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Abstract

In this paper, we apply fuzzy Sumudu transform (FST) for solving linear fuzzy fractional differential equations (FFDEs)
involving Caputo fuzzy fractional derivative. It is followed by suggesting a new result on the property of FST for Caputo fuzzy
fractional derivative. We then construct a detailed procedure on finding the solutions of linear FFDEs and finally, we demonstrate
a numerical example. c©2017 All rights reserved.
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1. Introduction

Fractional calculus is the generalization of ordinary calculus. This includes the functions’ derivative
of arbitrary order. The topic has been explored and studied by various researchers in many fields such
as engineering, mathematics and so forth [2, 14, 15, 17, 22, 33, 35]. One of the major contributions in
this field was the work in [37], which discussed the topic intensively. Later, it was studied in [31], where
the authors proposed some applications. When dealing with fractional differential equations, the terms
such as Riemann-Liouville, Grünwald-Letnikov and Caputo fractional derivative are considered by many
authors [21, 25, 30, 39, 42]. Of the three definitions for derivative stated, Riemann-Liouville and Caputo
fractional derivatives appeared to be more popular.

As times moving on, the fractional differential equations seem to have some drawbacks. One of them
is the initial value assigned to the model. In general, the determination of initial values is very difficult.
It always involves uncertainty quantities. This is true when dealing with real physical phenomena. To
handle uncertainty quantities, researchers proposed several new concepts. The one that stands out among
the concepts is fuzzy set theory [48]. This theory is able to deal with differential equations possessing
uncertainties at initial values. The first contribution on handling fractional differential equations with
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uncertainties was studied in [3]. This has influenced many researchers to further explore the subject
[5, 6, 8, 9, 29, 43].

Integral transforms have long been used in solving linear ordinary differential equations, as well as
linear fractional differential equations. The integral transforms were preceded by Fourier transform. Later,
several new integral transforms have been proposed, namely, Laplace, Mellin, and Hankel transforms
[32, 40, 44]. One of the recent integral transforms introduced in the literature is the Sumudu transform
[45]. The virtue of this transform is that it holds a scale preserving property which results in the original
function to be similar with the transformed function. It can also be seen in the literature, there exist several
discussions on solving few types of linear fractional differential equations, as we stated previously, using
Sumudu transform [16, 18, 27]. Recently, fuzzy Laplace transform [7] has been used to solve FFDEs
involving Riemann-Liouville fractional derivative [38]. However, this type of fractional derivative has a
drawback. It requires a quantity of fractional H-derivative of an unknown solution at the fuzzy initial
point, which is not practical in real life situation. In this paper, we propose a new solution of linear FFDEs
involving Caputo fuzzy fractional derivative using FST. The FST is first proposed in [4] followed by [1].
Some other applications of FST can be seen in [23].

The arrangement of this paper is as the following. In Section 2, we revise some fundamental theories
on fuzzy numbers and fuzzy functions. Plus, some definitions and theorems on Caputo fuzzy fractional
derivative will also be provided. It is followed by the definition of FST in Section 3. In this section, we also
propose a new property of FST for Caputo fuzzy fractional derivative. Next, in Section 4, we provide a
procedure on solving linear FFDEs possessing Caputo fuzzy fractional derivative using the FST in detail.
A numerical example is demonstrated in Section 5 and finally in Section 6, the conclusion is drawn.

2. Basic concepts and theories

Here, we revisit several definitions and theorems for a better understanding of this paper.

2.1. Fuzzy numbers and fuzzy functions
Throughout this paper, R denotes the set of real numbers. Fuzzy number is defined as follows.

Definition 2.1 ([47]). A fuzzy number is a mapping ũ : R→ [0, 1] with the following criteria.

1. ũ is normal, i.e., there exists x0 ∈ R such that ũ(x0) = 1;
2. ũ is convex, i.e., for all and λ ∈ [0, 1], x,y ∈ R,

ũ(λx+ (1 − λ)y) > min{ũ(x), ũ(y)},

holds;
3. ũ is upper semicontinuous, i.e., for any x0 ∈ R,

ũ(x0) > lim
x→x±0

ũ(x);

4. supp ũ = {x ∈ R|ũ(x) > 0} is the support of ũ, and its closure cl(supp ũ) is compact.

