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Abstract

This work is concerned with the exact controllability of an Euler-Bernoulli beam system with small delays in the boundary
feedback controls

wtt(x, t) +wxxxx(x, t) = 0, x ∈ (0, 1), t > 0,
w(0, t) = wx(0, t) = 0, t > 0,
wxx(1, t− ε) = −k2

2wtx(1, t) − c2wt(1, t− ε), ε > 0, k2
1 + k

2
2 6= 0,

wxxx(1, t) = k2
1wt(1, t− ε) − c1wtx(1, t− ε), ki, ci ∈ R, (i = 1, 2),

with boundary conditions
w(x, t) = ϕ(x, t), wt(x, t) = ψ(x, t), − ε 6 t 6 0.

Our analysis relies on the exact controllability on Hilbert space M and state space H. Our results based on formulating the
original system as a state linear system. We formulate the system as the state feedback control systems

∑
(A,B,C), and we get

the generalized eigenvectors of the operator A. Then we prove that they can form a Riesz basis for the state space H. In the end,
the system is proved to be exactly controllable on H. c©2017 All rights reserved.
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1. Introduction

Euler-Bernoulli beam systems arise in many fields such as physics, mechanics, chemistry, economics,
engineering and biological science, etc., see [1–5, 10, 12] for example. In these papers, the authors con-
sidered the exact controllability of the Euler-Bernoulli plate equation with variable coefficients and mixed
boundary conditions. By using the methods of basis perturbation and Weiss regular system, the papers
in [7–9] showed that the generalized eigenfunction of a flexible Euler-Bernoulli beam system with bound-
ary feedback consisting of velocity and angular velocity form a Riesz basis for the state space H and
they gave the computational formula exponential decay rate of the system, which solved the problems
considered in engineering, such as exponential decay rate, eigenvalues and so on. But there is always
time-delay in engineering practice. So the research of it is also active up recently, see [6, 11, 13] and the
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references therein. In these papers, many authors investigated the robust stability of time-delay system
with time-varying uncertainties via HPLKF. They gave a sufficient condition to demonstrate that the sys-
tem is asymptotically stable. A new class of Lyapunov-Krasovskii function is introduced, whose main
feature is that the conservativeness due to uncertainties is reduced. Numerical examples were given to
illustrate the effectiveness of their method.

In this paper, we discuss the following flexible Euler-Bernoulli beam system with small delays in
boundary feedback controls

wtt(x, t) +wxxxx(x, t) = 0, x ∈ (0, 1), t > 0,
w(0, t) = wx(0, t) = 0, t > 0,
wxx(1, t− ε) = −k2

2wtx(1, t) − c2wt(1, t− ε), ε > 0, k2
1 + k

2
2 6= 0,

wxxx(1, t) = k2
1wt(1, t− ε) − c1wtx(1, t− ε), ki, ci ∈ R, (i = 1, 2),

(1.1)

with boundary conditions

w(x, t) = ϕ(x, t), wt(x, t) = ψ(x, t), −ε 6 t 6 0.

Different from the works mentioned above, we formulate the system (1.1) as the state feedback control
systems

∑
(A,B,C), where A is the generator of a C0-semigroup on H,B is a control operator and C is

an observation operator. Moreover, B and C are unbounded operators. And we formulate the system
without time-delay as abstract differential functions on the Hilbert space X of the form{

dω(t)
dt = A1w(t),

ω(0) = (u(x, 0),ut(x, 0))T .

We get the eigenvalues and eigenvectors of the operatorA through studying the eigenvalues and eigenvec-
tors of the operator A1. Then we prove that

∑
(A,B,C) is exactly controllable on H, which is generalized

by the eigenvectors of the operator A. Since the system (1.1) and the system
∑

(A,B,C) are equivalent,
we only need to study the exact controllability of

∑
(A,B,C). In the end, (1.1) is proved to be exactly

controllable on H.

2. Riesz basis of auxiliary system

To begin with, let

H(n)(0, 1) = {ϕ : (0, 1)→ C | ϕ(k)is absolutely continuous (k = 1, 2, · · · ,n− 1), ϕ(n) ∈ L2(0, 1)},

H2
0(0, 1) = {ϕ ∈ H2(0, 1) | ϕ(0) = ϕ

′
(0) = 0}.

