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Abstract
In this work, we study a class of integral boundary value condition of fractional differential equations with a parameter.

The existence and uniqueness of positive solutions to the boundary value problem is established. Further, we present some
properties of positive solutions to the boundary value problem dependent on the parameter. The method employed is a fixed
point theorem of concave operators in partial ordering Banach spaces. As applications, two examples are given to illustrate our
main results. c©2017 All rights reserved.
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1. Introduction

In this article, we study the following integral boundary value condition of fractional differential
equations with a parameter {

Dα0+u(t) + λf(t,u(t)) = 0, 0 < t < 1,
u(0) = u ′(0) = 0, u(1) =

∫1
0 g(s)u(s)ds,

(1.1)

where 2 < α 6 3, λ > 0 is a parameter. Dα0+ is the standard Riemann-Liouville fractional derivative of
order α which is defined as follows:

Dα0+u(t) =
1

Γ(n−α)

(
d

dt

)n ∫t
0
(t− s)n−α−1u(s)ds, n = [α] + 1,

here Γ denotes the Euler gamma function and [α] denotes the integer part of number α, provided that the
right side is pointwise defined on (0,+∞), see [10].

Recently, fractional differential equations with integral boundary conditions have been extensively
studied. For a small sample of such work, we refer the reader to [1–3, 5, 7, 9, 11, 17, 18] and the references
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therein. As it has been stated in [3], integral boundary value problems have many various applications in
applied fields such as blood flow problems, chemical engineering, thermo-elasticity, underground water
flow and population dynamics. The existence of solutions for integral boundary value problems is an
important problem. In literature, most of the authors have studied the existence and multiplicity of
positive solutions. Recently, in paper [11], the authors considered a class of fractional equations involving
the Riemann-Liouville fractional derivative with integral boundary value conditions{

Dα0+u(t) + q(t)f(t,u(t)) = 0, 0 < t < 1,
u(0) = u ′(0) = 0, u(1) =

∫1
0 g(s)u(s)ds,

(1.2)

where 2 < α 6 3, q,g ∈ L1[0, 1]. The authors obtained some properties of Green function of this prob-
lem and by using monotone iteration method, established the existence of one positive solution for the
problem (1.2). But the uniqueness of positive solutions is not treated in [11]. From literature, we know
that the existence and uniqueness results of positive solutions for fractional differential equations with
integral boundary conditions are still very few. Moreover, there are also few papers reported on integral
boundary conditions of fractional differential equations with a parameter. So it is important to bridge this
gap between known integer-order boundary value problems studies and unknown fractional boundary
value problems theory.

Inspired by the work [11] and many known results in [12, 14–16], we will study the problem (1.1) with
concave nonlinearity. Different from the works mentioned above, in this paper we will use a fixed point
theorem of concave operators in partial ordering Banach spaces to show the existence and uniqueness of
positive solutions for the problem (1.1). Moreover, we present some good properties of positive solutions
to the boundary value problem dependent on the parameter. The methods used here are different from
those in previous articles.

In this paper, our basic assumptions on functions f(t, x),g(t) here are:

(H1) f : [0, 1]× [0,+∞)→ [0,+∞) is continuous;

(H2) f(t, x) is concave in x for each t ∈ [0, 1];

(H3) g : [0, 1]→ [0,+∞) with g ∈ L1[0, 1] and δ :=
∫1

0 s
α−1(1 − s)g(s)ds > 0, σ :=

∫1
0 s
α−1g(s)ds < 1;

(H4) there exist constants a,b > 0 such that f(t, 0) > a, f(t, 1) 6 b, for all t ∈ [0, 1];

(H5) lim
x→∞ f(t,x)x = 0 uniformly on [0, 1].

Remark 1.1. From (H2), we know that f(t, x) is increasing in x ∈ [0,+∞).

2. Preliminaries

In the following, we list some basic concepts in ordered Banach spaces and a fixed point theorem
which will be used later. For convenience of readers, we suggest that one refer to [4, 6, 8] for details.

