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1. Introduction and preliminaries

Fixed point theory is dynamic and is experiencing an explosive growth in both theory and applica-
tions; as a consequence, research techniques and problems are drawn from various fields. As an im-
portant branch of nonlinear functional analysis and optimization theory, it has been applied to solve
many real world problems, such as, the signal processing and the image reconstruction; see [3, 6, 18] and
the references therein. Fixed point algorithms are efficient methods for variational inequality problems,
equilibrium problems, and saddle point problems; see [4, 8, 9, 17, 19] and the references therein.

Let H be a real Hilbert space. Let C be a nonempty convex and closed subset of H and let T : C → C

be a mapping. Denote by Fix(T) the fixed point set of mapping T . Recall that T is said to be nonexpansive
iff

‖Tx− Ty‖ 6 ‖x− y‖, ∀x,y ∈ C.

For the class of nonexpansive mappings, their fixed point sets may be empty, for example, let H = l1:
all sequences {xn} such that

∑
|xn| < ∞, ‖xn‖1 =

∑
|xn|. Let T : l1 → l1 be the shift operator: Txn =

(0, x1, x2, · · · ), C := {{xn} : xn > 0, ‖xn‖1 = 1}. Then T : C→ C is a nonexpansive mapping without a fixed
point. However, we know it always has an approximate fixed point if the convex and closed subset is also
bounded in any Banach space.
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T is said to be asymptotically nonexpansive iff there exists a positive sequence {hn} ⊂ [1,∞) with
limn→∞ hn = 1 such that

‖Tnx− Tny‖ 6 hn‖x− y‖, ∀x,y ∈ C,n > 1.

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [11] as a gener-
alization of the class of nonexpansive mappings. If C is a nonempty closed convex and bounded subset of
H, then the set of fixed points of T is not empty. Indeed, the framework of the space can also be extended
to the framework of uniformly convex Banach spaces; see [11] and the references therein.

T is said to be asymptotically nonexpansive in the intermediate sense iff it is continuous and the
following inequality holds:

lim sup
n→∞ sup

x,y∈C
(‖Tnx− Tny‖− ‖x− y‖) 6 0. (1.1)

Observe that if we define

σn = sup
x,y∈C

(‖Tnx− Tny‖− ‖x− y‖) and νn = max{0,σn},

then νn → 0 as n→∞. It follows that (1.1) is reduced to

‖Tnx− Tny‖ 6 ‖x− y‖+ νn, ∀x,y ∈ C,n > 1.

The class of mappings which are asymptotically nonexpansive in the intermediate sense was introduced
by Bruck et al. [5]. It is worth mentioning that the class of mappings which are asymptotically nonexpan-
sive in the intermediate sense, contains properly the class of asymptotically nonexpansive mappings. It is
known that the class of mappings which are asymptotically nonexpansive in the intermediate sense may
not be Lipschitz continuous.

T is said to be generalized asymptotically nonexpansive iff there exists positive sequences {hn} ⊂ [1,∞)
and {νn} ⊂ [0,∞) with limn→∞ νn = 0 such that

‖Tnx− Tny‖ 6 hn‖x− y‖+ νn, ∀x,y ∈ C,n > 1.

The class of generalized asymptotically nonexpansive mappings was introduced by Agarwal et al. [1] as
a generalization of the class of nonexpansive mappings. They obtained weak convergence of an implicit
two-step iterative algorithm in a Banach space; see [1] and the references therein.

Recently, Alber et al. [2] introduced the conception of total asymptotically nonexpansive mappings.
Recall that T is said to be total asymptotically nonexpansive iff

‖Tnx− Tny‖ 6 ‖x− y‖+ µnψ(‖x− y‖) + νn, ∀x,y ∈ C,

where ψ : [0,∞) → [0,∞) is strictly increasing continuous function with ψ(0) = 0 and {µn} and {νn} are
nonnegative real sequences such that µn → 0 and νn → 0 as n→∞. From the definition, we see that the
class of total asymptotically nonexpansive mappings includes the class of asymptotically nonexpansive
mappings as a special case; see [2] for more details.

