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Abstract

Here we give a series of self adjoint operator positive linear operators general results. Then we present specific similar
results related to neural networks. This is a quantitative treatment to determine the degree of self adjoint operator uniform
approximation with rates, of sequences of self adjoint positive linear operators in general, and in particular of self adjoint
specific neural network operators. The approach is direct relying on Gelfand’s isometry. (©2017 All rights reserved.
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1. Background

Let A be a self adjoint linear operator on a complex Hilbert space (H;(-,-)). The Gelfand map estab-
lishes a #-isometrically isomorphism @ between the set C (Sp (A)) of all continuous functions defined on
the spectrum of A, denoted by Sp (A), and the C*-algebra C* (A) generated by A and the identity operator
1y on H as follows (see e.g. [9, p. 3]):

For any f,g € C(Sp (A)) and any «, 3 € C we have

(i) ©(«f+Bg) =a® (f)+BD(g);
(i) @ (fg) = @ (f) @ (g) (the operation composition is on the right) and @ (f) = (@ (f))*;

(i) @ (F)] =[] :== sup [f(2)];
tESP(A)

(iv) @ (fgp) =1y and @ (f1) = A, where fo (t) =1 and f; (t) =t, fort € Sp(A).
With this notation we define
f(A)=®(f), forallfe C(Sp(A)),

and we call it the continuous functional calculus for a self adjoint operator A.

If A is a self adjoint operator and f is a real valued continuous function on Sp (A) then f(t) > 0 for
any t € Sp (A) implies that f (A) > 0, i.e. f(A) is a positive operator on H. Moreover, if both f and g are
real-valued continuous functions on Sp (A) then the following important property holds:
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(P) f(t) > g(t) for any t € Sp (A), implies that f (A) > g (A) in the operator order of B (H).

Equivalently, we use (see [6, pp. 7-8]):
Let U be a self adjoint operator on the complex Hilbert space (H, (-, -)) with the spectrum Sp (U) included
in the interval [m, M] for some real numbers m < M and {E,}, be its spectral family.

Then for any continuous function f : [a, b] — C, where [m, M] C (a,b), it is well-known that we have
the following spectral representation in terms of the Riemann-Stieljes integral:

M
<f(u)x,y>=J FN d((Eax ),

m—0

for any x,y € H. The function gy (A) := (Exx,y) is of bounded variation on the interval [m, M], and

gxy (M—=0)=0, and gxy(M)=(xy),

for any x,y € H. Furthermore, it is known that g« (A) := (Exx, x) is increasing and right continuous on
[m, M] .
In this article we will use a lot the formula

M
(f(U)x,x) :J f(A)d ((Eax,x)), VxeH.

m—0
As a symbol we can write
M
f(U) = J f(A) dEa.
m—0
Above, m = min{AJA € Sp (U)} := minSp (U), M = max{A]A € Sp (U)} := max Sp (U). The projections
{Exbrer - are called the spectral family of A, with the properties:

(a) E7\ < E)\I for A < 7\/,'
(b) Em—o = On (zero operator), Enp = 1y (identity operator) and Ex1g = Ej forall A € R.
Furthermore
Ex=0@r(U), VAER,
is a projection which reduces U, with

(s) = 1, for —oo<s <A,
oA 10, forA<s< +oo.

The spectral family {Ej}, .g determines uniquely the self-adjoint operator U and vice versa.
For more on the topic see [7, pp. 256-266], and for more details see there pp. 157-266. See also [5].
Some more basics are given in ([6, pp. 1-5]):
Let (H;(-,-)) be a Hilbert space over C. A bounded linear operator A defined on H is selfjoint, i.e.,
A = A%, iff (Ax,x) € R, for all x € H, and if A is self adjoint, then

Al = sup [(Ax,x)|.
xeH:||x||=1

Let A, B be self adjoint operators on H. Then A < B, iff (Ax,x) < (Bx,x), for all x € H.
In particular, A is called positive if A > 0.
Denote by

n
fP::{(p(s)::Zockskln20,ock€C,0<k<n}.
k=0
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If A € B(H) (the Banach algebra of all bounded linear operators defined on H, i.e., from H into itself) is
self adjoint, and ¢ (s) € P has real coefficients, then ¢ (A) is self adjoint, and

o (A)]] = max{e (A)],A € Sp (A)}.

If ¢ is any function defined on R we define

@l o :=sup{le (A)],A € Sp(A)}.

If A is self adjoint operator on Hilbert space H and ¢ is continuous and given that ¢ (A) is self adjoint, then
lo (A)|| = ||@|| - And if @ is a continuous real-valued function, so it is [¢], then ¢ (A) and [@| (A) = [@ (A)]
are self adjoint operators (by [6, p. 4, Theorem 7]).