Let (E, ‖ · ‖) be a real Banach space, θ is the zero element of E. A non-empty set P ⊂ E is a cone. Then
E is partially ordered by P, i.e., x 6 y if and only if y− x ∈ P. If x 6 y and x 6= y, then we denote x < y
or y > x. Set P̊ = {x ∈ P|x is an interior point of P}, a cone P is called to be solid if P̊ is non-empty. The
notation x� y indicates x− y ∈ P̊. Moreover, P is called normal if there is a constant N > 0 such that for
all x,y ∈ E, θ 6 x 6 y implies ‖x‖ 6 N‖y‖; in this case N is the infimum of such constants, it is called the
normality constant of P.

Definition 2.1. Assume D is a convex subset in E. An operator A : D → E is called a concave operator if
A(tx+ (1 − t)y) > tAx+ (1 − t)Ay, for x,y ∈ D and t ∈ [0, 1].

Definition 2.2. Let P be a cone in E and e ∈ P\θ, set Ee={x ∈ E: there exists λ > 0 such that −λe 6 x 6 λe},
and ‖x‖e = inf{λ > 0 : −λe 6 x 6 λe}, for all x ∈ Ee. Then Ee becomes a normed linear space under the
norm ‖ · ‖e, and ‖x‖e is called the e-norm of the element x ∈ Ee.
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Lemma 2.3 ([6, Theorem 1.5.1]). Assume cone P is normal. Then the following conclusions hold:

(i) Ee is a Banach space with e-norm, and there exists a constant l > 0 such that ‖x‖ 6 l‖x‖e, for all x ∈ Ee;

(ii) Pe = Ee ∩ P is a normal solid cone in Ee, and P̊e={x ∈ Ee: there exists τ = τ(x) > 0 such that x > τe}.

Lemma 2.4 ([18]). Assume (H3) holds. Let 2 < α 6 3 and y ∈ C[0, 1], then the unique solution of the following
boundary value problem {

Dα0+u(t) + y(t) = 0, 0 < t < 1,
u(0) = u ′(0) = 0, u(1) =

∫1
0 g(s)u(s)ds,

is given by

u(t) =

∫ 1

0
G(t, s)y(s)ds, t ∈ [0, 1],

where
G(t, s) = G1(t, s) +G2(t, s), (t, s) ∈ [0, 1]× [0, 1],

G1(t, s) =
1
Γ(α)

{
tα−1(1 − s)α−1 − (t− s)α−1, 0 6 s 6 t 6 1,
tα−1(1 − s)α−1, 0 6 t 6 s 6 1,

G2(t, s) =
tα−1

1 − σ

∫ 1

0
G1(τ, s)g(τ)dτ.

Lemma 2.5 ([13]). The function G1(t, s) given in Lemma 2.4 has the following properties:

tα−1(1 − t)s(1 − s)α−1

Γ(α)
6 G1(t, s) 6

s(1 − s)α−1

Γ(α− 1)
, ∀ t, s ∈ [0, 1].

Lemma 2.6. The Green function G(t, s) given in Lemma 2.4 satisfies the inequalities

δs(1 − s)α−1tα−1

(1 − σ)Γ(α)
6 G(t, s) 6

tα−1(1 − s)α−1

(1 − σ)Γ(α)
, t, s ∈ [0, 1].

Proof. From Lemma 2.4 in [11], the right inequality holds. So we only need to prove the left inequality.
From Lemma 2.5, we obtain

G(t, s) = G1(t, s) +G2(t, s) > G2(t, s) =
tα−1

1 − σ

∫ 1

0
G1(τ, s)g(τ)dτ

>
tα−1

1 − σ

∫ 1

0

τα−1(1 − τ)s(1 − s)α−1

Γ(α)
g(τ)dτ

=
tα−1s(1 − s)α−1

(1 − σ)Γ(α)

∫ 1

0
τα−1(1 − τ)g(τ)dτ

=
δs(1 − s)α−1tα−1

(1 − σ)Γ(α)
.

3. Existence, uniqueness and properties of positive solutions for the problem (1.1)

In this section, we apply the following theorem to study the problem (1.1).