We denote
X = H2

0(0, 1)× L2(0, 1),

where

((f,g)T , (u, v)T )X =

∫ 1

0
f ′′(x)u ′′(x)dx+

∫ 1

0
g(x)v(x)dx. (2.1)

Then, X is a Hilbert space under (2.1). Let

M = X× L2([−ε, 0],X),

where

((p, f(·))T , (q,g(·))T )M = (p,q)X +

∫ 0

−ε
(f(θ),g(θ))Xdθ. (2.2)
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Then M is a Hilbert space under (2.2). Construct the system

wtt(x, t) +wxxxx(x, t) = 0, x ∈ (0, 1), t > 0,
w(0, t) = wx(0, t) = 0, t > 0,
wxx(1, t) = −k2

2wtx(1, t) − c2wt(1, t), k2
1 + k

2
2 6= 0,

wxxx(1, t) = k2
1wt(1, t) − c1wtx(1, t), ki, ci ∈ R, (i = 1, 2),

w(x, 0) = ϕ(x, 0), wt(x, 0) = ψ(x, 0).

Let

A1 =

(
0 I

− d4

dx4 0

)
, (2.3)

D(A1) = {(u, v)T ∈ X|u ∈ H4(0, 1)
⋂
H2

0(0, 1), v ∈ H2
0(0, 1),u

′′′
(1) = k2

1v1(1) − c1v
′
(1),

u
′′
(1) = −k2

2v
′
(1) − c2v(1)}.

Lemma 2.1 ([9]). Let A1 be as in definition (2.3), then

(i) µnk = τ2
nk (k = 1, 2, n > 1) is the eigenvalue of A1,

τnk = ρnk + o(
1
ρnk

);

(ii) we can denote generalized eigenvectors of A1 by {F0, Fnk| k = 1, 2, n > 1} (see [7]), where

Fnk(x) =
F(x, τnk)
‖G(x, ρnk)‖X

, (k = 1, 2, n > N).

For the proof we refer the reader to [9, Theorem 3.2], where ρnk (k = 1, 2), F(x, τnk), G(x, ρnk) can
be seen [9, Eqs. (3.3), (4.2)]. The generalized eigenvectors of A1, i.e. {F0, Fnk|k = 1, 2, n > 1} form a
Riesz basis for the state space X (this result is contained in [8]), so A1 is the infinitesimal generator of a
C0-semigroup on the state space.

In order to formulate (1.1) as a state linear system, let H be a Hilbert space, A be the generator of a
strongly continuous semigroup T on H. For any µ ∈ ρ(A), we denote by H−1 the completion of H with
respect to the norm ‖x‖−1 = ‖(µI−A−1)x‖. This space is isomorphic to D(A∗)∗, and we have

D(A) = H1 ⊆ H ⊆ H−1 = D(A∗)∗, A ∈ L(H1,H)∩ L(H,H−1).

So Ã : H→ H−1 is the extension of A:(
Ã
(
p
f(·)
)
,
(
q
g(·)
) )

D(A∗)∗×D(A∗)
=
( (

p
f(·)
)
,A∗

(
q
g(·)
) )

X
,

where (
p

f(·)

)
∈ H,

(
q

g(·)

)
∈ D(A∗).

Hence Ã ∈ L(H,H−1). For convenience, we denote Ã by A in the following. Let

B =

(
B0

0

)
, B∗0

(
f

g

)
=

(
−k−2

2 fxx(1)
g(1)

)
, (2.4)

Cξ(x, ·) = C
(
p(x)

f(x, ·)

)
=

(
−k2

2f·x(1, t)
fxxx(1, t)

)
. (2.5)

Output function:

y(t) =

(
−k2

2wtx(1, t)
wxxx(1, t)

)
.

Input function:

u(t) =

(
wxx(1, t− ε) + c2wt(1, t− ε)
k2

1wt(1, t− ε) − c1wtx(1, t− ε)

)
.
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3. The exact controllability of system (1.1)

Let

A =

(
A1 0
0 d

dθI

)
, (3.1)

D(A) = {(p, f(·))T ∈ D(A1)×H1([−ε, 0],X) | f(0) = p},

where H1([−ε, 0],X) = {f : [−ε, 0] → X| f is absolutely continuous on [−ε, 0], f ′(·) ∈ L2([−ε, 0],X)}. Since
D(A) ↪→M is a compact embedding, A is a discrete operator.

