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Abstract

Exact homoclinic breather wave solution for the coupled Schrödinger-Boussinesq equation is obtained by using homoclinic
test technique. Based on the homoclinic breather wave solution, rational homoclinic breather wave solution is generated by
homoclinic breather limit method, rogue wave in the form of the rational homoclinic solution is derived when the period
of homoclinic breather wave goes to infinite. This is a new way for generating rogue wave which is different from direct
constructing method, Darboux dressing technique and ansätz with complexity of parameter. This result shows the homoclinic
rogue wave can be generated from homoclinic breather wave, and it is useful for explaining some related nonlinear phenomenon.
c©2017 All rights reserved.
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1. Introduction

Nonlinear evolution equations (NLEEs) depict some physical scenarios that appear in many areas
of physics, engineering, nonlinear science, and applied mathematics [1]. It is indeed important to in-
vestigate the methods for solutions of NLEEs, so many effective methods have been developed, such as
the new technology combining the variational iterative method and an integral transform [28], the lo-
cal fractional variational iteration method [27], the local fractional Riccati differential equation method
[29], new integral transform operator for finding the analytical solution [26]. Rogue waves [2–5, 7, 8, 12–
17, 21, 22, 25, 30, 31], as a special type of solitary waves, have been triggered much interest in various
physical branches. Rogue wave is a kind of waves that seems abnormal which is first observed in the deep
ocean. Recently, rogue wave solutions in other more complex systems have been sought by using the Dar-
boux dressing technique or Hirota bilinear method [3, 13, 15, 16, 22, 30, 31]. Periodic breather, Akhmediev
breather, Ma breather and rogue wave solutions are obtained for the coupled long-wave-short-wave sys-
tem by using a Hirota two-soliton method with complex frequency and complex wave number [23]. Now
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we consider the following coupled Schrödinger-Boussinesq equation:{
iEt + Exx +β1E−NE = 0,
3Ntt −Nxxxx + 3(N2)xx +β2Nxx − (|E|2)xx = 0, (1.1)

with the periodic boundary condition

E(x, t) = E(x+ l, t), N(x, t) = N(x+ l, t),

where l,β1,β2 are real constants, E(x, t) is a complex-valued function, andN(x, t) is a real-valued function.
(1.1) is known to describe various physical processes in laser and plasma, such as formation, Langmuir
field amplitude, intense electromagnetic waves, and modulational instabilities [6, 18–20], the complex-
valued function E represents the short wave amplitude, the real-valued function N represents the long
wave amplitude, and the subscripts t and x denote partial differentiation with respect to time and space.
N-soliton solution, the complete integrability, homoclinic solutions and heteroclinic solutions of (1.1) have
been studied [6, 9–11]. Previously, rogue wave solutions were reported by Mu and Qin [15] and Wang et
al. [24].

The Peregrine method was applied to (1.1) in [15] and rogue wave solution was given
E(x, t) = aeβ1it(

4 − 4ibt
1 + bx2 + b2t2 − 1),

N(x, t) =
4b(bx2 − b2t2 − 1)
(1 + bx2 + b2t2)2 ,

where a = 1
2

√
2b(3b−β2), its existence condition is that the parameter b must satisfy b(3b − β2) >

0. Obviously, N is independent of the coefficient β1 of (1.1) and (E(x, t),N(x, t)) is not the homoclinic
solution.

In [24], the rogue wave solution of (1.1) was obtained by ansätz with complexity of parameters.
E(x, t) = E0e

−i(ξ+θ0)(1 −
4(1 + i((<(Ω2

1) − 2k=(Ω1))t+ x(=(Ω1) + 2k)))
((x− =(Ω1)t)2 + t2<2(Ω1) +

1
<2(Ω1)

)|2k− iΩ1|2
,

N(x, t) = N0 −
4

(x− =(Ω1)t)2 + t2<2(Ω1) +
1

<2(Ω1)

+
8(x− =(Ω1)t)