Lemma 3.1 ([4]). Let P be a normal solid cone and A : P → P be a concave operator. Assume that Aθ� θ. Then
the following conclusions hold:
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(i) there exists 0 < λ∗ 6∞ such that the operator equation

u = λAu, (3.1)

has a unique solution u(λ) in P for 0 6 λ < λ∗; when λ > λ∗, (3.1) has no solution in P;

(ii) for any u0 ∈ P, set u0(λ) = u0, un(λ) = λAun−1(λ), n = 1, 2, 3, · · · . Then, for 0 < λ < λ∗ we have
un(λ)→ u(λ) as n→∞;

(iii) u(·) : [0, λ∗) → P is continuous, and strongly increasing (i.e., 0 6 λ1 < λ2 < λ∗ =⇒ u(λ1) � u(λ2)).
Moreover, u(tλ) 6 tu(λ) for 0 6 λ < λ∗, 0 6 t 6 1;

(iv) λ→ λ∗ − 0 implies ‖u(λ)‖ →∞;

(v) if there exist v0 ∈ P and λ0 > 0 such that λ0Av0 6 v0, then λ∗ > λ0.

Remark 3.2. If A : P → P is concave, then A is increasing (see [4]).

Throughout our following considerations, we will work in E = C[0, 1], a Banach space with endowed
with the norm ‖u‖E = maxt∈[0,1] |u(t)|. Let P = {u ∈ C[0, 1], u(t) > 0, ∀t ∈ [0, 1]}, then P is a normal solid
cone of E. Denote e(t) = tα−1, t ∈ [0, 1]. Then e ∈ C[0, 1], 0 6 e(t) 6 1, e(t) 6≡ 0. We get e ∈ P\{θ}.

Let X = Ee = {u ∈ E : ∃τ > 0, s.t. − τe(t) 6 u(t) 6 τe(t), ∀ t ∈ [0, 1]}, endowed with the norm
‖u‖X = inf{τ > 0 : −τe(t) 6 u(t) 6 τe(t), ∀ t ∈ [0, 1]}. Set P̃ = X

⋂
P. From Lemma 2.3, we know

that X is a Banach space, P̃ is a normal solid cone of X and ˚̃
P={u ∈ X: there exists ζ > 0 such that

u(t) > ζe(t), ∀ t ∈ [0, 1]}. In addition, there exists a constant l > 0 such that ‖u‖E 6 l‖u‖X, for all u ∈ X.

Theorem 3.3. Assume (H1)-(H4) hold. Then the following conclusions hold:

(i) there exists 0 < λ∗ 6∞ such that, for any given λ ∈ (0, λ∗), the problem (1.1) has a unique positive solution
uλ in P̃; when λ > λ∗, the problem (1.1) has no positive solution in P̃;

(ii) for any u0 ∈ P̃ and for any given λ ∈ (0, λ∗), constructing successively the sequence

um(t) = λ

∫ 1

0
G(t, s)f(s,um−1(s))ds, m = 1, 2, 3, · · · ,

then we have
max
t∈[0,1]

|um(t) − uλ(t)|→ 0 as m→∞;

(iii) max
t∈[0,1]

|uλ(t) − uλ0(t)|→ 0 as λ→ λ0 where 0 < λ0 < λ
∗, and if 0 < λ1 < λ2 < λ

∗ then

uλ1(t) 6 uλ2(t), ∀t ∈ [0, 1],

and uλ1(t) 6≡ uλ2(t);

(iv) urλ(t) 6 ruλ(t), r, t ∈ [0, 1] where λ ∈ (0, λ∗).

Proof. From Lemma 2.4, we know that u(t) is the solution of the problem (1.1), if and only if

u(t) = λ

∫ 1

0
G(t, s)f(s,u(s))ds,

where G(t, s) is given as in Lemma 2.4. Define an operator A by

(Au)(t) =

∫ 1

0
G(t, s)f(s,u(s))ds.
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It is easy to prove that u is the solution of the problem (1.1), if and only if u = λAu. For u ∈ P, in view of
the continuity of functions G(t, s) and f(t, x), we have Au ∈ C[0, 1]. And from G(t, s) > 0 and f(t, x) > 0,
for all t ∈ [0, 1], we can get (Au)(t) > 0, t ∈ [0, 1]. So Au ∈ P. Since f(t, ·) is concave, for x > 1, we have

f(t, 1) = f(t,
1
x
· x+ (1 −

1
x
) · 0) > 1

x
f(t, x) + (1 −

1
x
)f(t, 0),

and thus from (H4), we get

f(t, x) 6 xf(t, 1) − (x− 1)f(t, 0) 6 xf(t, 1) 6 bx.