Theorem 3.1. Let A,B,C be as in definitions (3.1), (2.4), (2.5), then system (1.1) can be formulated as the state
linear systems

∑
(A,B,C): 

dz(t)
dt = Az(t) +Bu(t), (t > 0),
y(t) = Cz(t),
z(0) =

(x(0)
f(·)
)
,

(3.2)

where z(t) =
( x(t)
x(t+·)

)
, x(t) =

(w(·,t)
wt(·,t)

)
, and w(·, t) is the solution of (1.1).

Proof. Take
(
q
g(·)
)
∈ D(A), where q =

(
q1
q2

)
∈ D(A1), g(·) =

(
g1
g2

)
∈ D(F), then(

dz(t)
dt ,

(
q
g(·)
) )

H
=
(
dx(t)
dt , q

)
X
+
(
Fx(t+ ·), g(·)

)
X[−ε,0]

=
( (wt(·,t)

wtt(·,t)
)
,
(
q1
q2

) )
+
(
Fx(t+ ·), g(·)

)
X[−ε,0].

Let us prove the first equation now:( (wt(·,t)
wtt(·,t)

)
,
(
q1
q2

) )
X
=
( (

wt
−wxxxx

)
,
(
q1
q2

) )
=

∫ 1

0
wtxxq

′′
1dx−

∫ 1

0
wxxxxq2dx

= wtxq
′′
1 |

1
0 −wtq

′′′
1 |10 +

∫ 1

0
wtq

′′′′
1 dx−wxxxq2|

1
0 +wxxq

′
2|

1
0 −

∫ 1

0
wxxq

′′
2dx

= wtx(1, t)q ′′1 (1) −wxxx(1, t)q2(1) +
(
A0
(w(·,t)
wt(·,t)

)
,
(
q1
q2

) )
= [−k−2

2 wxx(1, t− ε) − k−2
2 c2wt(1, t− ε)]q ′′1 (1) − [k2

1wt(1, t− ε) − c1wtx(1, t− ε)]

q2(1) +
(
A0
(w(·,t)
wt(·,t)

)
,
(
q1
q2

) )
=
(
A0
(w(·,t)
wt(·,t)

)
,
(
q1
q2

) )
+
(
u(t), B∗0

(
q1
q2

) )
= (A0x(t) +B0u(t))

(
q1

q2

)
.

Therefore, (
dz(t)
dt ,

(
q
g(·)
) )

H
= (A0x(t) +B0u(t))

(
q1

q2

)
+
(
Fx(t+ ·), g(·)

)
X[−ε,0]

= (A0x(t) +B0u(t))q+
(
Fx(t+ ·), g(·)

)
X[−ε,0]

= (Az(t) +Bu(t))

(
q

g(·)

)
.

From the above, we can see that these families of operators constitute an alternative description of the
system.
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Now we are going to consider the eigenvalue problem of the operator A to research the exact control-
lability of system (1.1) in the following part.

Theorem 3.2. With the above notations, the following assertions hold true:

(i) if (λ, r) is a pair of eigenvalues of A1, then (λ,
(
r
eλ·r

)
) is a pair of eigenvalues of A. On the other hand, if

(
p
f(·)
)

is the eigenvectors of A corresponding to λ, then
(
p
f(·)
)
=
( p
eλ·p

)
;

(ii) there exists a constant N, when n > N, the eigenvalues of A: µnk, (k = 1, 2) (see Lemma 2.1) are simple.

Proof.

(1) Firstly, for any λ ∈ σ(A1), λ 6= 0, since A1 is discrete, we know that λ ∈ σp(A1), take r 6= 0,
r ∈ D(A1) and (λI − A1)r = 0, then

(
r
eλ·r

)
∈ D(A). Further, (λI − A)

(
r
eλ·r

)
= 0. So σp(A1) ⊂ σp(A),

moreover,
(
r
eλ·r

)
is the eigenvectors of A corresponding to the λ . Set λ 6= 0, λ ∈ σp(A), take

(
p
f(θ)

)
as the

eigenvectors of A corresponding to the λ, then p ∈ D(A1) and

(λI−A)

(
p

f(θ)

)
=

(
(λI−A1)p

λf(θ) − d
dθf(θ)

)
=

(
0
0

)
.

