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Abstract

In this paper, we introduce the notions of θ-φ contraction and θ-φ Suzuki contraction and establish some new fixed point
theorems for these mappings in the setting of complete metric spaces. The results presented in the paper improve and extend
the corresponding results due to Banach, Browder [F. E. Browder, Nederl. Akad. Wetensch. Proc. Ser. A Indag. Math., 30
(1968), 27–35], Suzuiki [T. Suzuki, Nonlinear Anal., 71 (2009), 5313–5317], Kannan [R. Kannan, Amer. Math. Monthly, 76 (1969),
405–408], Jleli and Samet [M. Jleli, B. Samet, J. Inequal. Appl., 2014 (2014), 8 pages]. Finally, we give an example to illustrate
them. c©2017 All rights reserved.
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1. Introduction and preliminaries

As is well-known, Banach contraction principle is one of the famous results in fixed point theory.

Banach contraction principle: Let (X,d) be a complete metric space, and T : X→ X be a self-mapping.
If there exists a constant k ∈ [0, 1) such that

d(Tx, Ty) 6 kd(x,y),

then T has a unique fixed point in X.

Later, a lot of authors have generalized it, modifying the inequality d(Tx, Ty) 6 kd(x,y) by introducing
corresponding functional inequality. For example, Wardowski [12] introduced the contractive condition
by τ+ F(d(Tx, Ty)) 6 F(d(x,y)). Jleli and Samet [6] introduced the contractive condition by θ(d(Tx, Ty)) 6
[θ(d(x,y))]k (e.g., see [1, 3, 8–10, 12] and the references therein for others).

In 2014, Jleli and Samet [6] introduced a new type of contractions called θ-contraction.
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Definition 1.1 ([6]). Let (X,d) be a metric space. A mapping T : X → X is said to be an θ-contraction if
there exist θ ∈ Θ and k ∈ (0, 1) such that for any x,y ∈ X,

d(Tx, Ty) 6= 0⇒ θ(d(Tx, Ty)) 6 [θ(d(x,y))]k,

where θ : (0,∞)→ (1,∞) satisfies the following conditions:

(Θ1) θ is non-decreasing;
(Θ2) for each sequence {tn} ⊂ (0,∞), limn→∞ θ(tn) = 1 if and only if limn→∞ tn = 0+;
(Θ3) θ is continuous on (0,∞);
(Θ4) there exist r ∈ (0, 1) and l ∈ (0,∞] such that limt→0+

θ(t)−1
tr = l.

From Definition 1.1, we can know that the Banach contraction is a particular case of θ-contractions,
meanwhile there exists a θ-contraction which is not a Banach contraction (see [6]). By using the notion
of θ-contraction, Jleli and Samet [6] proved a fixed point theorem which is a generalization of the Banach
contraction principle as the following:

Theorem 1.2 ([6]). Let (X,d) be a complete metric space and T : X → X be a θ-contraction. Then T has a unique
fixed point x∗ ∈ X such that the sequence {Tnx} converges to x∗ for every x ∈ X.

The condition (Θ4) is so strong that there exist a lot of functions which satisfy the conditions (Θ1),
(Θ2), and (Θ3) but they do not satisfy the condition (Θ4).

In this paper, we denote by Θ the set of functions satisfying the conditions (Θ1), (Θ2), and (Θ3).
The purpose of this paper is to prove some fixed point theorems for θ-φ contraction and θ-φ Suzuki

contraction in the setting of complete metric spaces. The results presented in the paper improve and
extend the corresponding results of Banach, Suzuki [11], Jleli and Samet [6], Kannan [7], Browder [3],
Dugundji-Granas [4], Boyd-Wong [2], and Matkowski [8]. Finally, we give an example to illustrate them.

2. Main results

Denote by Φ the set of functions φ : [1,∞)→ [1,∞) satisfying the following conditions:

(Φ1) φ : [1,∞)→ [1,∞) is non-decreasing;
(Φ2) for each t > 1, limn→∞φn(t) = 1;
(Φ3) φ is continuous on [1,∞).