Hence it holds

e (A)l|l = lllell| o =sup{lle (A)Il,A € Sp (A)}
=sup{lo A),AeSp(A)}=lolr= e (A,

that is,
lle (A= Tl (A
For a self adjoint operator A € B (H) which is positive, there exists a unique positive self adjoint
operator B := VA € B (H) such that B2 = A, that is (\/K)z = A. We call B the square root of A.

Let A € B (H), then A*A is self adjoint and positive. Define the “operator absolute value” |A| :== VA*A.
If A = A*, then |A| = VAZ.
For a continuous real-valued function ¢ we observe the following:

M
[ (A)] (the functional absolute value) = J [ (A)] dEx

m—0

- JM V(@ (\)2dEx

m—0

=1/ (@ (A))2 = | (A)| (operator absolute value),

where A is a self adjoint operator.
That is we have

| (A)] (functional absolute value) = |@ (A)| (operator absolute value).

The next comes from [5, p. 3]:
We say that a sequence {An 5 C B (H) converges uniformly to A (convergence in norm), iff

lim ||An —A[ =0,
n—oo

and w denote it as lim A, = A.

n—00
We will use Holder’s-McCarthy inequality ([8]): Let A be a self adjoint positive operator on a Hilbert
space H. Then
(ATx,x) < (Ax,x)",

forall0<r<landx e H:|x| =1
Let A,B € B (H), then
IABI < [[AI1IBI],

by Banach algebra property.
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2. Main results

Our approach is direct based on Gelfand’s isometry.

All the functions we are dealing here are real-valued. We assume that Sp (A) C [m, M].

Let {Ln},,en be a sequence of positive linear operators from C ([m, M]) into itself (ie., if f,g €
C ([m, M]) such that f > g, then Ly, (f) > Ly (g)). It is interesting to study the convergence of L,, — I (unit
operator, i.e., I (f) =1, for all f € C([m, M])). By property (i) we have that

O (Lnf—1) = @ (Lnf) — @ (f) = (Laf) (A) = F(A),

and
O(LalE1) =0 (L) D (1) = (La1) (A) £ 14,

the last comes by property (iv).
And by property (iii) we obtain

1@ (Lnf — D) = [[(Lnf) (A) = F (A)]| = [[Lnf — ],

and
10 (Ll 1) = [ (La1) (A) £ 1n]| = Lo (1) £ 1]

We need the first modulus of continuity

wi (f,8)= sup [F(x)—Ff(y)l, 6>0,
x,y€[m,M]
[x—yl<o

here |||, stands for the sup-norm over [m, M].
We need and mention:

Theorem 2.1 ([1, p. 419]). Consider the positive linear operator
L: C([m,M]) = C([m,M]).
Define (n € IN)

D= (L (1t — ™) ().
Let f € C™ ([m, M]). Then

(e,

4 ((M=m) D D2
(m) D .Dn 1 ( “n n )
+‘”1(f / “) n ((n+l)! +2n!+8(M—m)(n—1)!>

e
I =l < Il L1 = Tlg + 3~
k=1

By [1, p. 415], we have Dy, < +o0.

We derive:
Theorem 2.2. Let all as in Theorem 2.1 hold. Then
[(Lf) (A) = £ (A)]| < [If (A [I(LT) (A) — T |
= Hf H
[ (Le=ar) o] )
M—m) D D2
f(n) D Dn—l ( “n n
+“’1( ’ “> n <(n+1)! T T s M) (1))
where

Dy = (L ([t — A™) (A)]|7 .
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We mention:

Corollary 2.3 ([1, p. 421]). Let L be a positive linear operator from C ([m, M]) into itself. Here
Dy = [[(L(It=-D) ()l < +o0.
Let f € C' ([m, M]). Then
ILF = Fllog < 11l - 1L =] + [[F]] 1L (=) (Dl

L f',D M D D%
“I’Ewl(, 1)<( *m)‘F 1+4(l\/l—ﬂl))

We obtain:

Corollary 2.4. Let all as in Corollary 2.3 hold. Then
LA (A) = £ LA < (I ALY (A) = Tl + ([ (AN (L (= A)) (A)]

2 2.2
+%(U1 (f/,Dl) <(M_m)+Dl+4(l\/?im)> ’ ( )

where
Dy = |[(L(lt—AD) (A)]l.

We mention:
Corollary 2.5 ([1, p. 421]). Let L be a positive linear operator from C ([m, M]) into itself. Here

002 (1 (1) 0

1
2
< +00.