From (λI−A1)p = 0, we obtain λ ∈ σ(A1) and σp(A) ⊂ σp(A1). So σp(A) = σp(A1). Solving this equation{
df(θ)
dt = λf(θ),
f(0) = p,

we have f(θ) = eλθp.

(2) In the following, we will prove that there exists a constant N, when n > N, the eigenvalues of A,
µnk, (k = 1, 2) are simple.

Actually, if (λI−A)2
(
p
f(θ)

)
= 0, denotes

(λI−A)

(
p

f(·)

)
=

(
q

g(·)

)
,

then A1q = λq, g(·) = eλ·q. For

(λI−A)2
(
p

f(·)

)
= [λ(λI−A) −A(λI−A)]

(
p

f(·)

)
=

(
λq

λeλ·q

)
−A

(
q

eλ·q

)
=

(
λq

λeλ·q

)
=

(
0
0

)
,

we have λq = 0, λ 6= 0. It is easy to know that q = 0. So

(λI−A)

(
p

f(·)

)
=

(
0
0

)
, dim((λI−A)M) = 1.

Noticing µnk, k = 1, 2, n > N is the simple eigenvalues of A1 (see [9, Theorem 3.2]). Evidently, it is also
a simple eigenvalue of A.

It follows from the above theorem and Lemma 2.1 that generalized eigenvectors of A are:

{Φnk =

(
Fnk

eµnk·Fnk

)
| k = 1, 2, n > N}.

Because A is discrete, all of the generalized eigenvectors can be set as

{Φ0, Φnk | k = 1, 2, n > 1}. (3.3)

Evidently, (3.3) is not complete on M. Let

H = span{Φ0, Φnk | k = 1, 2, n > 1}.

It is easy to see H 6=M and H is the A-invariant subspace of M. Using that H is closed, we know H is
a Hilbert space with the inner product (2.2).
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For the sake of convenience, we denote by A the A|H. So we have the following conclusions.

Lemma 3.3 ([8]). {Φ0, Φnk | k = 1, 2, n > 1} forms a Riesz basis for the state space H. When t > 0, let
z(t) =

( x(t)
x(t+·)

)
, x(t) =

(w(·,t)
wt(·,t)

)
, where w(·, t) is the solution of system (1.1). Denote

x(s) = f(·, s) =
(
ϕ(·, s)
ψ(·, s)

)
(−ε 6 s 6 0),

then (1.1) can be rewritten as an abstract equation{
dz(t)
dt = Az(t), t > 0,
z(0) = (x(0), f(·))T ∈ H.

This implies that A is the infinitesimal generator of the C0-semigroup {T(t)| t > 0}. So the following
results hold true.

Theorem 3.4 ([8]). Let A be given as in (3.1) and assume that {T(t) | t > 0} is the C0-semigroup, then we have the
following conclusions:

(i) A is a Riesz spectral operator on H;

(ii) Aξ =
∑+∞
n=N

∑
k=1,2 µnk(ξ,Φnk)HΨnk, ∀ξ ∈ H;

(iii) T(t)ξ = eµ0t(ξ,Ψ0)HΦ0 + Σ
+∞
n=N

∑
k=1,2 e

µnkt(ξ,Φnk)HΨnk, ∀ξ ∈ H, where µ0 is the eigenvalue of A
for Φ0, {Ψ0, Ψnk | k = 1, 2, n > 1} is the biorthogonal column of {Φ0, Φnk | k = 1, 2, n > 1}.

We are going to give the exact controllability of the system (3.2) in the space H, which is the main
result of this paper.

Theorem 3.5. Let B be given as in definition (2.4), then B is an admissible control operator for H.

