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Abstract
In this study, we obtain the continuous dependence on the coefficients of solutions of semilinear Petrovsky equation. Such

models are involved in various fields of mathematical physics likewise geophysical and oceanic applications. c©2017 All rights
reserved.
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1. Introduction

In this paper we study the continuous dependence of semilinear Petrovsky equation.

utt +∆
2u+ aut|ut|

p−2 + bu|u|q−2 = 0, (1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω, (1.2)

u (x, t) = ∆u = 0 on [0, T ]× ∂Ω, (1.3)

where a,b > 0, Ω ⊂ Rn is a bounded region with a smooth boundary ∂Ω, 2 6 p < ∞, 2 < q < ∞ if
n = 1, 2 and 2 6 p 6 2(n−1)

n−2 , 2 < q 6 2(n−1)
n−2 if n > 3.

The subject of continuous dependence of solutions of hyperbolic type problems in partial differential
equations on the coefficients in the equations has been extensively studied in the last decades. The
question of continuous dependence means, one wishes to know whether a small changes in the coefficients
or the parameters will inference a small changes in the solutions of the problem.

In [4], the authors studied multidimensional marine riser equations:

utt + k∆
2u+ a∆u+ ~g · ∇ut + b |ut|p ut = 0, x ∈ Ω, t > 0.

They obtained continuous dependence of the parameters a (coriolis force), b (drag force), and g (effective
tension).
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In the following problem, it is studied the continuous dependence of solutions for the damped nonlinear
hyperbolic equation [15]:

utt +α∆
2u+β∆2ut +∆g(∆u) = 0, x ∈ Ω, t > 0.

Some relevant papers on continuous dependence problems on hyperbolic type are [5, 7, 12].
In 1990, You [16] considered energy decay rate and controllability for the Petrovsky equation in a

higher dimensional bounded domain with homogeneous boundary conditions. Chen and Zhou [6] con-
sidered a semilinear Petrovsky equation with damping and source terms and they proved the solution
blows up in finite time for suitable condition.

In [2] the authors considered the nonlinear damped semilinear Petrovsky equation

u ′′ −∆2
xu+ g

(
u ′

)
= bu |u|p−2

and proved the global existence of its solutions with the Faedo Galerkin procedure. In addition, they
studied the asymptotic behavior of solutions. In [8], Han and Wang investigated asymptotic behavior for
the solution of the Petrovsky equation with locally distributed damping. In [11], the authors considered
the following Petrovsky equations:

utt +∆
2u+ |ut|

p−1 ut = Fu (u, v) ,

vtt +∆
2v+ |vt|

p−1 vt = Fv (u, v) ,

and investigated global existence, uniform decay and blow up solutions. In [14], Tahamtani and Shahrouzi
considered the following semilinear Petrovsky equation

utt +∆
2u−

t∫
0

g (t− s)∆2u (s)ds = |u|p u

and proved the existence of weak solutions. We also refer to the papers [9, 10, 13, 17] on the semilinear
Petrovsky equation. Some papers about continuous dependence results can be seen in [1, 3]. Since there
is no study on the continuous dependence of Petrovsky equation, our goal is to investigate the continuous
dependence of solutions to the problem (1.1)-(1.3) on the coefficients a and b.

Lemma 1.1 (Sobolev-Poincaré inequality). Let r be a number with 2 6 r < ∞ (n = 1, 2) or 2 6 r 6 2(n−1)
n−2

(n > 3), then there is a constant d = d (Ω, r) such that

‖u‖r 6 d‖∆u‖2

for u ∈ H2
0 (Ω).

2. Priori estimates

Theorem 2.1. Let u0 ∈ H1
0 (Ω) and u1 ∈ L2 (Ω). Then the solution u of the problem (1.1)-(1.3) satisfies the

following estimates:
‖ut(t)‖2 6 D1, ‖∆u‖2 6 D1, and ‖u‖qq 6 D2, (2.1)

where D1 and D2 are positive constants depending on the initial data and the parameters of (1.1).

Proof. If the equation (1.1) is multiplied by ut in L2 (Ω), then

d

dt

[
1
2
‖ut‖2 +

1
2
‖∆u‖2 +

b

q
‖u‖qq

]
+ a ‖ut‖pp = 0 (2.2)
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is obtained. Let E1(t) =
1
2 ‖ut‖

2 + 1
2 ‖∆u‖

2 + b
q
‖u‖qq. Thus, from the equation (2.2) we have

d

dt
E1 (t) 6 0

and
E1 (t) 6 E1 (0) . (2.3)

The inequality (2.3) gives us all estimates in (2.1).