Recently, the study of the convergence analysis of various iterative algorithms for solving various
nonlinear mathematical models forms the major part of numerical mathematics. Among these iterative
processes, Mann iterative algorithm and Ishikawa iterative algorithm are popular and hot. Let C be a
nonempty, closed, and convex subset of a real Hilbert space H, and let T : C → C be a nonexpansive
mapping. Mann iterative algorithm generates a sequence {xn} in the following manner:

x0 ∈ C, xn+1 = αnTxn + (1 −αn)xn, ∀n > 0,

where {αn} is a real sequence in (0, 1). In 1979, Reich [21] obtained a celebrated weak convergence theorem
in the framework of Banach spaces; see [21] and the references therein for more details.
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Recall that the modified Mann iteration which was introduced by Schu [23] generates a sequence {xn}

in the following manner:

x1 ∈ C, xn+1 = (1 −αn)xn +αnT
nxn, ∀n > 1,

where {αn}
∞
n=0 is a sequence in (0, 1) and T : C→ C is an asymptotically nonexpansive mapping. In 1991,

Schu [23] obtained the two strong convergence theorems with the aid of compactness, see [23] for more
details.

Recall that the Ishikawa iterative algorithm generates a sequence {xn} in the following manner:
x0 ∈ C,
yn = βnTxn + (1 −βn)xn,
xn+1 = αnTyn + (1 −αn)xn, ∀n > 0,

where {αn} and {βn} are real sequences in (0, 1) and T is a nonexpansive mapping. Since 1974, the two-
step iterative algorithm has been extensively studied by many authors; see [12, 14] and the references
therein.

Recall that the modified Ishikawa iterative process which was introduced by Schu [22], {xn} in the
following manner: 

x0 ∈ C,
yn = βnT

nxn + (1 −βn)xn,
xn+1 = αnT

nyn + (1 −αn)xn, ∀n > 0,

where {αn} and {βn} are real sequences in (0, 1) and T is an asymptotically nonexpansive mapping in C.
The (modified) Ishikawa iterative algorithm is indeed more general than the (modified) Mann iterative

algorithm. But research has been concentrated on the latter due probably to the reasons that the formu-
lation of the (modified) Mann iterative algorithm is simpler than that of the (modified) Ishikawa iterative
algorithm and that a convergence theorem for the (modified) Mann iterative algorithm may possibly lead
to a convergence theorem for the (modified) Ishikawa iterative algorithm provided the control sequences
satisfy certain appropriate conditions; see [13] and the references therein. We also remark here that both
the (modified) Ishikawa iterative algorithm and the (modified) Mann iterative algorithm are only weakly
convergent; see [10, 22]. In many fields, problems arise in infinite dimension spaces. In such problems,
strong convergence is often much more desirable than weak convergence. Recently, many authors have
extensively studied the strong convergence analysis of the different modified Ishikawa and Mann iterative
algorithms; see [7, 13, 14, 20, 25] and the references therein.

Based on the modified Ishikawa iterative algorithm, we investigate the following two-step iterative
algorithm for a pair of total asymptotically nonexpansive mappings S and T ,

x0 ∈ C,
yn = βnS

nxn + (1 −βn)xn,
xn+1 = αnT

nyn + (1 −αn)xn, ∀n > 0,

where {αn} and {βn} are real sequences in (0, 1). We establish strong and weak convergence theorems
of common fixed points of a pair of total asymptotically nonexpansive mappings in the framework of
Hilbert spaces.

To obtain our main convergence results, we need the following tools.
Recall that a space satisfies the Opial’s condition [16] iff for any sequence {xn} in H with the fact that

{xn} converges weakly to x, lim infn→∞ ‖xn − x‖ < lim infn→∞ ‖xn − y‖ for any y 6= x. Indeed, it is also
equivalent to lim supn→∞ ‖xn − x‖ < lim supn→∞ ‖xn − y‖ for any y 6= x.

Lemma 1.1 ([24]). Let {rn}, {sn}, and {tn} be three nonnegative sequences satisfying the following condition:

rn+1 6 (1 + sn)rn + tn, ∀n > n0,

where n0 is some nonnegative integer. If
∑∞
n=1 sn <∞ and

∑∞
n=1 tn <∞, then limn→∞ rn exists.
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Lemma 1.2 ([23]). Let 0 < p 6 tn 6 q < 1 for all n > 1. Suppose that {xn} and {yn} are sequences in H such
that

lim
n→∞ ‖tnxn + (1 − tn)yn‖ = d,

lim sup
n→∞ ‖xn‖ 6 d, and lim sup

n→∞ ‖yn‖ 6 d hold for some r > 0. Then ‖yn − xn‖ → 0 as n→∞.