[e¢]

Let f € C?([m, M]). Then
L = Flloo < Iflloo - 1T = 1] oo + {[F]] o 1L (=) ()lloo
i [1S
+g=|(te=r) o],
(M—m) D D3 )

1
Z " Ds) Dy | ———L 4“2 "2
a1 (/D) 2( 3 2 TaM-m)

We derive:
Corollary 2.6. Let all as in Corollary 2.5 hold. Then
1L (A) = £ (AN < AL (A) = Tr |+ [ (AL (£ = A)) (A)]

L

[e¢]

- (2.3)

1 (M—m) D D2
—= " Do) Dy | ———— 4+ = ———2
+2w1( 2) 2( 3 + 5 +4(M—m) ’

where )
2

os = (1 (A7) x

We give:
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Example 2.7. Let f € C ([0, 1]), the basic Bernestein polynomial operators are defined by

(B () () == Zf(i) ( . >tk (1—t"%, telo1].
k=0

By [1, p. 421], when f € C? ([0, 1]) we get
[y . 1 (w1 N(1. 1 1
= < e 1 L I 24
IBn (0 =floo < 5=+ 1m0\ Pam ) 3T am T Ton @4)

MmMM]las=pt)=M—-m)t+m, tel0,1],

The map

maps 1-1 and onto : [0, 1] onto [m, M].
Let now f € C2([m, M]), then

and ar
dj) — (@ (1)) =F (@ (£) (M—m) = f (s) (M—m).
Furthermore it holds &t (s)
S /!
— =1 () (M—m)*.

We observe that (t € [0, 1])

(B (PO =m) ) (0= 3 ((M=m) Em) ) () e

Bn (f)) (s), se€m,M].
The operators (B, (f)) (s) are the general Bernstein polynomials. As in [4], we get that
wy (f((M=m)t+m),8) =w; (f,(M—m)?),

where f € C ([m, M]).
Here the function f (M —m)t+m) € C([0,1]), as a function of t € [0,1].
So we apply (2.4), for f (M —m)t+m), t € [0, 1], we obtain

2 [Nl 1 , M—m)\ /1 1 1
1B (1) — oo < (M —m) [8n+4\/ﬁw1 QM) (3+m+m>]'

where f € C ([m, M]).
Consequently, we obtain

2 [ (A | 1 gy M—=—m)\ /1 1 1
|(Bn (f)) (A) —f(A)]] < (M —m) [ 8n +4\/ﬁw1 <f /> <3+4\/ﬁ+16nﬂ , (2.5)

forall f € C([m,M]).
We need:
Theorem 2.8 ([1, p. 422]). Let L # 0 be a positive linear operator from C ([m, M]) into itself. Set

1

2
7

o

po= | (Lt=%?) &)

and consider v > 0. Let f € C! ([m, M]). Then
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o0

2

l / ; #

g{ & (24 VILWIr) @i (7m0 e, zlfrg O
L(1 f’ fr> o
IEMlleowr (Fre) 0, ifr >~

L —Fllo — I Flloo IIL — 1| oo — || /]| (L (—%)) (x)]]

by [1, p. 415], we have that p < +oo.
An improved results for f € C! ([m, M]) follows:
Theorem 2.9. Let all as in Theorem 2.8 hold. Then
1LY (A) = £ (A = [IF (A IH(LD) (A) = Tl = [ (A (L (2= A)) (A)]

2 .
& (24 VITTATT) @i (fro)o, T < e
[T ANl (F,ro) o, ifr > e

where .
2

p=[(Le—Ar) (A

We continue with neural network operators.

Definition 2.10 (see [2, pp. 3-12]). We consider here the sigmoidal function of logarithmic type

1
= , R,
s (x) 5o~ x €

and

<D(x):%(s(x+1)—s(x—l)) -0, VxeR

Let f € C([m,M]) and n € IN, such that [nm| < [nM] ([-] is the ceiling and |- | is the integral part of the
number).
We consider the positive linear neural network operator

[(nM]
f ()0 (mx—k)
k=[nm]
[nM] ’
> D (nx—k)
k=[nm]

Gn (f,x) = x € [m,M].

Clearly, Gy, : C (Im, M]) = C ([m, M]). For large enough n we always have [nm] < [nM]. Alsom < £ <
M, iff [nm] < k < [nM].

We need and mention:

Theorem 2.11 (see [2, p. 9]). Let f € C([m,M]), 0 < o < 1. Then
1 Ca
1Gn (f) — ], < (5.250312578) [wl <f, n“> +6.3984[f]| e ™" ’} .