Definition 2.2 ([26]). Let ũ be a fuzzy number defined in F(R). The α-level set of ũ, for any α ∈ [0, 1],
denoted by ũα, is a crisp set that contains all elements in R, such that the membership value of ũ is
greater or equal to α, that is

ũα = {x ∈ R|ũ(x) > α}.

Whenever we represent the fuzzy number with α-level set, we can see that it is closed and bounded.
It is denoted by [uα,uα], where they represent the lower and upper bound α-level set of a fuzzy number,
respectively.

As the fuzzy number is resolved by the interval ũα, researchers [20, 34] defined another representation,
parametrically, of fuzzy numbers as in the following definition.
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Definition 2.3. A fuzzy number ũ in parametric form is a pair [uα,uα] of functions uα and uα for any
α ∈ [0, 1], which satisfies the following requirements.

1. uα is a bounded non-decreasing left continuous function in (0, 1];
2. uα is a bounded non-increasing left continuous function in (0, 1];
3. uα 6 uα.

Some researchers classified the fuzzy numbers into several types of fuzzy membership function. To
the deepest of our study, triangular fuzzy membership function or also often referred to as triangular
fuzzy number is the most widely used membership function.

Definition 2.4 ([28]). A triangular fuzzy number ũ can be defined by a triplet (a1,a2,a3), the membership
function is defined as follows.

ũ(x) =



0, if x < a1,
x− a1

a2 − a1
, if a1 6 x < a2,

a3 − x

a3 − a2
, if a2 6 x 6 a3,

0, if x > a3.

The α-level of the fuzzy number ũ is ũα = [a1 + (a2 − a3)α,a3 − (a3 − a2)α] for any α ∈ [0, 1].

The definition of the operations on fuzzy numbers can be referred in [41].

Theorem 2.5 ([46]). Let f̃ : R → F(R) and it is represented by [fα(x), fα(x)]. For any fixed α ∈ [0, 1], assume
fα(x) and fα(x) are Riemann-integrable on [a,b] for every b > a, and assume there are two positive Mα and
Mα such that

∫b
a |fα(x)|dx 6 Mα and

∫b
a |fα(x)|dx 6 Mα for every b > a. Then, f̃(x) is improper fuzzy

Riemann-integrable on [a,∞) and the improper fuzzy Riemann-integrable is a fuzzy number. Furthermore, we have∫∞
a

f̃(x)dx =

[∫∞
a

fα(x)dx,
∫∞
a

fα(x)dx

]
.

H-difference of fuzzy numbers is defined as follows.

Definition 2.6. If ũ, ṽ ∈ F(R) and if there exists a fuzzy subset ξ ∈ F(R) such that ξ+ ũ = ṽ, then ξ is
unique. In this case, ξ is called the Hukuhara difference, or simply H-difference of u and v and is denoted
by ṽ−H ũ.

In the next definition, the strongly generalized differentiability concept is provided.

Definition 2.7 ([12, 13]). Let f̃ : (a,b) → F(R) and x0 ∈ (a,b). We say that f̃ is strongly generalized
differentiable at x0, if there exists an element f̃ ′(x0) ∈ F(R), such that

1. for all h > 0 sufficiently small, there exist f̃(x0 + h) −
H f̃(x0), f̃(x0) −

H f̃(x0 − h), and the limits (in
the metric D)

lim
h→0

f̃(x0 + h) −
H f̃(x0)

h
= lim
h→0

f̃(x0) −
H f̃(x0 − h)

h
= f̃ ′(x0),

or,
2. for all h > 0 sufficiently small, there exist f̃(x0) −

H f̃(x0 + h), f̃(x0 − h) −
H f̃(x0), and the limits (in

the metric D)

lim
h→0

f̃(x0) −
H f̃(x0 + h)

−h
= lim
h→0

f̃(x0 − h) −
H f̃(x0)

−h
= f̃ ′(x0).
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In this paper, we denote the space of all continuous fuzzy functions on [a,b] ⊆ R and the space of all
Lebesgue integrable fuzzy functions on the bounded interval [a,b] by CF[a,b] and LF[a,b], respectively.