Theorem 2.2. Let u1 ∈ H2 (Ω) ∩H1
0 (Ω). Then the solution u of the problem (1.1)-(1.3) satisfies the following

estimates
‖utt‖2 6 D4e

D3t, ‖∆ut‖2 6 D4e
D3t, (2.4)

where D3 and D4 are positive constants depending on the initial data and the parameters of (1.1).

Proof. We differentiate the equation (1.1) with respect to t

uttt +∆
2ut + a(p− 1)|ut|

p−2utt + b(q− 1)|u|q−2ut = 0. (2.5)

We multiply the equation (2.5) by utt in L2 (Ω), then we get

d

dt
E2 (t) + a (p− 1)

∫
Ω

|ut|
p−2u2

ttdx+ b (q− 1)
∫
Ω

|u|q−2ututtdx = 0, (2.6)

where E2(t) =
1
2‖utt‖

2 + 1
2‖∆ut‖

2. Then from the equation (2.6) we have the following inequality

d

dt
E2 (t) 6 b (q− 1)

∣∣∣∣∣∣
∫
Ω

|u|q−2ututtdx

∣∣∣∣∣∣ . (2.7)

Using Hölder and Sobolev-Poincaré inequalities and the estimate (2.1) we obtain the inequality∣∣∣∣∣∣b (q− 1)
∫
Ω

|u|q−2ututtdx

∣∣∣∣∣∣ 6 b (q− 1) ‖u‖q−2
(q−2)n ‖utt‖ ‖ut‖ 2n

n−2
6 D3 ‖utt‖ ‖∆ut‖ , (2.8)

where D3 = bd(q− 1)(D1)
q−2

2 . Apply the Cauchy inequality on the right hand side of the inequality (2.8)
and rewrite (2.7) to get

d

dt
E2 (t) 6 D3E2(t).

The last inequality gives the estimate
E2(t) 6 e

D3tE2 (0) .

Hence, proof is completed.

3. Continuous dependence on parameters

3.1. Continuous dependence on the coefficient a
Assume that u is the solution of the problem

utt +∆
2u+ aut|ut|

p−2 + bu|u|q−2 = 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,
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u (x, t) = ∆u = 0 on [0, T ]× ∂Ω.

Assume that v is the solution of the problem

vtt +∆
2v+ (a+α)vt|vt|

p−2 + bv|v|q−2 = 0,

v(x, 0) = u0(x), vt(x, 0) = u1(x) in Ω,

v (x, t) = ∆v = 0 on [0, T ]× ∂Ω,

and w = u− v is the solution of the problem

wtt +∆
2w+ a

(
|ut|

p−2ut − |vt|
p−2vt

)
−α|vt|

p−2 vt + b
(
|u|q−2u− |v|q−2v

)
= 0, (3.1)

w(x, 0) = 0, wt(x, 0) = 0 in Ω, (3.2)

w (x, t) = ∆w = 0 on [0, T ]× ∂Ω. (3.3)

Theorem 3.1. If w is the solution of the problem (3.1)-(3.3), then

‖∆w‖ → 0 as α→ 0.

Proof. We multiply the equation (3.1) by wt in L2(Ω) to obtain

d

dt
E3 (t) + a

∫
Ω

(
|ut|

p−2ut − |vt|
p−2vt

)
wtdx

−α

∫
Ω

|vt|
p−2vtwtdx+ b

∫
Ω

(
|u|q−2u− |v|q−2v

)
wtdx = 0,

(3.4)

where E3 (t) = 1
2 ‖wt‖

2 + 1
2 ‖∆w‖

2. Since a
∫
Ω

(
|ut|

p−2ut − |vt|
p−2vt

)
wtdx > 0, then we get from the

relation (3.4)

d

dt
E3 (t) 6

∣∣∣∣∣∣α
∫
Ω

|vt|
p−2vtwtdx

∣∣∣∣∣∣+
∣∣∣∣∣∣b

∫
Ω

(
|u|q−2u− |v|q−2v

)
wtdx

∣∣∣∣∣∣ . (3.5)

Now, we evaluate first term on the right hand side of (3.5)

∣∣∣∣∣∣α
∫
Ω

|vt|
p−2vtwtdx

∣∣∣∣∣∣ 6 |α|

∫
Ω

|vt|
p−1

|wt|dx 6 |α| ‖wt‖ ‖vt‖p−1
2(p−1) 6

1
2
‖wt‖2 +

α2

2
‖vt‖2(p−1)

2(p−1) . (3.6)

Using the Sobolev-Poincaré inequality we obtain from (3.6)∣∣∣∣∣∣α
∫
Ω

|vt|
p−2vtwtdx

∣∣∣∣∣∣ 6 1
2
‖wt‖2 +

α2

2
d‖∆vt‖2(p−1), (3.7)

where d is the Sobolev constant. If we use the mean value theorem and Hölder’s inequality to the second
term on the right hand side of (3.5), then we have∣∣∣∣∣∣b

∫
Ω

(
|u|q−2u− |v|q−2v

)
wtdx

∣∣∣∣∣∣ 6 b (q− 1)
∫
Ω

(
|u|q−2 + |v|q−2

)
|w| |wt|dx

6 b (q− 1) ‖w‖ 2n
n−2
‖wt‖

(
‖u‖q−2

(q−2)n + ‖v‖q−2
(q−2)n

)
.