Therefore, for u ∈ P, from Lemma 2.6 we have

0 6
∫ 1

0
G(t, s)f(s,u(s))ds 6

∫ 1

0

tα−1(1 − s)α−1

(1 − σ)Γ(α)
f(s, ‖u‖E)ds

6
tα−1

(1 − σ)Γ(α)

∫ 1

0
(1 − s)α−1f(s, ‖u‖E + 1)ds

6
tα−1

(1 − σ)Γ(α)

∫ 1

0
(1 − s)α−1b(1 + ‖u‖E)ds

=
b(1 + ‖u‖E)
(1 − σ)αΓ(α)

tα−1 =
b(1 + ‖u‖E)
(1 − σ)αΓ(α)

e(t)

=M1e(t), t ∈ [0, 1],

where M1 =
b(1+‖u‖E)
(1−σ)αΓ(α) > 0. Thus, 0 6 (Au)(t) 6M1e(t), so Au ∈ X. Then Au ∈ P ∩X, i.e., Au ∈ P̃.

Hence, we obtain A : P → P̃, and thus A : P̃ → P̃. Further, from f(t, ·) is concave, we can see that
operator A is concave. By Lemma 2.6 and (H4),

Aθ(t) =

∫ 1

0
G(t, s)f(s, 0)ds >

∫ 1

0

δs(1 − s)α−1tα−1

(1 − σ)Γ(α)
ads

=
aδtα−1

(1 − σ)Γ(α)

∫ 1

0
s(1 − s)α−1ds =

aδ

(1 − σ)α(α+ 1)Γ(α)
e(t), t ∈ [0, 1].

Since aδ
(1−σ)α(α+1)Γ(α) > 0, we have Aθ ∈ ˚̃

P, i.e., Aθ� θ. From Lemma 3.1, there exists 0 < λ∗ 6∞ such

that the operator equation u = λAu has a unique solution uλ in P̃ for 0 < λ < λ∗. When λ > λ∗, u = λAu

has no solution in P̃. For any u0 ∈ P̃, set um = λAum−1, m = 1, 2, · · · , then for 0 < λ < λ∗, we have
um → uλ as m → ∞. uλ : (0, λ∗) → P̃ is continuous, and strongly increasing (i.e., 0 < λ1 < λ2 < λ

∗ =⇒
uλ1 � uλ2). Moreover, u(tλ) 6 tuλ for 0 6 λ < λ∗, 0 6 t 6 1, λ→ λ∗ − 0 implies ‖uλ‖X →∞. That is,

(i) for any given λ ∈ (0, λ∗), the problem (1.1) has a unique positive solution uλ in P̃; when λ > λ∗, the
problem (1.1) has no positive solution in P̃;

(ii) for any u0 ∈ P̃ and for any given λ ∈ (0, λ∗), constructing successively the sequence

um(t) = λ

∫ 1

0
G(t, s)f(s,um−1(s))ds, m = 1, 2, · · · ,

then
max
t∈[0,1]

|um(t) − uλ(t)|→ 0 as m→∞;

(iii) max
t∈[0,1]

|uλ(t) − uλ0(t)| → 0 as λ → λ0, where 0 < λ0 < λ
∗, and if 0 < λ1 < λ2 < λ

∗, then there exists

τ > 0 such that uλ2(t) − uλ1(t) > τe(t), t ∈ [0, 1] and thus uλ1(t) 6 uλ2(t), for all t ∈ [0, 1] and
uλ1(t) 6≡ uλ2(t);
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(iv) urλ(t) 6 ruλ(t), r, t ∈ [0, 1], where λ ∈ (0, λ∗).