Lemma 2.1. If φ ∈ Φ, then φ(1) = 1 and φ(t) < t for each t > 1.

Proof. Suppose, on the contrary, that there exists t0 > 1 such that φ(t0) > t0. The monotonicity of φ(t)
yields φn(t0) > t0 for each n ∈ N, which is a contradiction to limn→∞φn(t0) = 1. Thus φ(t) < t for each
t > 1. Since 1 6 φ(1) 6 φ(t) < t for each t > 1, passing to limit as t→ 1, we have φ(1) = 1.

Based on the function φ ∈ Φ, we give the following definition.

Definition 2.2. Let (X,d) be a metric space and T : X→ X be a mapping.

(1) T is said to be a θ-φ contraction if there exist θ ∈ Θ and φ ∈ Φ such that for any x,y ∈ X,

d(Tx, Ty) 6= 0⇒ θ(d(Tx, Ty)) 6 φ[θ(N(x,y))].

(2) T is said to be a θ-φ Suzuki contraction if there exist θ ∈ Θ and φ ∈ Φ such that for any x,y ∈ X, Tx 6=
Ty,

1
2
d(x, Tx) < d(x,y)⇒ θ(d(Tx, Ty)) 6 φ[θ(N(x,y))],

where
N(x,y) = max{d(x,y),d(x, Tx),d(y, Ty)}.
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(3) T is said to be a θ-φ Kannan-type contraction if there exist θ ∈ Θ and φ ∈ Φ such that for any
x,y ∈ X, Tx 6= Ty,

θ(d(Tx, Ty)) 6 φ[θ(
d(x, Tx) + d(y, Ty)

2
)].

We can easily see that θ-φ contractions and θ-φ Kannan-type contractions are θ-φ Suzuki contractions.

Theorem 2.3. Suppose (X,d) is a complete metric space and suppose T : X → X is a θ-φ Suzuki contraction, i.e,
there exist θ ∈ Θ and φ ∈ Φ such that for any x,y ∈ X, Tx 6= Ty,

1
2
d(x, Tx) < d(x,y)⇒ θ(d(Tx, Ty)) 6 φ[θ(N(x,y))], (2.1)

where
N(x,y) = max{d(x,y),d(x, Tx),d(y, Ty)}.

Then T has a unique fixed point x∗ ∈ X such that the sequence {Tnx} converges to x∗ for every x ∈ X.

Proof. Suppose x0 ∈ X is an arbitrary point. Define a sequence {xn} in X by xn+1 = Txn for each n ∈ N.

Case 1. If xn+1 = xn for some n ∈ N, then x∗ = xn is a fixed point for T .

Case 2. If xn+1 6= xn for each n ∈ N, then d(xn+1, xn) > 0 for all n ∈ N. Hence, for n ∈ N

1
2
d(xn, Txn) < d(xn, Txn).

Making use of the inequality (2.1) with x = xn and y = Txn, we get

θ(d(Txn, Txn+1)) 6 φ[θ(N(xn, xn+1))], (2.2)

where

N(xn, xn+1) = max{d(xn, xn+1),d(xn, Txn),d(xn+1, Txn+1)} = max{d(xn, xn+1),d(xn+1, xn+2)}. (2.3)

If N(xn, xn+1) = d(xn+1, xn+2), then it follows from (2.2) that

θ(d(xn+1, xn+2)) = θ(d(Txn, Txn+1)) 6 φ[θ(d(xn+1, xn+2))],

which is a contradiction by Lemma 2.1. So equality (2.3) implies N(xn, xn+1) = d(xn, xn+1). By (2.2), we
have

θ(d(Txn, Txn+1)) 6 φ[θ(d(xn, xn+1))].

Repeating this step, we conclude that

θ(d(Txn−1, Txn)) 6 φ[θ(d(xn−1, xn))] 6 φ2[θ(d(xn−2, xn−1))] 6 · · · 6 φn[θ(d(x0, x1))].

By the definition of θ and property (Φ2), we have

lim
n→∞φn[θ(d(x0, x1))] = 1.