2. Weak convergence theorems

Theorem 2.1. Let C be a nonempty bounded closed and convex subset of a real Hilbert space H. Let T : C → C

be a uniformly Lt-Lipschitz and total asymptotically nonexpansive mapping with function ψt and nonnegative real
sequences {µn,t} and {νn,t} such that

∑∞
n=0 µn,t < ∞ and

∑∞
n=0 νn,t < ∞. Let S : C → C be a uniformly Ls-

Lipschitz and total asymptotically nonexpansive mapping with function ψs and nonnegative real sequences {µn,s}

and {νn,s} such that
∑∞
n=0 µn,s < ∞ and

∑∞
n=0 νn,s < ∞. Assume Fix(T) ∩ Fix(S) 6= ∅ and let {xn} be a

sequence generated by the following manner:
x0 ∈ C,
yn = (1 −βn)xn +βnS

nxn,
xn+1 = (1 −αn)xn +αnT

nyn, ∀n > 0,

where {αn} and {βn} are two sequences in (0, 1) such that 0 < a 6 αn 6 a ′ < 1 and 0 < b 6 βn 6 b ′ < 1,
where a,a ′,b, and b ′ are four real constants. Then {xn} converges weakly to a common fixed point of T and S.

Proof. Fixing p ∈ Fix(T)∩ Fix(S), we see that

‖yn − p‖ 6 (1 −βn)‖xn − p‖+βn‖Snxn − p‖
6 (1 −βn)‖xn − p‖+βn

(
‖xn − p‖+ µn,sψs(‖xn − p‖) + νn,s

)
6 ‖xn − p‖+βnµn,sψs(‖xn − p‖) +βnνn,s.

This implies that

‖xn+1 − p‖ 6 (1 −αn)‖xn − p‖+αn
(
‖yn − p‖+ µn,tψt(‖yn − p‖) + νn,t

)
6 (1 −αn)‖xn − p‖+αn(‖xn − p‖+βnµn,sψs(‖xn − p‖) +βnνn,s)

+αnµn,tψt(‖yn − p‖) +αnνn,t

6 ‖xn − p‖+αnβnµn,sψs(‖xn − p‖) +αnβnνn,s +αnµn,tψt(‖yn − p‖) +αnνn,t

6 ‖xn − p‖+ µn,sψs(diam C) + µn,tψt(diam C) + νn,t + νn,s.

Since
∑∞
n=0 µn,s <∞,

∑∞
n=0 νn,s <∞,

∑∞
n=0 µn,t <∞, and

∑∞
n=0 νn,t <∞, we obtain from Lemma 1.1

that limn→∞ ‖xn − p‖ exists. Next, we assume that limn→∞ ‖xn − p‖ = d > 0. Note that

‖yn − p‖ 6 ‖xn − p‖+ µn,sψs(‖xn − p‖) + νn,s.

Hence, we have lim supn→∞ ‖yn − p‖ 6 d. On the other hand, we have

‖Tnyn − p‖ 6 ‖yn − p‖+ µn,tψt(‖yn − p‖) + νn,t 6 ‖yn − p‖+ µn,tψt(diam C) + νn,t. (2.1)

This implies that lim supn→∞ ‖Tnyn − p‖ 6 d. Since

‖xn+1 − p‖ = ‖(1 −αn)(xn − p) +αn(T
nyn − p)‖,

we find from Lemma 1.2 that
lim
n→∞ ‖Tnyn − xn‖ = 0. (2.2)
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From (2.1), we have

‖xn − p‖ 6 ‖xn − Tnyn‖+ ‖Tnyn − p‖ 6 ‖xn − Tnyn‖+ ‖yn − p‖+ µn,tψt(diam C) + νn,t.

In view of (2.2), we find that lim infn→∞ ‖yn − p‖ > d, which in turn implies that limn→∞ ‖yn − p‖ = d.
Since

‖Snxn − p‖ 6 ‖xn − p‖+ µn,sψs(‖xn − p‖) + νn,s 6 ‖xn − p‖+ µn,sψs(diam C) + νn,s,

we have lim supn→∞ ‖Snxn − p‖ 6 d. On the other hand, we have

‖yn − p‖ = ‖(1 −βn)(xn − p) +βn(S
nxn − p)‖.

