That is, x ′ is in Afp(S) but not in Fp(S).

3. Main results

Theorem 3.1. Let E be a strictly convex, smooth, and reflexive Banach space. Let Λ be an index set and let C be
a convex closed subset of E. Let Bi be a function with (C-1)-(C-4) for every i ∈ Λ. Assume that ∩i∈ΛSol(Bi) is
not empty and both E and E∗ have the KKP. Let {xn} be a sequence generated in the following algorithm: x0 ∈ E is
chosen arbitrarily, 

C(1,i) = C, x1 = ProjC1:=∩i∈ΛC(1,i)
x0,

r(n,i)Bi(u(n,i),y) > 〈u(n,i) − y, Ju(n,i) − Jxn〉, ∀y ∈ Cn,
C(n+1,i) = {µ ∈ C(n,i) : φ(µ,u(n,i)) 6 φ(µ, xn)},
xn+1 = ProjCn+1:=∩i∈ΛC(n+1,i)

x1,

where {r(n,i)} is such that lim infn→∞ r(n,i)>0 for every i ∈ Λ. Then {xn} converges strongly to Proj∩i∈ΛSol(Bi)x1.
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Proof. From Lemma 2.5, we see that Sol(Bi) is convex and closed for each i ∈ Λ. Hence, ∩i∈ΛSol(Bi) is
convex and closed. Therefore, Proj∩i∈ΛSol(Bi)x1 is well-defined. Assume that C(h,i) is convex and closed
for some h > 1. Letting µ1 and µ2 be two elements in C(h+1,i), we get µ1,µ2 ∈ C(h,i). It follows that
µ ∈ C(h,i), where µ = (1 − t)µ2 + tµ1, t ∈ (0, 1). Notice that φ(µ2, xh) > φ(µ2,u(h,i)), and φ(µ1, xh) >
φ(µ1,u(h,i)). This implies

〈µ2, Jxh − Ju(h,i)〉+
‖u(h,i)‖2

2
6
‖xh‖2

2
,

and

〈µ1, Jxh − Ju(h,i)〉+
‖u(h,i)‖2

2
6
‖xh‖2

2
.

Using the above relations, one has

〈µ, Jxh − Ju(h,i)〉+
‖u(h,i)‖2

2
6
‖xh‖2

2
.

Hence, we have φ(µ, xh) > φ(µ,u(h,i)), where µ is in C(h,i). This finds that C(h+1,i) is convex and closed.
So, C(n,i) is convex and closed. This proves the projection onto Cn is well-defined.

Now, we are in a position to show that ∩i∈ΛSol(Bi) is a subset of Cn. Note that the common so-
lution set is a subset of C, where C = C1. Suppose that ∩i∈ΛSol(Bi) is a subset of C(h,i). For any
µ ∈ ∩i∈ΛSol(Bi), which is a subset of C(h,i), we see that

φ(µ, xh) > φ(µ,Sr(h,i),Bxh) = φ(µ,u(h,i)),

which finds µ ∈ C(h+1,i). This implies that ∩i∈ΛSol(Bi) which is a subset of C(h,i). This in turn implies
∩i∈ΛSol(Bi) is a subset of Cn. Using Lemma 2.4, one sees

〈µ, Jx1 − Jxn〉 6 〈xn, Jx1 − Jxn〉

for any µ ∈ Cn. Since ∩i∈ΛSol(Bi) is a subset of Cn, we find

〈µ− xn, Jx1 − Jxn〉 6 0 (3.1)

for all µ ∈ ∩i∈ΛSol(Bi). It follows from Lemma 2.3 that

φ(Proj∩i∈ΛSol(Bi)x1, x1) −φ(Proj∩i∈ΛSol(Bi)x1, xn) > φ(xn, x1).