So the conclusions (i), (ii), (iii), and (iv) hold.

Theorem 3.4. Assume (H1)-(H5) hold. Then the following conclusions hold:

(i) for any given λ > 0, the problem (1.1) has a unique positive solution uλ in P̃;

(ii) for any u0 ∈ P̃ and for any given λ > 0, constructing successively the sequence

um(t) = λ

∫ 1

0
G(t, s)f(s,um−1(s))ds, m = 1, 2, 3, · · · ,

then we have
max
t∈[0,1]

|um(t) − uλ(t)|→ 0 as m→∞;

(iii) max
t∈[0,1]

|uλ(t) − uλ0(t)| → 0 as λ → λ0 where 0 < λ0, and if 0 < λ1 < λ2, then uλ1(t) 6 uλ2(t), for all

t ∈ [0, 1] and uλ1(t) 6≡ uλ2(t);

(iv) urλ(t) 6 ruλ(t), r, t ∈ [0, 1] where λ > 0.

Proof. From the proof of Theorem 3.3, we only need to prove λ∗ = ∞ for any λ > 0 is given. From (H5),
we can take a T > 0 large enough such that f(t, T) 6 λ−1(1 − σ)αΓ(α)T , for all t ∈ [0, 1]. Set v0(t) = Te(t),
so

λ(Av0)(t) = λ

∫ 1

0
G(t, s)f(s, Te(s))ds 6 λ

∫ 1

0
G(t, s)f(s, T)ds

6 λ
∫ 1

0

(1 − s)α−1

(1 − σ)Γ(α)
f(s, T)ds · tα−1

6 λ
tα−1

(1 − σ)Γ(α)
λ−1(1 − σ)αΓ(α)T

∫ 1

0
(1 − s)α−1ds

= Te(t) = v0(t),

v0(t) − λ(Av0)(t) = Te(t) − λ

∫ 1

0
G(t, s)f(s, Te(t))ds

6 Te(t) + λ
∫ 1

0
G(t, s)f(s, Te(t))ds

6 Te(t) + λ
∫ 1

0

(1 − s)α−1

(1 − σ)Γ(α)
f(s, T)ds · e(t)

6

[
T + λ

∫ 1

0

b(1 + T)

(1 − σ)Γ(α)
(1 − s)α−1ds

]
e(t)

=

[
T +

bλ(1 + T)

(1 − σ)αΓ(α)

]
e(t), t ∈ [0, 1].

Therefore, v0 − λAv0 ∈ P̃. That is, λAv0(t) 6 v0. From Lemma 3.1 (v), we have λ∗ > λ. Because λ is
arbitrary, we get λ∗ =∞.

To illustrate how our main results can be used in practice we present two examples.
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Example 3.5. Consider the following integral boundary value condition of fractional differential equations
with a parameter {

D
7
3
0+u(t) + λ(1 + sin t)[arctanu(t) + π

4 ] = 0, t ∈ (0, 1),
u(0) = u ′(0) = 0, u(1) =

∫1
0 s

2
3u(s)ds.

(3.2)

In this example, α = 7
3 , λ > 0 is a parameter and

g(t) = t
2
3 , f(t, x) = (1 + sin t)(arctan x+

π

4
), ∀ t ∈ [0, 1].

Then we have δ =
∫1

0 s
4
3 (1 − s)s

2
3ds = 1

12 > 0, σ =
∫1

0 s
4
3 s

2
3ds = 1

3 < 1. Evidently, f(t, x) : [0, 1]× [0,+∞) →
[0,+∞) is continuous, f(t, ·) is increasing and concave. Take a = π

4 , b = π, then

f(t, 0) = (1 + sin t)(0 +
π

4
) >

π

4
= a, f(t, 1) = (1 + sin t)(

π

4
+
π

4
) 6 π = b.