And by (Θ2),
lim
n→∞d(xn, xn+1) = 0. (2.4)

Next, we prove that {xn} is a Cauchy sequence in X. Otherwise, there exist η > 0 and sequences {p(n)}
and {q(n)} such that for all n ∈ N,

n < q(n) < p(n),d(xp(n), xq(n)) > η, and d(xp(n)−1, xq(n)) < η.
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Then,
η 6 d(xp(n), xq(n)) 6 d(xp(n), xp(n)−1) + d(xp(n)−1, xq(n)) 6 η+ d(xp(n), xp(n)−1).

It follows from (2.4) and the above inequality,

lim
n→∞d(xp(n), xq(n)) = η. (2.5)

By triangle inequality of d, we have

|d(xp(n)+1, xq(n)+1) − d(xp(n), xq(n))| 6 d(xp(n), xp(n)+1) + d(xq(n), xq(n)+1).

From (2.4), (2.5), and the above inequality,

lim
n→∞d(xp(n)+1, xq(n)+1) = η. (2.6)

By (2.1) with x = xp(n), y = xq(n), we get

θ(d(xp(n)+1, xq(n)+1)) 6 φ[θ(max{d(xp(n), xq(n)),d(xp(n), xp(n)+1),d(xq(n), xq(n)+1)})].

Using (2.4), (2.5), (2.6), (Θ3), and (Φ3), passing to limit as n→∞, we obtain

θ(η) 6 φ[θ(η)].

It follows from Lemma 2.1 that
θ(η) 6 φ[θ(η)] < θ(η),

which is a contradiction. Thus {xn} is a Cauchy sequence in X.
Since X is complete, then {xn} converges to some point x∗ in X.
Fix p ∈ N, we claim that

1
2
d(xp, Txp) < d(xp, x∗), or

1
2
d(Txp, T 2xp) < d(Txp, x∗).

Otherwise,
1
2
d(xp, Txp) > d(xp, x∗) and

1
2
d(Txp, T 2xp) > d(Txp, x∗). (2.7)

Therefore,
2d(xp, x∗) 6 d(xp, Txp) 6 d(xp, x∗) + d(x∗, Txp),

which implies that
d(xp, x∗) 6 d(x∗, Txp). (2.8)

It follows from (2.7) and (2.8) that

d(xp, x∗) 6 d(x∗, Txp) 6
1
2
d(Txp, T 2xp). (2.9)

Since 1
2d(xp, Txp) 6 d(xp, Txp), using (2.1) with x = xp(n),y = Txp(n), we have

θ(d(Txp, T 2xp)) 6 φ[θ(max{d(xp, Txp),d(Txp, T 2xp)})].

By Lemma 2.1 and from the definitions of φ and θ, we obtain

d(Txp, T 2xp) < d(xp, Txp). (2.10)

It follows from (2.7), (2.9), and (2.10) that

d(Txp, T 2xp) < d(xp, Txp) 6 d(xp, x∗) + d(x∗, Txp) 6
1
2
d(Txp, T 2xp) +

1
2
d(Txp, T 2xp) = d(Txp, T 2xp),

which is a contradiction. That is to say, for each n ∈ N,

1
2
d(xn, Txn) < d(xn, x∗), or

1
2
d(Txn, T 2xn) < d(Txn, x∗).
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Case 1. If there exists a subsequence {nk} such that for each k ∈ N,

1
2
d(xnk , Txnk) < d(xnk , x∗),

then
θ(d(Txnk , Tx∗)) 6 φ[θ(d(xnk , x∗))].

By Lemma 2.1 and from the definitions of φ and θ, we have

lim
k→∞d(Txnk , Tx∗) = 0.

Therefore,
d(x∗, Tx∗) = lim

k→∞d(xnk+1, Tx∗) = lim
k→∞d(Txnk , Tx∗) = 0.

Case 2. If there exists a subsequence {nk} such that for each k ∈ N,

1
2
d(Txnk , T 2xnk) < d(Txnk , x∗),

then
θ(d(T 2xnk , Tx∗)) 6 φ[θ(d(Txnk , x∗))].