Proof. We only need to prove that for any step function u(τ) ∈ L2([0, t]), there exist t > 0 and M > 0 such
that ∥∥∥∥∫t

0
T(t− τ)Bu(τ)dτ

∥∥∥∥
H

6M‖u‖L2([0,t],U),

holds true. Actually,∥∥∥∥∫t
0
T(t− τ)Bu(τ)dτ

∥∥∥∥
H

=

∥∥∥∥∥
∫t

0

2∑
k=1

∑
n∈N

eλnk(t−τ)(Bu(τ),φnk)Uψnkdτ

∥∥∥∥∥
H

=

∥∥∥∥∥
∫t

0

2∑
k=1

∑
n∈N

eλnk(t−τ)(u(τ),B∗φnk)Uψnkdτ

∥∥∥∥∥
H

=

∥∥∥∥∥
∫t

0

2∑
k=1

∑
n∈N

eλnk(t−τ)
( (u1(τ)

u2(τ)

)
,
(−k−2

2 µ
−1
nkϕ

′′(1,τnk)
ϕ(1,τnk)

) )
U
ψnkdτ

∥∥∥∥∥
H

6

{
2∑
k=1

∑
n∈N

|

∫t
0
eλnk(t−τ)[−k−2

2 µ−1
nku1(τ)ϕ ′′(1, τnk) + u2(τ)ϕ(1, τnk)]dτ|2

} 1
2

6

{
2∑
k=1

∑
n∈N

[|− k−2
2 µ−1

nkϕ
′′(1, τnk)||eλnkt||

∫t
0
e−λnkτu1(τ)dτ|+ |ϕ(1, τnk)||eλnkt|

× |

∫t
0
e−λnkτu2(τ)dτ|]

2

} 1
2

.
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Set u1(τ) =
∑m
i=1 ciχ[xi−1,xi](τ), then∣∣∣∣∫t

0
e−λnkτu1(τ)dτ

∣∣∣∣ =
∣∣∣∣∣
m∑
i=1

ci

∫xi
xi−1

e−λnkτdτ

∣∣∣∣∣
=

∣∣∣∣∣
m∑
i=1

ci
−λnk

(e−λnkxi − e−λnkxi−1)

∣∣∣∣∣
6

m∑
i=1

|ci|

|λnk|
M1

=
M1

|λnk|

∫t
0
|u1(τ)|dτ.

Therefore, ∣∣∣∣∫t
0
e−λnkτu2(τ)dτ

∣∣∣∣ 6 M1

|λnk|

∫t
0
|u2(τ)|dτ,

which is the same as the previous proof. Where

M1 = |e−λnkxi − e−λnkxi−1|,

M2 = max{M1, |− k−2
2 µ−1

nkϕ
′′(1, τnk)|, |eλnkt|, |ϕ(1, τnk)|}.

Then ∥∥∥∥∫t
0
T(t− τ)Bu(τ)dτ

∥∥∥∥
H

6

{
2∑
k=1

∑
n∈N

M4
2

|λnk|2

[∫t
0
|u1(τ)|dτ+

∫t
0
|u2(τ)|dτ

]2
} 1

2

6M3

[∫t
0
|u1(τ)|dτ+

∫t
0
|u2(τ)|dτ

]
,

where M3 =
[∑2

k=1
∑
n∈N

M4
2

|λnk|2

] 1
2

. Furthermore,

‖u‖L2([0,t],U) =

(∫t
0
‖u(τ)‖2

Udτ

) 1
2

=

(∫t
0
|u1(τ)|

2 + |u2(τ)|
2dτ

) 1
2

>

[(∫t
0
|u1(τ)|dτ

)2

+

(∫t
0
|u2(τ)|dτ

)2
] 1

2

>

√
2

2

[∫t
0
(|u1(τ)|+ |u2(τ)|)dτ

]
.

Let M =
√

2M3, we have ∥∥∥∥∫t
0
T(t− τ)Bu(τ)dτ

∥∥∥∥
H

6M‖u‖L2([0,t],U).

Theorem 3.6. LetA,B,C and T(t) be given as in definitions (3.1), (2.4), (2.5) and Theorem 3.4 (iii), set z =
(p(x)
f(x,·)

)
,

where p(x) =
(p1(x)
p2(x)

)
, f(x, ·) =

(f1(x,·)
f2(x,·)

)
, then system (3.2) is exact controllable on [0, ε].