Definition 2.8 ([38]). Let f̃ ∈ CF[a,b]∩ LF[a,b] be a fuzzy function. The fuzzy Riemann-Liouville integral
of the fuzzy function f̃ is defined as follows.

(
Iβf̃
)
(x) =

1
Γ(β)

∫x
0

f̃(t)

(x− t)1−βdt, x,β ∈ R+.

Theorem 2.9 ([10]). Let f̃ ∈ CF[a,b]∩ LF[a,b] be a fuzzy function. The fuzzy Riemann-Liouville integral of the
fuzzy function f̃ is as follows. [(

Iβf̃
)
(x)
]
α
=
[
Iβfα(x), I

βfα(x)
]

, 0 6 α 6 1,

where (
Iβfα

)
(x) =

1
Γ(β)

∫x
0

fα(t)

(x− t)1−βdt, x,β ∈ R+,

(
Iβfα

)
(x) =

1
Γ(β)

∫x
0

fα(t)

(x− t)1−βdt, x,β ∈ R+.

2.2. Caputo fuzzy fractional derivative
In this subsection, we provide some definitions and theorems on Caputo fuzzy fractional derivative.

In [36], the authors extended the Caputo fractional derivative of crisp case into fuzzy setting. Here, we
provide some of the concepts proposed.

Lemma 2.10 ([36]). Let f(x) be a crisp continuous function and (dβe)-times differentiable in the independent
variable x over the interval of differentiation (integration) [0, x]. Then the relation

CDβf(x) =RL Dβ

f(x) − dβe∑
k=0

xk

k!
f
(k)
0

 , β ∈ (n− 1,n], n ∈N,

holds, where f(k)0 =
dkf(x)

dxk

∣∣∣∣
x=0

and CDβ denotes Caputo derivative operator, while dβe and bβc are the value β

rounded up and down to the closest integer number, respectively. RLDβ is the common Riemann-Liouville fractional
derivative operator which is defined as follows

RLDβf(x) =
1

Γ(dβe−β)
ddβe

dxdβe

∫x
0

f(t)

(x− t)1−dβe+βdt.

Definition 2.11 ([36]). Let f̃(x) ∈ CF[0,b]∩ LF[0,b], G̃(x) = 1
Γ(dβe−β)

∫x
0

f̃(t)−
∑dβe
k=0

tk

k!
f̃
(k)
0

(x−t)1−dβe+β dt, and

H̃(x0) = lim
h→0+

G̃(x0 + h)	 G̃(x0)

h
= lim
h→0+

G̃(x0)	 G̃(x0 − h)

h

and

L̃(x0) = lim
h→0+

G̃(x0)	 G̃(x0 + h)

−h
= lim
h→0+

G̃(x0 − h)	 G̃(x0)

−h
.

f̃(x) is Caputo fuzzy fractional differentiable function of order 0 < β 6 1, if there exists an element
CDβf̃(x0) ∈ CF such that for all 0 6 α 6 1 and for h > 0 sufficiently near zero, either,
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1. CDβf̃(x0) = limh→0+
G̃(x0 + h)	 G̃(x0)

h
= limh→0+

G̃(x0)	 G̃(x0 − h)

h
, or

2. CDβf̃(x0) = limh→0+
G̃(x0)	 G̃(x0 + h)

−h
= limh→0+

G̃(x0 − h)	 G̃(x0)

−h
,

for 0 < β 6 1.

If the fuzzy function f̃(x) is differentiable as in Definition 2.11 (1), it is called Caputo fuzzy fractional
differentiable in the first form. If f̃(x) is differentiable as in Definition 2.11 (2), it is called Caputo fuzzy
fractional differentiable in the second form.