This shows
0 6 φ(xn, x1) 6 φ(Proj∩i∈ΛSol(Bi)x1, x1),

which is an upper bound. Hence, {xn} is a bounded sequence in C. Since the framework of the space is
reflexive, we may assume that xn ⇀ x̄ ∈ Cn. Note that

lim sup
n→∞ φ(xn, x1) > lim inf

n→∞ (‖xn‖2 + ‖x1‖2 − 2〈xn, Jx1〉) > φ(x̄, x1) > 0.

Using the fact that φ(x̄, x1) > φ(xn, x1), one has limn→∞ ‖xn‖ = ‖x̄‖. Using the KKP of E, we find xn → x̄

as n→∞. Since
φ(xn+1, x1) > φ(xn, x1),

one finds from its boundedness that limn→∞φ(xn, x1) exists. It follows that

φ(xn+1, ProjCnx1) 6 φ(xn+1, x1) −φ(xn, x1).

Hence, we have
lim
n→∞φ(xn+1, xn) = 0.
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Since xn+1 is in Cn+1, we find that φ(xn+1, xn) > φ(xn+1,u(n,i)) > 0. It follows that

lim
n→∞φ(xn+1,u(n,i)) = 0.

Therefore,
lim
n→∞(‖u(n,i)‖− ‖xn+1‖) = 0.

This implies that
lim
n→∞ ‖u(n,i)‖ = ‖x̄‖.

Hence, we have
lim
n→∞ ‖Ju(n,i)‖ = lim

n→∞ ‖u(n,i)‖ = ‖x̄‖. (3.2)

This means that {Ju(n,i)} is bounded. Since both spaces E and E∗ are reflexive, we may assume that
Ju(n,i) ⇀ u(∗,i) ∈ E∗. Using the reflexivity of space E, we find there exists an element ui ∈ E such that
Jui = u(∗,i). It follows that

φ(xn+1,u(n,i)) + 2〈xn+1, Ju(n,i)〉 = ‖Ju(n,i)‖2 + ‖xn+1‖2.

Taking lim infn→∞ yields that

0 > ‖x̄‖2 + ‖u(∗,i)‖2 − 2〈x̄,u(∗,i)〉 = ‖x̄‖2 + ‖ui‖2 − 2〈x̄, Jui〉 = φ(x̄,ui) > 0,

which shows that Jx̄ = u(∗,i). Hence, Ju(n,i) ⇀ Jx̄ ∈ E∗. Using the fact that E∗ has the KKP, we obtain
from (3.2) that limn→∞ Ju(n,i) = Jx̄. Hence, we have

lim
n→∞ ‖Jxn − Ju(n,i)‖ = 0.

Next, we show that x̄ is indeed in ∩i∈ΛSol(Bi). Using the condition on r(n,i), we may assume, without
loss of generality, that there exists a real positive number sequence {λi} such that r(n,i) > λi > 0. It follows
that

lim
n→∞

‖Ju(n,i) − Jxn‖
r(n,i)

= 0. (3.3)

On the other hand, we have

〈y− u(n,i), Ju(n,i) − Jxn〉+ r(n,i)Bi(u(n,i),y) > 0, ∀y ∈ Cn.

Therefore,
‖y− u(n,i)‖‖Ju(n,i) − Jxn‖ > r(n,i)Bi(y,u(n,i)), ∀y ∈ Cn.

It follows from (3.3) that Bi(y, x̄) 6 0, ∀y ∈ Cn. For 0 < ti < 1, put

y(t,i) = tiy+ (1 − ti)x̄.

It follows that y(t,i) is in Cn. Hence Bi(x̄,y(t,i)) > 0. It follows that

tiBi(y(t,i),y) > tiBi(y(t,i),y) + (1 − ti)Bi(y(t,i), x̄) > Bi(y(t,i),y(t,i)).