Proof. In order to prove that system (3.2) is exactly controllable on [0, ε], we only need to prove for any
ε > 0, there exists γ > 0 such that

∫ε
0 ‖B

∗T∗(t)z‖2
Udt > γ‖z‖2

H holds true. If we give an equivalent norm,
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{φnk|k = 1, 2,n ∈ N} will become an orthonormal basis of H. So, let us assume that {φnk | k = 1, 2, n ∈ N}

are orthogonal for writing convenience. Actually,

‖z‖2
H =

∥∥∥∥∥
2∑
k=1

∑
n∈N

(z,φnk)Hφnk

∥∥∥∥∥
2

H

=

∥∥∥∥∥
2∑
k=1

∑
n∈N

( (p(x)
f(x,·)

)
,
( F(x,τnk)
eλnk·F(x,τnk)

) )
H

(
F(x, τnk)

eλnk·F(x, τnk)

)∥∥∥∥∥
2

H

=

2∑
k=1

∑
n∈N

∣∣∣( (p(x)f(x,·)
)
,
( F(x,τnk)
eλnk·F(x,τnk)

) )
H

∣∣∣2
6M

2∑
k=1

∑
n∈N

∣∣∣∣∣
∫ 1

0
[p ′′1 (x)λ

−1
nkϕ

′′(x, τnk) + p2(x)ϕ(x, τnk)]dx+ eλnkt
∫ 0

−ε

∫ 1

0
[f1xx(x, θ)

× λ−1
nkϕ

′′(x, τnk) + f2(x, θ)ϕ(x, τnk)]dxdθ

∣∣∣∣∣
2

=M

2∑
k=1

∑
n∈N

(∫ 1

0
[p ′′1 (x)λ

−1
nkϕ

′′(x, τnk) + p2(x)ϕ(x, τnk)]dx

)2

+ 2eReλnkt

×
∫ 1

0
[p ′′1 (x)λ

−1
nkϕ

′′(x, τnk) + p2(x)ϕ(x, τnk)]dx
∫ 0

−ε

∫ 1

0
[f1xx(x, θ)λ−1

nkϕ
′′(x, τnk) + f2(x, θ)

×ϕ(x, τnk)]dxdθ+ e2Reλnkt

(∫ 0

−ε

∫ 1

0
[f1xx(x, θ)λ−1

nkϕ
′′(x, τnk) + f2(x, θ)ϕ(x, τnk)]dxdθ

)2 ]
.

Moreover,∫ε
0
‖B∗T∗(t)z‖2

U dt =

∫ε
0
‖B∗

(
2∑
k=1

∑
n∈N

eλnkt(z,φnk)Hφnk

)
‖2
Udt

=

∫ε
0

∥∥∥∥∥
2∑
k=1

∑
n∈N

eλnkt
( (p(x)

f(x,·)
)
,
( F(x,τnk)
eλnktF(x,τnk)

) )
H

(
−k−2

2 λ−1
nkϕ

′′(τnk)

ϕ(1, τnk)

)∥∥∥∥∥
2

U

dt

=

∫ε
0

2∑
k=1

∑
n∈N

|e2λnkt|

∣∣∣∣∣
∫ 1

0
[p ′′1 (x)λ

−1
nkϕ

′′(x, τnk) + p2(x)ϕ(x, τnk)]dx

+ eλnkt
∫ 0

−ε

∫ 1

0
[f1xx(x, θ)λ−1

nkϕ
′′(x, τnk)

+ f2(x, θ)ϕ(x, τnk)]dxdθ|2[k−4
2 λ−2

nk|ϕ
′′(1, τnk)

∣∣∣∣∣
2

+ |ϕ(1, τnk)|2]dt

> m
∫ε

0

2∑
k=1

∑
n∈N

e2Reλnkt

(∫ 1

0
[p ′′1 (x)λ

−1
nkϕ

′′(x, τnk) + p2(x)ϕ(x, τnk)]dx

)2

+ 2eReλnkt

×

(∫ 1

0
[p ′′1 (x)λ

−1
nkϕ

′′(x, τnk) + p2(x)ϕ(x, τnk)]dx

)(∫ 0

−ε

∫ 1

0
[f1xx(x, θ)λ−1

nkϕ
′′(x, τnk)