Using Lemma 1.2, we find that
lim
n→∞ ‖Snxn − xn‖ = 0. (2.3)

Note that
‖Tnxn − xn‖ 6 ‖Tnxn − Tnyn‖+ ‖Tnyn − xn‖

6 Lt‖xn − yn‖+ ‖Tnyn − xn‖
6 Lt‖Snxn − xn‖+ ‖Tnyn − xn‖.

From (2.2) and (2.3), we have
lim
n→∞ ‖Tnxn − xn‖ = 0. (2.4)

It also follows from (2.2) that
lim
n→∞ ‖xn+1 − xn‖ = 0. (2.5)

In view of the following two inequalities

‖Txn − xn‖ 6 ‖xn − xn+1‖+ ‖xn+1 − T
n+1xn+1‖+ ‖Tn+1xn+1 − T

n+1xn‖+ ‖Tn+1xn − Txn‖,

and

‖Sxn − xn‖ 6 ‖xn − xn+1‖+ ‖xn+1 − S
n+1xn+1‖+ ‖Sn+1xn+1 − S

n+1xn‖+ ‖Sn+1xn − Sxn‖,

we find from (2.3), (2.4), and (2.5) that

lim
n→∞ ‖Txn − xn‖ = 0, (2.6)

and
lim
n→∞ ‖Sxn − xn‖ = 0. (2.7)

Since C is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ x̄. Fix κ ∈ (0, 1
1+Ls

) and
define yκ,ρ = κSρx̄+ (1− κ)x̄ for arbitrary but fixed ρ > 1. Since both the mappings S and T are Lipschitz
continuous, we have

‖Sρxn − xn‖ 6 ‖Sxn − xn‖+ ‖S2xn − Sxn‖+ · · ·+ ‖Sρxn − Sρ−1xn‖ 6 Lsκ‖Sxn − xn‖.

It follows from (2.7) that
lim
n→∞ ‖Sρxn − xn‖ = 0. (2.8)

Note that

〈Sρyκ,ρ − yκ,ρ,yκ,ρ − x̄〉 = 〈xn − yκ,ρ,yκ,ρ − S
ρyκ,ρ〉+ 〈x̄− xn,yκ,ρ − S

ρyκ,ρ〉
= 〈xn − yκ,ρ,Sρxn − Sρyκ,ρ〉+ 〈x̄− xn,yκ,ρ − S

ρyκ,ρ〉
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− 〈xn − yκ,ρ, xn − yκ,ρ〉+ 〈xn − yκ,ρ, xn − Sρxn〉
6 〈xn − x̄,Sρyκ,ρ − yκ,ρ〉
+ ‖xn − yκ,ρ‖(‖xn − yκ,ρ‖+ µρ,sψs(‖xn − yκ,ρ‖) + νρ,s)

− ‖xn − yκ,ρ‖2 + ‖xn − yκ,ρ‖‖xn − Sρxn‖
6 〈x̄− xn,yκ,ρ − S

ρyκ,ρ〉+ ‖xn − yκ,ρ‖‖xn − Sρxn‖
+ µρ,s(diam C)ψs((diam C)) + (diam C)νρ,s.

Using (2.8), we have

〈x̄− yκ,ρ,yκ,ρ − S
ρyκ,ρ〉 6 µρ,s(diam C)ψs((diam C)) + (diam C)νρ,s. (2.9)

On the other hand, we have

κ‖x̄− Sρx̄‖2 = 〈x̄− yκ,ρ, x̄− Sρx̄〉
= 〈x̄− yκ,ρ, (x̄− Sρx̄) − (yκ,ρ − S

ρyκ,ρ)〉+ 〈x̄− yκ,ρ,yκ,ρ − S
ρyκ,ρ〉

6 (Ls + 1)κ2‖Sρx̄− x̄‖2 + 〈x̄− yκ,ρ,yκ,ρ − S
ρyκ,ρ〉.