Hence, Bi(x̄,y) > 0. This shows that x̄ is in Sol(Bi) for every i ∈ Λ. Hence, x̄ is in ∩i∈ΛSol(Bi). It follows
from (3.1) that

〈x̄− z, Jx1 − Jx̄〉 > 0, ∀z ∈ ∩i∈ΛSol(Bi).

Using Lemma 2.3, we find that x̄ = Proj∩i∈ΛSol(Bi)x1. This completes the proof.

For a single function, we find from Theorem 3.1 the following.
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Corollary 3.2. Let E be a strictly convex, reflexive, and smooth Banach space. Let C be a convex and closed subset
of E and let B : C×C → R be a function with (C-1)-(C-2). Assume that Sol(B) is nonempty and both E and E∗

have the KKP. Let {xn} be a sequence generated in the following algorithm: x0 ∈ E is chosen arbitrarily
x1 = ProjC1:=C

x0,
rnB(un,y) > 〈un − y, Jun − Jxn〉, ∀y ∈ Cn,
Cn+1 = {µ ∈ Cn : φ(µ,un) 6 φ(µ, xn)},
xn+1 = ProjCn+1

x1,

where {rn} is a real sequence with lim infn→∞ rn > 0. Then {xn} converges strongly to ProjSol(B)x1.

Remark 3.3. Theorem 3.1 improves Zhao’s results [20] from a single function to an uncountable infinitely
family of functions. And the algorithm is more efficient since u(n,i) is searched monotonicially in Cn
instead of always in C. Theorem 3.1 does not require that the framework of the space is both uniformly
convex and uniformly smooth, which is a standard assumption in most of the related work. The typical
example of the space in Theorem 3.1 is a strictly convex, reflexive and smooth Musielak-Orlicz space;
see [13] and the references therein. In order to illustrate the effectiveness of the algorithm we give the
following numerical results using software Matlab 7.0. Let E be the set of real numbers and C = [0, 1.5].
Let SB1 be x · sin x, which has a unique fixed point in C. If we choose x0 ∈ C arbitrarily, then for 50
different initial values, we see all the results are convergent in Figure 1. Let E be the set of real numbers
and C = [0, 0.5]. Let SB2 be x · tan x, which has a unique fixed point in C. If we choose x0 ∈ C arbitrarily,
then for 50 different initial values, we see all the results are convergent in Figure 2.

Figure 1 Figure 2

4. Applications

First, we consider a common solution problem of a family of variational inequalities. Let A : C → E∗

be a single-valued monotone operator which is hemicontinuous (continuous along each line segment in
C with respect to the weak∗ topology of E∗). Consider the following variational inequality problem:
find a point x ∈ C such that 〈x − y,Ax〉 6 0, ∀y ∈ C. From now on, we use Sol(A) to stand for the
solution set of the variational inequality and Nc(x) stands for the normal cone for C at a point x ∈ C,
Nc(x) := {x∗ ∈ E∗ : 0 > 〈x∗,y− x〉, ∀y ∈ C}.

Theorem 4.1. Let E be a strictly convex, reflexive, and smooth Banach space. Let C be a convex and closed subset of
E and let Λ be an index set. Let Ai : C → E∗ be a single-valued, monotone and hemicontinuous operator. Assume
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that ∩i∈∆Sol(Ai) is not empty and both E and E∗ have the KKP. Let {xn} be a sequence generated in the following
algorithm 

x0 ∈ E, chosen arbitrarily,
C1,i = C, x1 = ProjC1:=∩i∈ΛC1,i

x0,

u(n,i) = Sol
(
Ai +

1
ri
(J− Jxn)

)
,

C(n+1,i) = {u ∈ C(n,i) : φ(u,u(n,i)) 6 φ(u, xn)},
Cn+1 = ∩i∈ΛC(n+1,i), xn+1 = ProjCn+1

x0, ∀n > 1,

where ri > 0 is a real number, ∀i ∈ Λ. Then {xn} converges strongly to Proj∩i∈∆Sol(Ai)x0.