We derive:

Theorem 2.12. Let f € C([m,M]), 0 < o« < 1. Then

1(Gn () (A) — f(A)]| < (5.250312578) [wl (f, ni) +6.3984 ||f (A)]| e—“““"’} . (2.6)
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We mention:

Theorem 2.13 ([2, p. 11]). Let f € CN ([m,M]), N € N, 0 < & < 1. Then

|G () — f]|, < (5.250312578)
{ [ -+ (3.1992) (M —m)) e“““]
1 1 £(N) .
+ | ws (f“\”,na> —gp T (6:3984) il N!HOO (M—m)Ne " _
To obtain:
Theorem 2.14. Let f € CN ([m,M]), N € N, 0 < & < 1. Then
1(Gn () (A) —f (A)]| < (5.250312578)
Hf i (-
Z +(31992) M—m) e ™
2.7)
1 1 f(N)(A) T
+ | (f“\”,n“> —g T (6:3984) HN,H M—m)Ne ™5

We need:
Definition 2.15 ([2, pp. 34-45]). We consider the hyperbolic tangent function tanhx, x € R :

X _ ,—X
tanhx := i,
ex e~ x
and 1
Y(x):= E(tanh(x—i-l)—tanh(x—l)) >0,
for all x € R.
Letf € C([m,M])andn € N : [nm]| < [nM|. We consider the positive linear neural network operator
[(nM]
f (%) Y (nx —k)
_ k=[nm]
Fn (f,X) = M , x€mM].
> Y(nx—k)
k=[nm]
Clearly, Fy, : C ([m, M]) < C ([m, M]).
We mention:
Theorem 2.16 ([2, p. 42]). Let f € C([m,M]), 0 < « < 1. Then
[Fr (F) — f]|, < (4.1488766) [ (f 1) +2e* £l —2“““"’} .

We derive:

Theorem 2.17. Let f € C([m,M]), 0 < o« < 1. Then

I(Fo () (A) — f(A)]] < (4.1488766)[ <f 1)+Ze I1£( )|ye‘2“““’”]. (2.8)
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We mention:

Theorem 2.18 ([2, p. 45]). Let f € CN ([m,M]), N € N, 0 < « < 1. Then

[Fr (F) — |, < (4.1488766)
N (1¢6)
f 1 i o (l-a)
x{zjloo[w_i_eﬁl(Mm))e n :|
j=1

o (19 ) L M )

"n ) naNN! N!

We derive:

Theorem 2.19. Let f € CN ([m,M]), Ne N, 0 < o < 1. Then

[[(Fr () (A) —f (A)]| < (4.1488766)

N (3) .
. { S UL o]
j=1

ned 2.9)
ey 1 1 2¢ [fN (A M=m)™ ) aa
e\t s ) e T N ¢ '

We make:

Definition 2.20 ([3, pp. 332-346]). We consider the (Gauss) error special function

2 X
erf (x) = NG Jo e ¥dt, xeR,

which is a sigmoidal type continuous function and it is a strictly increasing function.
We consider the activation function

X (x) :}L(erf(x—l—l)—erf(x—l)), x € R.

Notice x (x) > 0, for all x € R.
Let f € C([m,M]), n € IN such that n'=* > 3, where 0 < < 1.
We consider the positive linear operator

[(nM]

f (%) x (nx —k)
An (f/ X) = k= [TI:IIAJ , Vxe [m, M].
> x(nx—k)
k=[nm]

The operator A,, is a neural network operator mapping C ([m, M]) into itself.
We mention:
Theorem 2.21 ([3, p. 340]). It holds

[l
Vi (ni=e —2) (' 72)

[An (f) — fllo < (4.019) [w1 (fnl“> 4
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We derive:

Theorem 2.22. It holds

1(An () (A) — £ (A)]] < (4019) |y (£, = ) + IF (A . (2.10)
x 1—x 2
N
We need:
Theorem 2.23 ([3, pp. 345-346]). Let f € CN (fm,M]), i, N€ N, n!"* > 3,0 < < 1. Then
|An (f) — ||, < (4.019)
o
N 2
= b Y 2yrmime —2)eln2)
(N) _ N
n /] noeNN! N!\/Ft(nlf‘x 2) e(nl—a,Z)
It follows:
Theorem 2.24. Let all as in Theorem 2.23 hold. Then
|(An () (A) = f(A)| < (4.019)
N . .
fO) (A 1 M —m)’
" ZH '( )|l L+ ( m) —
= M 2ymmte—2)e(n) (2.11)

_l’_

M(fm) 1> L, [£N) (A)[| (M —m)N ]}

) NN e gy e e2)

Conclusion 2.25. Inequalities (2.1), (2.2), (2.3), (2.5), (2.9), (2.6), (2.7), (2.8), (2.9), (2.10) and (2.11), imply
|(Lf) (A) —f (A)|| =0, under basic assumptions and imply ||(Bn, (f)) (A) —f (A)|| =0, [[(Gn () (A) = (A)|| —
0, [I(Fn (£)) (A) = (A)]| = 0, and [[(An (f)) (A) — £ (A)]] = 0, a5 . — 0.

The approximations are given quantitatively and with rates via the first modulus of continuity.
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