By Lemma 2.1 and from the definitions of φ and θ, we have

lim
k→∞d(T 2xnk , Tx∗) = 0.

Therefore,
d(x∗, Tx∗) = lim

k→∞d(xnk+2, Tx∗) = lim
k→∞d(T 2xnk , Tx∗) = 0.

Thus, x∗ is a fixed point of T .
Now, we shall show that T has at most one fixed point. Suppose there exists another fixed point y∗ of

T such thatTx∗ = x∗ 6= Ty∗ = y∗. Then,

d(Tx∗, Ty∗) = d(x∗,y∗) > 0, and 0 =
1
2
d(x∗, Tx∗) < d(x∗,y∗).

By (2.1) and Lemma 2.1,

θ(d(x∗,y∗)) = θ(d(Tx∗, Ty∗)) 6 φ[θ(d(x∗,y∗))] < θ(d(x∗,y∗)),

a contradiction.

Remark 2.4. Theorem 2.3 improves the main results in Suzuki [11].

It follows from Definition 1.1 and Theorem 2.3, we obtain the following fixed point theorems for θ-φ
contraction and θ-φ Kannan-type contraction.

Theorem 2.5. Let (X,d) be a complete metric space and T : X→ X be a θ-φ contraction, then T has a unique fixed
point x∗ ∈ X such that the sequence {Tnx} converges to x∗ for every x ∈ X.

Remark 2.6. Theorem 2.5 improves the Banach contraction principle, the corresponding results of Browder
[3], Dugundji-Granas [4], Boyd-Wong [2], Matkowski [8] and some recent results in Jleli and Samet [6].

Theorem 2.7. Let (X,d) be a complete metric space and T : X→ X be a θ-φ Kannan-type contraction, then T has
a unique fixed point x∗ ∈ X such that the sequence {Tnx} converges to x∗ for every x ∈ X.

Remark 2.8. Theorem 2.7 improves the main results in Kannan [7].
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The following corollary is Kannan’s theorem [7].

Corollary 2.9. Let (X,d) be a complete metric space and T : X → X be a Kannan type mapping, that is, if there
exists α ∈ [0, 1

2) such that for all x,y ∈ X,

d(Tx, Ty) 6 α(d(x, Tx) + d(y, Ty)),

then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx} converges to x∗.

Proof. If α = 0, it is easy to prove. So we suppose α ∈ (0, 1
2). Let

θ(t) = et

for all t ∈ [0,+∞), and
φ(t) = t2α

for all t ∈ [1,+∞). It is obvious that θ ∈ Θ,φ ∈ Φ. In what follows, we prove that T is a θ-φ Kannan-type
contraction.

θ(d(Tx, Ty)) = ed(Tx,Ty) 6 eα(d(x,Tx)+d(y,Ty)) = e2α(d(x,Tx)+d(y,Ty)
2 )

= (e(
d(x,Tx)+d(y,Ty)

2 ))2α

= (θ(
d(x, Tx) + d(y, Ty)

2
))2α = φ[θ(

d(x, Tx) + d(y, Ty)
2

)].

Therefore, from Theorem 2.7, T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}

converges to x∗.

The following corollary is Browder’s theorem [3].

Corollary 2.10. Let (X,d) be a complete metric space and T : X→ X be a mapping such that for all x,y ∈ X,

d(Tx, Ty) 6 ϕ(d(x,y)),

where ϕ : R+ → R+ be an increasing and right continuous function such that ϕ(t) < t for t > 0. Then T has a
unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx} converges to x∗.

Proof. We can suppose that ϕ is a strictly increasing and continuous function due to Theorem 1 of [5]. Let

θ(t) = et

for all t ∈ [0,+∞), and
φ(t) = eϕ(ln t)

for all t ∈ [1,+∞). Obviously, θ ∈ Θ,φ ∈ Φ.
By the definition of φ, we have φ(et) = eϕ(t). In what follows, we prove that T is a θ-φ contraction.