2

((x− =(Ω1)t)2 + t2<2(Ω1) +
1

<2(Ω1)
)2

,

where ξ = kx+ lt, Ω1 satisfies 2E2
0 + (3Ω2

1 −β2 + 6(k2 −β1 − l))(iΩ1 − 2k)2 = 0, and <(Ω1) 6= 0,
k 6= −

=(Ω1)
2 , <(Ω1) and =(Ω1) represent the real and imaginary part of complex Ω1 respectively. This is

a multi-parameter rogue wave solution, but the solution is not homoclinic solution of (1.1).
In this work, Homoclinic solutions with oscillatory structure for the coupled Schrödinger-Boussinesq

equation is constructed by using the Hirota bilinear form and extended homoclinic test method, and
then rogue solution is obtained by taking the limit of period of the homoclinic solution with the periodic
condition approaching infinite (homoclinic breather limit method). The rogue wave solution obtained
here is still a homoclinic solution.

2. Linear stability analysis

It is easy to see that (e−ait,a+ β1) is a fixed cycle of (1.1), we consider a small perturbation of the
form {

E(x, t) = e−ait(1 + ε(x, t)),
N(x, t) = (a+β1)(1 +φ(x, t)), (2.1)
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where |ε(x, t)| � 1, φ(x, t) � 1, a is an arbitrary constant, and a 6= 0. Substituting (2.1) into (1.1), we get
the lineared equation{

iεt + εxx − (a+β1)φ = 0,
3(a+β1)φtt − (a+β1)φxxxx + (a+β1)(6a+ 6β1 +β2)φxx − εxx − ε̄xx = 0. (2.2)

Assume that ε(x, t) and φ(x, t) have the following forms:{
ε(x, t) = Geiµnx+σnt +He−iµnx+σnt,
φ(x, t) = C(eiµnx+σnt + e−iµnx+σnt), (2.3)

where G, H are complex constants, and C is a real number, µn = 2πn/l, and σn is the growth rate.
Substituting (2.3) into (2.2), we have

H(iσn − µ2
n) = (a+β1)C,

G(iσn − µ2
n) = (a+β1)C,

(3(a+β1)σ
2
n + (a+β1)µ

4
n − (a+β1)(6a+ 6β1 +β2)µ

2
n)C = −(H+ Ḡ)µ2

n,
(3(a+β1)σ

2
n + (a+β1)µ

4
n − (a+β1)(6a+ 6β1 +β2)µ

2
n)C = −(G+ H̄)µ2

n.

(2.4)

Solving (2.4), we obtain that

σ2
n =

(6a+ 6β1 +β2)µ
2
n − 2µ4

n ±
√

((6a+ 6β1 +β2)µ2
n − 2µ4

n)
2 + 24µ2

n + 12(6a+ 6β1 +β2)µ6
n + 12µ8

n

6
.

Obviously, the above formula implies that (6a+ 6β1 +β2)µ
2
n − 2µ4

n > 0, then

µ2
n <

6a+ 6β1 +β2

2
.

3. Rogue wave solution for the coupled Schrödinger-Boussinesq equation

Make the transformation

E(x, t) = e−aitu(x, t), N(x, t) = v0 + v(x, t),

a 6= 0, then (1.1) can be reduced into the following form{
iut + uxx + (a+β1 − v0)u− uv = 0,
3vtt − vxxxx + (6v0 +β2)vxx + 3(v2)xx − (|u|2)xx = 0, (3.1)

when a+β1 − v0 = 0, using the following transformation

u(x, t) =
g(x, t)
f(x, t)

, v(x, t) = −2(lnf(x, t))xx.