Theorem 2.12 ([36]). Let f̃(x) ∈ CF[0,b]∩LF[0,b] be a fuzzy function and [f̃(x)]α = [fα(x), fα(x)] for α ∈ [0, 1]
and x0 ∈ (0,b). Then

1. If f̃(x) is Caputo fuzzy fractional differentiable in the first form, then for every 0 < β 6 1,

[CDβf̃(x0)]α = [CDβfα(x0),CDβfα(x0)].

2. If f̃(x) is Caputo fuzzy fractional differentiable in the second form, then for every 0 < β 6 1,

[CDβf̃(x0)]α = [CDβfα(x0),CDβfα(x0)],

where

CDβfα(x0) =

[
1

Γ(dβe−β)

∫x
0

Ddβefα(t)

(x− t)1−dβe+β

]
x=x0

,

CDβfα(x0) =

[
1

Γ(dβe−β)

∫x
0

Ddβefα(t)

(x− t)1−dβe+β

]
x=x0

,

Dkf(t) =
dkf(t)

dtk
.

Next, we give the definition for the classical Sumudu transform when dealing with Caputo’s fractional
derivative of crisp type.

Definition 2.13 ([19, 24]). The classical Sumudu transform for Caputo’s fractional derivative of function f
is given by

s[CDβf(x)](u) = u−βG(u) −

n−1∑
k=0

fk(0)
uβ−k

, β ∈ (n− 1,n].

Since in this paper, we only consider 0 < β < 1, Definition 2.13 can be simplified as follows.

s[CDβf(x)](u) =
G(u) − f0(0)

uβ
, β ∈ (0, 1].

Note that when β = 1, the definition is similar to the definition of Sumudu transform for first order
derivative.

3. Fuzzy Sumudu transform for Caputo fuzzy fractional derivative

In this part, we recall the definition of FST and later we propose a new result on the property of FST
for Caputo fuzzy fractional derivative.

Definition 3.1 ([1, 4]). Let f̃ : R→ F(R) be a continuous fuzzy function. Suppose f̃(ux)� e−x is improper
fuzzy Riemann-integrable on [0,∞), then

∫∞
0 f̃(ux) � e

−xdx is called fuzzy Sumudu transform and is
denoted by

G(u) = S[f̃(x)](u) =

∫∞
0
f̃(ux)� e−xdx, u ∈ [−τ1, τ2],

where the variable u is used to factor the variable x in the argument of the fuzzy function and τ1, τ2 > 0.
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The FST can also be written into the following parametric form.

S[f̃(x)](u) = [s[fα(x)](u), s[fα(x)](u)].

In the following theorem, we introduce a new property of FST for Caputo fuzzy fractional derivative.
This is done by directly extending the definition for classical Sumudu transform of Caputo fractional
derivative into fuzzy setting.

Theorem 3.2. Let f̃(x) ∈ CF[0,b] ∩ LF[0,b] be a continuous fuzzy function, and CDβf̃ is the Caputo fuzzy
fractional derivative of f̃ on [0,∞). Then, for 0 < β 6 1, we have

S[CDβf̃(x)](u) =
G(u) −H f̃(x0)

uβ
,

where f̃ is Caputo fuzzy fractional differentiable in the first form, or

S[CDβf̃(x)](u) =
−f̃(x0) −

H (−G(u))

uβ
,

where f̃ is Caputo fuzzy fractional differentiable in the second form.

Proof. First, we assume f̃ is Caputo fuzzy fractional differentiable in the first form (Theorem 2.12 (1)).
Therefore,

G(u) −H f̃(0)
uβ

=

[
s[f(x)](u) − f(0)

uβ
,
s[f(x)](u) − f(0)

uβ

]
.

From the classical Sumudu transform for Caputo fractional derivative, we know that

s[CDβf(x)](u) =
s[f(x)](u) − f(0)

uβ
and s[CDβf(x)](u) =

s[f(x)](u) − f(0)
uβ

.