(3.8)
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We use the Sobolev inequality in (3.8) to get∣∣∣∣∣∣b
∫
Ω

(
|u|q−2u− |v|q−2v

)
wtdx

∣∣∣∣∣∣ 6 b (q− 1)d2 ‖∆w‖ ‖wt‖
(
‖∆u‖q−2 + ‖∆v‖q−2

)
. (3.9)

Hence using the estimate (2.1) in the inequality (3.9) we get∣∣∣∣∣∣b
∫
Ω

(
|u|q−2u− |v|q−2v

)
wtdx

∣∣∣∣∣∣ 6 D5 ‖∆w‖ ‖wt‖ 6
D5

2
‖∆w‖2 +

D5

2
‖wt‖2 , (3.10)

where D5 = 2b (q− 1)d2 (D1)
q−2

2 . The estimates (2.4), (3.5), (3.7), and (3.10) give us the following differ-
ential inequality

d

dt
E3 (t) 6M3E3 (t) +K1α

2eK2t, (3.11)

where M3 = 1 +D5, K1 = d
2D

p−1
4 , K2 = D3 (p− 1). Thus the inequality (3.11) concludes the estimate

E3 (t) 6
K1

K2
eK3tα2,

where K3 = K2 +M3. Therefore we have ‖∆w‖ → 0 as α→ 0.

3.2. Continuous dependence on the coefficient b
Assume that u is the solution of the problem

utt +∆
2u+ aut|ut|

p−2 + bu|u|q−2 = 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

u (x, t) = ∆u = 0 on [0, T ]× ∂Ω.

Assume that v is the solution of the problem

vtt +∆
2v+ avt|vt|

p−2 + (b+β)v|v|q−2 = 0, (3.12)

v(x, 0) = u0(x), vt(x, 0) = u1(x) in Ω,

v (x, t) = ∆v = 0 on [0, T ]× ∂Ω,

and w = u− v is the solution of the problem

wtt +∆
2w+ a

(
|ut|

p−2ut − |vt|
p−2vt

)
+ b

(
|u|q−2u− |v|q−2v

)
−β|v|q−2 v = 0, (3.13)

w(x, 0) = 0, wt(x, 0) = 0 in Ω, (3.14)

w (x, t) = ∆w = 0 on [0, T ]× ∂Ω. (3.15)

Theorem 3.2. If w is the solution of the problem (3.13)-(3.15), then

‖∆w‖ → 0 as β→ 0.

Proof. We multiply the equation (3.12) by wt in L2(Ω) to get

d

dt
E3 (t) + a

∫
Ω

(
|ut|

p−2ut − |vt|
p−2vt

)
wtdx

−β

∫
Ω

|v|q−2vwtdx+ b

∫
Ω

(
|u|q−2u− |v|q−2v

)
wtdx = 0.

(3.16)
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By using the inequality (3.10) in (3.16) we obtain

d

dt
E3 (t) 6

∣∣∣∣∣∣
∫
Ω

vq−2vwtdx

∣∣∣∣∣∣+ D5

2
‖∆w‖2 +

D5

2
‖wt‖2. (3.17)

Apply the Hölder, Cauchy, Sobolev-Poincaré inequalities, and estimate (2.1) to the first term on the right
hand side of (3.17) to obtain the following estimate

β

∣∣∣∣∣∣
∫
Ω

vq−2vwtdx

∣∣∣∣∣∣ 6 β ‖wt‖ ‖v‖q−1
2(q−1)

6
1
2
‖wt‖2 +

β2

2
‖v‖2(q−1)

2(q−1)

6
1
2
‖wt‖2 +

β2

2
d ‖∆v‖2(q−1) 6

1
2
‖wt‖2 +β2D7,

(3.18)

where D7 = d
2 (D1)

q−1 . Therefore by substituting (3.18) in (3.17) we have

d

dt
E3 (t) 6M3E3 (t) +β

2D7, (3.19)

where M3 is positive constant. Solving the differential inequality (3.19) we obtain the following estimate

E3 (t) 6
D7

M3
eM3tβ2.

Hence the proof is completed.

Conclusion

In this article, by using multiplier method, we conclude that the solution of the problem (1.1)-(1.3)
describing semilinear Petrovsky equation is continuously dependent on the coefficients a and b.
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