Equation (3.1) may be rewritten as the following coupled bilinear form:{
(iDt +D

2
x)g · f = 0,

(3D2
t + (6v0 +β2)D

2
x −D

4
x − λ)f · f+ gg∗ = 0,

where λ is an integration constant, g∗ denotes the complex conjugation of g. The Hirota bilinear operator
Dmx D

n
t is defined by (n,m > 0)

Dmx D
n
t f(x, t) · g(x, t) = (

∂

∂x
−
∂

∂x ′
)m(

∂

∂t
−
∂

∂t ′
)nf(x, t)g(x ′, t ′)|x ′=x,t ′=t.
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Taking the following test function{
g(x, t) = 1 + b1cos(px)e

Ωt+γ + b2e
2Ωt+2γ,

f(x, t) = 1 + b3cos(px)e
Ωt+γ + b4e

2Ωt+2γ,

the parameters Ω, γ, bs(s = 1, 2, 3, 4, 5, 6) will be determined later, bs(s = 1, 2) are complex numbers, b3
and b4 are real numbers.

So the solution for (1.1) as
E(x, t) = e−ait

e−Ωt−γ + b1cos(px) + b2e
Ωt+γ

√
b4(2 cosh(Ωt+ γ+ ln

√
b4) + b3cos(px))

,

N(x, t) = β1 +
2b3p

2(2
√
b4cos(px) cosh(Ωt+ γ+ ln

√
b4) + b3)

b4(2 cosh(Ωt+ γ+ ln
√
b4) + b3cos(px))2 ,

(3.2)

the following relations among the parameters:
v0 = β1 + a,
λ = 1, b1 = iΩ+p2

iΩ−p2b3,

b2 = ( iΩ+p2

iΩ−p2 )
2b4, b2

3 = 4Ω2

Ω2+p4 ,
(3Ω2 − p4 − (6a+ 6β1 +β2)p

2)(Ω2 + p4) = 2p4.

(3.3)

From Ω2 > 0, we have

Ω = ±p

√
(6a+ 6β1 +β2) − 2p2 +

√
24 + (6a+ 6β1 +β2)2 + 8(6a+ 6β1 +β2)p2 + 16p4

6
.

Equation (3.2) can be rewritten as
E(x, t) = e−ait

2
√
b2 cosh(Ωt+ γ+ θ) + b1cos(px)

2
√
b4 cosh(Ωt+ γ+ θ1) + b3cos(px)

,

N(x, t) = a+β1 +
2b3p

2(2
√
b4cos(px) cosh(Ωt+ γ+ θ1) + b3)

b4(2 cosh(Ωt+ γ+ θ1) + b3cos(px))2 ,

where θ = ln
√
b2, θ1 = ln

√
b4. This is a solution of Abs type [2]. The trajectory of this solution is defined

explicitly by t = −γ+θΩ . That is, this solution evolves periodically along the straight line parallel to the x
axis. So this solution is an Akhmediev breather (space periodic breather solutions) as well.

Let b4 = 1, γ = 0, we get
E(x, t) = e−ait

e−Ωt + b1cos(px) + b2e
Ωt

2 cosh(Ωt) + b3cos(px)
,

N(x, t) = a+β1 +
2b3p

2(2cos(px) cosh(Ωt) + b3)

(2 cosh(Ωt) + b3cos(px))2 ,

(3.4)

substitute Ω = ±p
√

(6a+6β1+β2)−2p2+
√

24+(6a+6β1+β2)2+8(6a+6β1+β2)p2+16p4

6 into (3.3) and (3.4), then we

take the limit of p approaching zero (period 2π
p →∞), the following rational solution can be obtained.

E(x, t) = e−ait
A

B
,

N(x, t) = a+β1 +
C

D
,
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where

A = −54 + 12t2 + 3(x2 − 4it)(6a+ 6β1 +β2) + t
2(6a+ 6β1 +β2)

2 + (t2(6a+ 6β1 +β2)

+3(x2 − 4it))
√

24 + (6a+ 6β1 +β2)2,

B = 18 + 12t2 + 3x2(6a+ 6β1 +β2) + t
2(6a+ 6β1 +β2)

2

+(t2(6a+ 6β1 +β2) + 3x2)
√

24 + (6a+ 6β1 +β2)2,

C = −24(−36x2 + 9(1 + 2t2)(6a+ 6β1 +β2) − 3x2(6a+ 6β1 +β2)
2 + t2(6a+ 6β1 +β2)

3

+(9 + 6t2 − 3x2(6a+ 6β1 +β2) + t
2(6a+ 6β1 +β2)

2)
√

24 + (6a+ 6β1 +β2)2),

D = (18 + 12t2 + 3x2(6a+ 6β1 +β2) + t
2(6a+ 6β1 +β2)

2

+(t2(6a+ 6β1 +β2) + 3x2)
√

24 + (6a+ 6β1 +β2)2)2.