(2.10)

Combining (2.9) with (2.10), we arrive at

α[1 − (Ls + 1)κ]‖x̄− Sρx̄‖2 6 (diam C)νρ,s + µρ,s(diam C)ψs((diam C)), ∀m > 1.

Letting m→∞, we see that Sρx̄→ x̄. Since S is uniformly Ls-Lipschitz, we obtain that x̄ is a fixed point
of S.

Fix κ ′ ∈ (0, 1
1+Lt

) and define yκ ′,ρ ′ = κ ′Tρ
′
x̄+ (1 − κ ′)x̄ for arbitrary but fixed ρ ′ > 1. Since both the

mappings S and T are Lipschitz continuous, we have

‖Tρ ′xn − xn‖ 6 ‖Txn − xn‖+ ‖T 2xn − Txn‖+ · · ·+ ‖Tρ
′
xn − Tρ

′−1xn‖ 6 Ltκ ′‖Txn − xn‖.

It follows from (2.6) that
lim
n→∞ ‖Tρ ′xn − xn‖ = 0. (2.11)

Note that

〈Tρ ′yκ ′,ρ ′ − yκ ′,ρ ′ ,yκ ′,ρ ′ − x̄〉 = 〈xn − yκ ′,ρ ′ ,yκ ′,ρ ′ − Tρ
′
yκ ′,ρ ′〉+ 〈x̄− xn,yκ ′,ρ ′ − Tρ

′
yκ ′,ρ ′〉

= 〈xn − yκ ′,ρ ′ , Tρ
′
xn − Tρ

′
yκ ′,ρ ′〉+ 〈x̄− xn,yκ ′,ρ ′ − Tρ

′
yκ ′,ρ ′〉

− 〈xn − yκ ′,ρ ′ , xn − yκ ′,ρ ′〉+ 〈xn − yκ ′,ρ ′ , xn − Tρ
′
xn〉

6 〈xn − x̄, Tρ
′
yκ ′,ρ ′ − yκ ′,ρ ′〉

+ ‖xn − yκ ′,ρ ′‖(‖xn − yκ ′,ρ ′‖+ µρ ′,tψt(‖xn − yκ ′,ρ ′‖) + νρ ′,t)

− ‖xn − yκ ′,ρ ′‖2 + ‖xn − yκ ′,ρ ′‖‖xn − Tρ
′
xn‖

6 〈x̄− xn,yκ ′,ρ ′ − Tρ
′
yκ ′,ρ ′〉+ ‖xn − yκ ′,ρ ′‖‖xn − Tρ

′
xn‖

+ µρ ′,t(diam C)ψt((diam C)) + (diam C)νρ ′,t.

From (2.11), one has

〈x̄− yκ ′,ρ ′ ,yκ ′,ρ ′ − Tρ
′
yκ ′,ρ ′〉 6 µρ ′,t(diam C)ψt((diam C)) + (diam C)νρ ′,t. (2.12)

On the other hand, we have

κ‖x̄− Tρ ′ x̄‖2 = 〈x̄− yκ ′,ρ ′ , x̄− Tρ
′
x̄〉

= 〈x̄− yκ ′,ρ ′ , (x̄− Tρ
′
x̄) − (yκ ′,ρ ′ − T

ρ ′yκ ′,ρ ′)〉+ 〈x̄− yκ ′,ρ ′ ,yκ ′,ρ ′ − Tρ
′
yκ ′,ρ ′〉

6 (Lt + 1)κ ′2‖Tρ ′ x̄− x̄‖2 + 〈x̄− yκ ′,ρ ′ ,yκ ′,ρ ′ − Tρ
′
yκ ′,ρ ′〉.

(2.13)
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Using (2.12) with (2.13), we show that

α[1 − (Lt + 1)κ]‖x̄− Tρ ′ x̄‖2 6 (diam C)νρ ′,t + µρ ′,t(diam C)ψt((diam C)), ∀m > 1.

Letting m→∞, we see that Tρ
′
x̄→ x̄. Since T is uniformly Lt-Lipschitz, we obtain that x̄ is a fixed point

of T .
Finally, we prove that {xn} converges weakly to x̄. Assume that there exists some subsequence {xnj} ⊂

{xn} such that {xnj} converges weakly to x̄ ′ ∈ C, where x̄ 6= x̄ ′. In the same way, we find that x̄ ′ ∈
Fix(T)∩ Fix(S). Using the Opial’s condition, we find that

d = lim
i→∞ ‖xni − x̄‖ < lim

i→∞ ‖xni − x̄ ′‖ = lim
j→∞ ‖xnj − x̄ ′‖ < lim

j→∞ ‖xnj − x̄‖ = lim
i→∞ ‖xni − x̄‖ = d.