Hence, all the conditions of Theorem 3.3 are satisfied. So we have the following conclusions:

(i) there exists 0 < λ∗ 6∞ such that, for any given λ ∈ (0, λ∗), the problem (3.2) has a unique positive
solution uλ in P̃; when λ > λ∗, the problem (3.2) has no positive solution in P̃, here

P̃ = {u ∈ C[0, 1] : ∃τ > 0, s.t. 0 6 u(t) 6 τt
4
3 , ∀ t ∈ [0, 1]};

(ii) for any u0 ∈ P̃ and for any given λ ∈ (0, λ∗), constructing successively the sequence

um(t) = λ

∫ 1

0
G(t, s)(1 + sin s)[arctanum−1(s) +

π

4
]ds, m = 1, 2, 3, · · · ,

then we have
max
t∈[0,1]

|um(t) − uλ(t)|→ 0 as m→∞;

(iii) max
t∈[0,1]

|uλ(t) − uλ0(t)|→ 0 as λ→ λ0, where 0 < λ0 < λ
∗, and if 0 < λ1 < λ2 < λ

∗, then

uλ1(t) 6 uλ2(t), ∀t ∈ [0, 1],

and uλ1(t) 6≡ uλ2(t);

(iv) urλ(t) 6 ruλ(t), r, t ∈ [0, 1], where λ ∈ (0, λ∗).

Example 3.6. Consider the following integral boundary value condition of fractional differential equations
with a parameter  D2.5

0+u(t) + λ{
n0∑
i=1

ai(t)[u(t)]
1
i+1 + h(t)} = 0, t ∈ (0, 1),

u(0) = u ′(0) = 0, u(1) =
∫1

0 su(s)ds.
(3.3)

In this problem, α = 2.5, λ > 0, n0 > 1 is an integer and

g(t) = t, f(t, x) =
n0∑
i=1

ai(t)x
1
i+1 + h(t), ∀ t ∈ [0, 1],

where ai(t) is continuous and nonnegative (i = 1, 2, · · · ,n0) and h : [0, 1] → (0,+∞) is continuous
and nondecreasing. Then we have δ =

∫1
0 s
α(1 − s)ds = 4

63 > 0, σ =
∫1

0 s
αds = 2

7 < 1. Evidently,
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f(t, x) : [0, 1]× [0,+∞) → [0,+∞) is continuous, f(t, ·) is increasing and concave. Take a ∈ (0,h(0)), b >
n0∑
i=1
‖ai‖+ h(1), then

f(t, 0) = h(t) > h(0) > a, f(t, 1) =
n0∑
i=1

ai(t) + h(t) 6
n0∑
i=1

‖ai‖+ h(1) 6 b.

Further, it is easy to prove that lim
x→∞ f(t,x)x = 0 uniformly on [0,1], therefore from Theorem 3.4, λ∗ = ∞.

Hence, all the conditions of Theorem 3.4 are satisfied. So we have the following conclusions:

(i) for any given λ ∈ (0,+∞), the problem (3.3) has a unique positive solution uλ in P̃, here

P̃ = {u ∈ C[0, 1] : ∃τ > 0, s.t. 0 6 u(t) 6 τt
3
2 , ∀ t ∈ [0, 1]};

(ii) for any u0 ∈ P̃ and for any given λ ∈ (0,+∞), constructing successively the sequence

um(t) = λ

∫ 1

0
G(t, s)

{
n0∑
i=1

ai(s)[um−1(s)]
1
i+1 + h(s)

}
ds, m = 1, 2, 3, · · · ,

then we have
max
t∈[0,1]

|um(t) − uλ(t)|→ 0 as m→∞;

(iii) max
t∈[0,1]

|uλ(t) − uλ0(t)|→ 0 as λ→ λ0, where 0 < λ0 < +∞, and if 0 < λ1 < λ2 < +∞, then

uλ1(t) 6 uλ2(t), ∀t ∈ [0, 1],

and uλ1(t) 6≡ uλ2(t);

(iv) urλ(t) 6 ruλ(t), r, t ∈ [0, 1], where λ ∈ (0,+∞).

4. Conclusions

In this work, we study a class of integral boundary value problem with a parameter. We obtain some
new results on the existence and uniqueness of positive solutions. Moreover, we establish some good
properties of positive solutions to the integral boundary value problem dependent on the parameter. The
method used here is different from the literature and so is the existence and uniqueness results to integral
boundary value conditions of fractional differential equations.
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