θ(d(Tx, Ty)) = ed(Tx,Ty) 6 eϕ(d(x,y)) = φ[ed(x,y)] = φ[θ(d(x,y))].

Therefore, from Theorem 2.5, T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}

converges to x∗.

Due to Theorem 1 of [5], the results of Browder [3], Dugundji-Granas [4], Boyd-Wong [2], and
Matkowski [8] are equivalent. Therefore, our results presented in the paper improve and extend the
corresponding results of them by Corollary 2.10.
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3. Example

In this section, we give an example to illustrate our results.

Example 3.1. Let X = {0,±1,±2, . . .} endowed with the standard metric d(x,y) = |x− y| for all x,y ∈ X.
Define the mapping T : X→ X by

Tx =


0, if x = 0,
−(n− 1), if x = n,
n− 1, if x = −n.

At first, we observe that the Banach contraction principle cannot be applied since for all n > m > 2, we
have

d(Tn, Tm) = n−m = d(n,m).

And Browder’s result cannot be applied too. Secondly, T is not a Kannan-type map. In fact, let there exist
α ∈ [0, 1

2) such that
d(Tx, Ty) 6 αd(x, Tx) +αd(y, Ty)

for all x,y ∈ X, and let x = n,y = 0. By the above inequality we know that

n− 1 = d(Tn, T0) 6 αd(n, Tn) +αd(0, T0) = α(2n− 1)

for all n ∈ N. That is α > n−1
2n−1 . Passing to limit, we obtain α > 1

2 , which yields a contradiction. So T is
not a Kannan-type map.

Now, let the function θ : (0,∞)→ (1,∞) defined by

θ(t) = 5t.

And define φ : [1,∞)→ [1,∞) by

φ(t) =

{
1, if 1 6 t 6 2,
t− 1, if t > 2.

Obviously, θ ∈ Θ,φ ∈ Φ.
In what follows, we prove that T is a θ-φ Kannan-type contraction. We consider four three cases.

Case 1. x = n > 1,y = 0 or x = −n(n > 1),y = 0. In this case, we have

d(Tx, Ty) = n− 1,
d(x, Tx) = 2n− 1,
d(y, Ty) = 0,

θ(d(Tx, Ty)) = θ(n− 1) = 5n−1,

φ(θ(
d(x, Tx) + d(y, Ty)

2
)) = φ(θ(

d(x, Tx)
2

))

= φ(θ(
2n− 1

2
))

= φ(5n−
1
2 )

= 5n−
1
2 − 1

= 5n−1+ 1
2 − 1

=
√

5× 5n−1 − 1 > 5n−1

= θ(d(Tx, Ty)).
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Case 2. x = n > y = m > 1 or x = −n < y = −m 6 −1. In this case, we have

d(Tx, Ty) = n−m,
d(x, Tx) = 2n− 1,
d(y, Ty) = 2m− 1,

φ(θ(
d(x, Tx) + d(y, Ty)

2
)) = φ(θ(

2n+ 2m− 2
2

))

= φ(θ(n+m− 1))

= φ(5n+m−1)

= 52m−1 × 5n−m − 1
> 5n−m = θ(d(Tx, Ty)).

Case 3. x = n, y = −m, n > m > 1. In this case, we have

d(Tx, Ty) = n+m− 2,
d(x, Tx) = 2n− 1,
d(y, Ty) = 2m− 1,

φ(θ(
d(x, Tx) + d(y, Ty)

2
)) = φ(θ(

2n+ 2m− 2
2

))

= φ(θ(n+m− 1))

= φ(5n+m−1)

= 5× 5n+m−2 − 1

> 5n+m−2 = θ(d(Tx, Ty)).

Therefore, we have for all x,y ∈ X

θ(d(Tx, Ty)) 6 φ[θ(
d(x, Tx) + d(y, Ty)

2
)].

Thus, T is a θ-φ Kannan-type contraction. So all the hypotheses of Theorem 2.7 are satisfied, thus T has
a fixed point. In this example x = 0 is the fixed point.
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