This derives a contradiction. It follows that x̄ = x̄ ′. This shows that {xn} converges weakly to a common
fixed point of S and T . This completes the proof.

Remark 2.2. Since the class of total asymptotically nonexpansive mappings includes generalized asymptot-
ically nonexpansive mappings, asymptotically nonexpansive mappings in the intermediate sense, asymp-
totically nonexpansive mappings, and nonexpansive mapping as special cases, Theorem 2.1 is still valid
for these nonlinear mappings.

For a single mapping, we have the following result.

Corollary 2.3. Let C be a nonempty bounded closed and convex subset of a real Hilbert space H. Let T : C → C

be a uniformly L-Lipschitz and total asymptotically nonexpansive mapping with function ψt and nonnegative real
sequences {µn} and {νn} such that

∑∞
n=0 µn < ∞ and

∑∞
n=0 νn < ∞. Assume Fix(T) 6= ∅ and let {xn} be a

sequence generated by the following manner:
x0 ∈ C,
yn = (1 −βn)xn +βnT

nxn,
xn+1 = (1 −αn)xn +αnT

nyn, ∀n > 0,

where {αn} and {βn} are two sequences in (0, 1) such that 0 < a 6 αn 6 a ′ < 1 and 0 < b 6 βn 6 b ′ < 1,
where a,a ′,b, and b ′ are four real constants. Then {xn} converges weakly to a fixed point of T .

3. Strong convergence results

In this section, we give the strong convergence analysis of the two-step iterative algorithm.
Recall that a mapping T : C → C is said to satisfy condition (A) iff there exists a nondecreasing

function f : [0,∞) → [0,∞) with f(0) = 0, f(y) > 0 for all y ∈ (0,∞) such that f(d(x, Fix(T))) 6 ‖x− Tx‖,
where d(x, Fix(T)) = inf{‖x− x ′‖ : x ′ ∈ Fix(T)} for all x ∈ C. Maiti and Ghosh [15] and Tan and Xu [24]
studied the approximation of fixed points of a nonexpansive mapping T by the Ishikawa iteration under
the condition (A) which is weaker than the requirement that T is demicompact.

In this paper, we use the following condition (HC). Let S, T : C → C be two mappings. Recall that
T and S are said to satisfy condition (HC) iff there exists a nondecreasing function f : [0,∞) → [0,∞)
with f(0) = 0, f(y) > 0 for all y ∈ (0,∞) such that f(d(x, Fix(T))) 6 λ‖x− Tx‖+ (1 − λ)‖x− Tx‖, where
d(x, Fix(T)) = inf{‖x− x ′‖ : x ′ ∈ Fix(T)} for all x ∈ C. Note that condition (HC) reduces to condition (A)
in the case that S = T .

Theorem 3.1. Let C be a nonempty bounded closed and convex subset of a real Hilbert space H. Let T : C → C

be a uniformly Lt-Lipschitz and total asymptotically nonexpansive mapping with function ψt and nonnegative real
sequences {µn,t} and {νn,t} such that

∑∞
n=0 µn,t < ∞ and

∑∞
n=0 νn,t < ∞. Let S : C → C be a uniformly Ls-

Lipschitz and total asymptotically nonexpansive mapping with function ψs and nonnegative real sequences {µn,s}
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and {νn,s} such that
∑∞
n=0 µn,s < ∞ and

∑∞
n=0 νn,s < ∞. Assume Fix(T) ∩ Fix(S) 6= ∅ and S, T satisfy

condition (HC). Let {xn} be a sequence generated by the following manner:
x0 ∈ C,
yn = (1 −βn)xn +βnS

nxn,
xn+1 = (1 −αn)xn +αnT

nyn, ∀n > 0,

where {αn} and {βn} are two sequences in (0, 1) such that 0 < a 6 αn 6 a ′ < 1 and 0 < b 6 βn 6 b ′ < 1,
where a,a ′,b, and b ′ are four real constants. Then {xn} converges strongly to a common fixed point of T and S.