Proof. For each i ∈ Λ, define a mapping Mi by

Mix =

{
∅, x /∈ C,
Ncx+Aix, x ∈ C.

Then Mi is a maximal monotone operator, and Sol(Ai) = M−1
i (0); see Rockafellar [16]. For each ri > 0,

and x ∈ E, there exists a unique xri in D(Mi), where D(Mi) denotes the domain of Mi, such that
Jx ∈ riMi(xri)+ Jxri , where xri = (J+ riMi)

−1Jx. On the other hand, we have zn,i = Sol(Ai+ 1
ri
(J− Jxn)),

which is equivalent to 1
ri

(
Jxn− Jzn,i

)
∈ NC(zn,i) +Aizn,i. This implies that (J+ riMi)

−1Jxn = zn,i. Since
(J+ ri∂Mi)

−1J is closed quasi-φ-nonexpansive with Fp((J+ ri∂Mi)
−1J) =M−1

i (0) [14] and using Theorem
3.1, we immediately find the desired conclusion.

Next, we study the problem of finding a common minimizer of a family of proper, lower semicontin-
uous, and convex functionals.

For a proper lower semicontinuous convex function g : E → (−∞,∞], the subdifferential mapping of
g is defined by

∂g(x) := {x∗ ∈ E∗ : 〈y− x, x∗〉 6 g(y) − g(x),∀y ∈ E}, ∀x ∈ E.

It is known [16] that the subdifferential mapping of g is a maximal monotone operator and 0 ∈ ∂g(v)⇐⇒
minx∈E g(x) = g(v).

Theorem 4.2. Let E be a strictly convex, reflexive, and smooth Banach space. Let C be a convex and closed subset
of E and let Λ be an index set. Let gi a proper, lower semicontinuous, and convex functional on E for every i ∈ ∆.
Assume that the common zero point set ∩i∈Λ(∂gi)−1(0) is nonempty and both E and E∗ have the KKP. Let {xn} be
generated in the following algorithm:

C(1,i) = C, x1 = ProjC1:=∩i∈ΛC(1,i)
x0,

u(n,i) = arg minz∈E
{

2rigi(z) + ‖z‖2 + 〈z, Jxn〉
}

,
Cn+1,i = {u ∈ Cn,i : φ(u,u(n,i)) 6 φ(u, xn)},
Cn+1 = ∩i∈∆C(n+1,i), xn+1 = ProjCn+1

x0, ∀n > 1,

where ri > 0 is a real number for all i ∈ Λ. Then {xn} converges strongly to Π∩i∈Λ(∂gi)−1(0)x0.

Proof. For each ri > 0, and x ∈ E, we find that there exists a unique xri in D(∂gi) such that Jx ∈
ri∂gi(xri) + Jxri , where xri = (J+ ri∂gi)

−1Jx.

u(n,i) = arg min
z∈E

{
2〈z, Jxn〉+ 2rigi(z) + ‖z‖2}

is equivalent to 0 ∈ ∂
(
gi +

‖·‖2

2ri
+ Jxn

ri

)
u(n,i). This finds that u(n,i) = (J + ri∂gi)

−1Jxn. Note that (J +

ri∂gi)
−1J is closed quasi-φ-nonexpansive with Fp((J+ ri∂gi)−1J) = (∂gi)

−1(0) [14]. Using Theorem 3.1,
we immediately conclude the desired conclusion.
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Remark 4.3. In this paper, we studied a convex feasibility problem based on equilibrium problem (1.1)
in the framework of Banach spaces and constructed a monotone projection algorithm for solving it. It
deserves mentioning there is no restriction on the uniform smoothness or the uniform convexness. Our
convergence analysis ensures that the proposed algorithm converges in norm to a special common solu-
tion that without any compact assumption imposed on the space or the bifunctions. We also apply the
strong convergence result to variational inequality problems and convex minimization problems in the
framework of Banach spaces.
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