Then,
G(u) −H f̃(0)

uβ
=
[
s[CDβf(x)](u), s[CDβf(x)](u)

]
.

Since f̃ is Caputo fuzzy fractional differentiable in the first form

G(u) −H f̃(x0)

uβ
= S[CDβf̃(x)](u).

Now, we assume that f̃ is Caputo fuzzy fractional differentiable in the second form (Theorem 2.12 (2)).
Therefore,

−f̃(x0) −
H (−G(u))

uβ
=

[
−f(x0) − (−s[f(x)](u))

uβ
,
−f(x0) − (−s[f(x)](u))

uβ

]
.

This is analogous to

−f̃(x0) −
H (−G(u))

uβ
=

[
s[f(x)](u) − f(0)

uβ
,
s[f(x)](u) − f(0)

uβ

]
.

From the classical Sumudu transform for Caputo fractional derivative, finally we have

−f̃(x0) −
H (−G(u))

uβ
=
[
s[CDβf(x)](u), s[CDβf(x)](u)

]
.

Since f̃ is Caputo fuzzy fractional differentiable in the second form, then we finally have

−f̃(x0) −
H (−G(u))

uβ
= S[CDβf̃(x)](u).

The proof is complete.
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4. Procedures for solving linear FFDEs using FST

Consider the following linear FFDE.{
CDβỹ(x) = f[x, ỹ(x)],
ỹα(x0) = [y

α
(0),yα(0)],

(4.1)

where f ∈ CF(a,b)∩ LF(a,b) and x0 ∈ (a,b). By using FST on both sides of Eq. (4.1), we have

S
[
CDβỹ(x)

]
(u) = S [f(x, ỹ(x))] (u).

Case 1 : If we consider ỹ to be Caputo fuzzy fractional differentiable in the first form, then from Theorem
2.12 (1), we get [CDβỹ(x0)]α = [CDβy

α
(x0),CDβyα(x0)]. Now, we obtain the following system{

CDβy
α
(x) = f[x, ỹ(x)] = fα[x, ỹ(x)], y

α
(x0) = yα(0),

CDβyα(x) = f[x, ỹ(x)] = fα[x, ỹ(x)], yα(x0) = yα(0),

where β ∈ (0, 1]. From Theorem 3.2, we have

S[CDβỹ(x)](u) =
G(u) −H ỹ(t0)

uβ
.

Therefore, s[fα(x, ỹ(x))](u) =
s[y
α
(x)](u) − y

α
(0)

uβ
,

s[fα(x, ỹ(x))](u) =
s[yα(x)](u) − yα(0)

uβ
,

(4.2)

where,

fα(x, ỹ(x)) = min{f̃(x,u)|u ∈ [y
α
(x),yα(x)]} and fα(x, ỹ(x)) = max{f̃(x,u)|u ∈ [y

α
(x),yα(x)]}.

To solve Eq. (4.2), first we assume that

s[y
α
(x)](u) = L1

α(u), s[yα(x)](u) = U
1
α(u).

L1
α(u) and U1

α(u) are the solutions of Eq. (4.2) under this case. We obtain y
α
(x) and yα(x) using the

inverse FST as the following

y
α
(x) = s−1[L1

α(u)], yα(x) = s
−1[U1

α(u)].

Case 2 : If we consider ỹ to be Caputo fuzzy fractional differentiable in the second form, then from
Theorem 2.12 (2), we get [CDβỹ(x0)]α = [CDβyα(x0),CDβyα(x0)]. Now, we obtain the following system{

CDβy
α
(x) = f[x, ỹ(x)] = fα[x, ỹ(x)], y

α
(x0) = yα(0),

CDβyα(x) = f[x, ỹ(x)] = fα[x, ỹ(x)], yα(x0) = yα(0),

where β ∈ (0, 1]. From Theorem 3.2,

S[CDβỹ(x)](u) =
−ỹ(t0) −

H (−G(u))

uβ
.