Proof. From Theorem 2.1, we have that limn→∞ ‖xn − p‖ exists for all x ∈ Fix(S)∩ Fix(T). Without loss of
generality, we see that limn→∞ ‖xn − p‖ = d > 0. From Theorem 2.1, we have that limn→∞ ‖Txn − xn‖ =
limn→∞ ‖xn − Sxn‖ = 0 and

inf
p∈Fix(T)∩Fix(S)

‖xn+1 − p‖ 6 inf
p∈Fix(T)∩Fix(S)

‖xn − p‖+ µn,sψs(diam C) + µn,tψt(diam C) + νn,t + νn,s.

That is,

d(xn+1, Fix(T)∩ Fix(S)) 6 d(xn, Fix(T)∩ Fix(S)) + µn,sψs(diam C) + µn,tψt(diam C) + νn,t + νn,s.

Using Lemma 1.1, we have
lim
n→∞d(xn, Fix(T)∩ Fix(S))

exists. From condition (HC), we have limn→∞ f(d(xn, Fix(T)∩ Fix(S))) = 0. Since f is nondecreasing with
f(0) = 0, we find that limn→∞ d(xn, Fix(T)∩ Fix(S)) = 0.

Next, we take a subsequence {xnj} of {xn} and a sequence {yj} ⊂ Fix(S) ∩ Fix(T) such that ‖xnj −
yj‖ < 2−j. Then, following the method of proof of Tan and Xu [24], we get that {yj} is a Cauchy
sequence in Fix(S) ∩ Fix(T) and so it converges. Let yj → y. Since Fix(T) ∩ Fix(S) is closed, therefore
y ∈ Fix(S) ∩ Fix(T) and then xnj → y. Since limn→∞ ‖xn − p‖ exists for all x ∈ Fix(S) ∩ Fix(T), we find
that xn → y ∈ Fix(S)∩ Fix(T). This completes the proof.

For a single mapping, we have the following result.

Corollary 3.2. Let C be a nonempty bounded closed and convex subset of a real Hilbert space H. Let T : C → C

be a uniformly Lt-Lipschitz and total asymptotically nonexpansive mapping with function ψt and nonnegative real
sequences {µn,t} and {νn,t} such that

∑∞
n=0 µn,t < ∞ and

∑∞
n=0 νn,t < ∞. Assume Fix(T) 6= ∅ and T satisfies

condition (A). Let {xn} be a sequence generated by the following manner:
x0 ∈ C,
yn = (1 −βn)xn +βnT

nxn,
xn+1 = (1 −αn)xn +αnT

nyn, ∀n > 0,

where {αn} and {βn} are two sequences in (0, 1) such that 0 < a 6 αn 6 a ′ < 1 and 0 < b 6 βn 6 b ′ < 1,
where a,a ′,b, and b ′ are four real constants. Then {xn} converges strongly to a fixed point of T .

Finally, we give two numerical examples to illustrate the efficient of the algorithm.
Suppose that H := R and C := [0, 1] ⊂ R. Define a mapping T by Tx = kx, ∀x ∈ [0, 1

2 ] and Tx = 0,
∀x ∈ ( 1

2 , 1], where k is a constant in (0, 1). Then we observe that F(T) = 0, and hence the set of the fixed
points is nonempty.

Now, we show that T is total asymptotically pseudocontractive mapping. Suppose that C1 = [0, 1
2 ] and

C2 = ( 1
2 , 1].
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Case 1. If x,y ∈ C1, then |Tnx− Tny| = |knx− kny| 6 |x− y|.

Case 2. If x,y ∈ C2, then |Tnx− Tny| 6 |x− y|.

Case 3. If x ∈ C1,y ∈ C2, then |Tnx− Tny| 6 |knx− 0| 6 kn|x− y|+ kn|y| 6 |x− y|+ knM, where M is
some real constant. If we choose x0 ∈ C arbitrarily, then for four different initial values, we see all
the results are convergent in Figure 1. Let D = [−1, 1], D1 = [−1, 0], and D2 = [0, 1]. If we choose
x0 ∈ D arbitrarily, then for four different initial values, we see all the results are convergent in Figure
2.

Figure 1

Figure 2
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