+ f2(x, θ)ϕ(x, τnk)]dxdθ

)
+ e2Reλnkt

(∫ 0

−ε

∫ 1

0
[f1xx(x, θ)λ−1

nkϕ
′′(x, τnk) + f2(x, θ)
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×ϕ(x, τnk)]dxdθ

)2)
dt

= m

2∑
k=1

∑
n∈N

[
1

2Reλnk
(e2Reλnkε − 1)

(∫ 1

0

[
p ′′1 (x)λ

−1
nkϕ

′′(x, τnk) + p2(x)ϕ(x, τnk)
]
dx

)2

+
2

3Reλnk
(e3Reλnkε − 1)

(∫ 1

0
[p ′′1 (x)λ

−1
nkϕ

′′(x, τnk) + p2(x)ϕ(x, τnk)]dx

)

×

(∫ 0

−ε

∫ 1

0
[f1xx(x, θ)λ−1

nkϕ
′′(x, τnk)

+ f2(x, θ)ϕ(x, τnk)]dxdθ

)
+

1
4Reλnk

(e4Reλnkε − 1)

(∫ 0

−ε

∫ 1

0
[f1xx(x, θ)

× λ−1
nkϕ

′′(x, τnk) + f2(x, θ)ϕ(x, τnk)]dxdθ

)2]

> mmin{
1

2Reλnk
(e2Reλnkε − 1),

2
3Reλnk

(e3Reλnkε − 1),
1

4Reλnk
(e4Reλnkε − 1), 1,

2eReλnkt, e2Reλnkt}

(∫ 1

0
[p ′′1 (x)λ

−1
nkϕ

′′(x, τnk) + p2(x)ϕ(x, τnk)]dx

)2

+ 2eReλnkt


×

(∫ 1

0
[p ′′1 (x)λ

−1
nkϕ

′′(x, τnk) + p2(x)ϕ(x, τnk)]dx

)(∫ 0

−ε

∫ 1

0
[f1xx(x, θ)λ−1

nkϕ
′′(x, τnk)

+ f2(x, θ)ϕ(x, τnk)]dxdθ

)
+ e2Reλnkt

(∫ 0

−ε

∫ 1

0
[f1xx(x, θ)λ−1

nkϕ
′′(x, τnk)

+ f2(x, θ)ϕ(x, τnk)]dxdθ

)2)

>
m

M
min{

1
2Reλnk

(e2Reλnkε − 1),
2

3Reλnk
(e3Reλnkε − 1),

1
4Reλnk

(e4Reλnkε − 1), 1,

2eReλnkt, e2Reλnkt}‖z‖2
H,

where
m = inf

k=1,2,n∈N
[k−4

2 λ−2
nk|ϕ

′′(1, τnk)|2 + |ϕ(1, τnk)|2].

Take

γ =
m

M
min{

1
2Reλnk

(e2Reλnkε − 1),
2

3Reλnk
(e3Reλnkε − 1),

1
4Reλnk

(e4Reλnkε − 1), 1, 2eReλnkt, e2Reλnkt}.

Therefore, ∫ε
0
‖B∗T∗(t)z‖2

Udt > γ‖z‖2
H.

Since systems (1.1) and (3.2) are equivalent, we get the exact controllability of system (1.1).

Conclusion

In this paper we discuss the flexible Euler-Bernoulli beam system with small delays in boundary
feedback controls (1.1) with boundary conditions. Different from the works in literature, we formulate
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the system (1.1) as the state feedback control systems
∑

(A,B,C). And then we formulate the system
without time-delay as abstract differential functions on the Hilbert space X. We get the eigenvalues and
eigenvectors of the operator A through studying the eigenvalues and eigenvectors of the operator A1.
Then we prove that

∑
(A,B,C) is exactly controllable on H, which is generalized by the eigenvectors of

the operator A. Since the system (1.1) and the system
∑

(A,B,C) are equivalent, we only need to study
the exact controllability of

∑
(A,B,C). In the end, (1.1) is proved to be exactly controllable on H.
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