(3.5)

The spatial structures of the function E(x, t), N(x, t) have similar structures of the rogue waves, Figure
1 shows that the function E(x, t) has bright-dark rogue wave features, the bright-dark rogue wave turns
into a bright rogue wave with an eye-shaped distribution (a hump and two holes). While N(x, t) shows
dark rogue wave features in Figure 2. In Figures 1 and 2 we can see that an obvious feature of these
solutions is localized in both space and time. It is a singular breather and describes a single wave. The
rogue waves of |E|, N are first-order rogue waves and concentrated around (0, 0). we can observe the
changes of (|E(x, 0)|,N(x, 0)) in the direction of the x axes and see that the maximal amplitude of |E(x, t)|
occurs at point (0, 0) and the maximum amplitude of this rogue wave solution is equal to 3, the minimum
amplitudes of |E(x, t)| occurs at two points

(x = ±
√

3
2

√
−(6a+ 6β1 +β2) +

√
24 + (6a+ 6β1 +β2)2, t = 0),

but the maximum amplitudes of N(x, t) occur at two points

(x = ±
√

3
2

√
−(6a+ 6β1 +β2) +

√
24 + (6a+ 6β1 +β2)2, t = 0),

the minimum amplitude of N occurs at (0, 0) and the minimum amplitude of this rogue wave solution
is equal to -4. (E(x, t),N(x, t)) contains two waves with different velocities and directions. Moreover,
(E(x, t),N(x, t)) is not only the rational homoclinic solution and homoclinic to the fixed cycle (e−iat,a+
β1) as t→∞ or x→∞. In fact,

(E,N)→ (e−iat,a+β1) as t→ ±∞.

(E(x, t),N(x, t)) is also a rogue wave solution which has two to three times amplitude higher than its sur-
rounding waves and generally forms in a short time (see Figure 1 and Figure 2). It is a new discovery that
the rogue wave solution can come from homoclinic breather solution for coupled Schrödinger-Boussinesq
equation. One may think whether the energy collection and superposition of homoclinic breather wave
in many periods lead to a rogue wave or not. Moreover, it follows from Figure 1 and Figure 2 that the
amplitudes of rogue waves become more and more short as time goes, and approach a non-zero constant
background finally. It is shown that the rogue waves arise from the non-zero constant background and
then disappear into the non-zero constant background again. Obviously, the solution in this work is dif-
ferent from the solution in [15] or [24]. Giving some special parameters in (3.5), the shape of the rogue
wave can be exhibited (Figure 1 and Figure 2).
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Figure 1: (1): Behavior of |E| as 6a+ 6β1 +β2 = 1. (2): Rogue wave variation in x− |E| plane.

Figure 2: (1): Behavior of N as 6a+ 6β1 +β2 = 1. (2): Rogue wave variation in x−N plane.

4. Conclusion

In summary, applying the Hirota bilinear form and homoclinic breather limit method to the coupled
Schrödinger-Boussinesq equation, exact rational homoclinic wave solution is obtained, it is rogue wave
solution in the form of the rational homoclinic wave solution. Some features of rogue wave are presented,
the bright rogue wave and the dark rogue wave with special structure are exhibited. Results show the
complexity of dynamical behavior and the variety of structure for rogue wave solutions of the coupled
Schrödinger-Boussinesq equation. At the same time, the way to generate rogue wave solution is various.
The problems needed to be further studied is whether the other types of nonlinear evolution equations
have this kind of homoclinic solution or not, and whether (1.1) has other type of specially spatiotemporal
structure of solutions.
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