Therefore, s[fα(x, ỹ(x))](u) =
s[y
α
(x)](u) − y

α
(0)

uβ
,

s[fα(x, ỹ(x))](u) =
s[yα(x)](u) − yα(0)

uβ
,

(4.3)

where,
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fα(x, ỹ(x)) = min{f̃(x,u)|u ∈ [y
α
(x),yα(x)]} and fα(x, ỹ(x)) = max{f̃(x,u)|u ∈ [y

α
(x),yα(x)]}.

To solve Eq. (4.3), first we assume that

s[y
α
(x)](u) = L2

α(u), s[yα(x)](u) = U
2
α(u).

L2
α(u) and U2

α(u) are the solutions of Eq. (4.3) for this case. We have y
α
(x) and yα(x) by the inverse

of FST as the following

y
α
(x) = s−1[L2

α(u)], yα(x) = s
−1[U2

α(u)].

5. A numerical example

In this part, the method proposed will be demonstrated on a linear FFDE. This is to show that the
method is practicable.

Example 5.1. The following linear FFDE is considered.{
CDβỹ(x) = ỹ(x),
ỹ(x0) = [y

α
(0),yα(0)].

(5.1)

Case 1: By taking fuzzy Sumudu transform on both sides of (5.1), we have

S
[
CDβỹ(x)

]
(u) = S[ỹ(x)](u).

From Theorem 2.12 (1) for Caputo fuzzy fractional differentiability in the first form, we have

[CDβỹ(x0)]α = [CDβy
α
(x0),CDβyα(x0)],

and from Theorem 3.2,

S[CDβỹ(x)](u) =
G(u) −H ỹ(x0)

uβ
,

we have s[yα(x)](u) =
s[y
α
(x)](u) − y

α
(0)

uβ
,

s[yα(x)](u) =
s[yα(x)](u) − yα(0)

uβ
.

Then, we obtain {
(1 − uβ)s[y

α
(x)](u) = y

α
(0),

(1 − uβ)s[yα(x)](u) = yα(0).

By applying inverse Sumudu transform, we obtain
y
α
(x) = y

α
(0)s−1

[
1

1 − uβ

]
,

yα(x) = yα(0)s−1
[

1
1 − uβ

]
.

By relation,

s[xγ−1Eβ,γ(∓xβ)](u) =
uγ−1

1± uβ
,
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finally, we have {
y
α
(x) = y

α
(0)Eβ,1[x

β],
yα(x) = yα(0)Eβ,1[x

β].

Eβ,1[x
β] is the Mittag-Leffler function defined by

Eβ,1[x
β] =

∞∑
k=0

(xβ)k

Γ(βk+ 1)
.

Case 2: Using fuzzy Sumudu transform on Eq. (5.1), we have

S
[
CDβỹ(x)

]
(u) = S[ỹ(x)](u).

From Theorem 2.12 (2) for Caputo fuzzy fractional differentiability in the second form,

[CDβỹ(x0)]α = [CDβyα(x0),CDβyα(x0)],

and from Theorem 3.2

S[CDβf̃(x)](u) =
−f̃(x0) −

H (−G(u))

uβ
,

we have 
s[y
α
(x)](u) =

−yα(0) − [−s[yα(x)](u)]

uβ
,

s[yα(x)](u) =
−y

α
(0) − [−s[y

α
(x)](u)]

uβ
,

equivalent to 
s[y
α
(x)](u) =

s[yα(x)](u) − yα(0)
uβ

,

s[yα(x)](u) =
s[y
α
(x)](u) − y

α
(0)

uβ
.

Then, we obtain {
(1 + u2β)s[y

α
(x)](u) = y

α
(0) − uβyα(0),

(1 + u2β)s[yα(x)](u) = yα(0) − uβyα(0).

By applying inverse Sumudu transform, we have
y
α
(x) = y

α
(0)s−1

[
1

1 + u2β

]
− yα(0)s−1

[
uβ

1 + u2β

]
,

yα(x) = yα(0)s−1
[

1
1 + u2β

]
− y

α
(0)s−1

[
uβ

1 + u2β

]
.

By relation,

s[xγ−1Eβ,γ(∓xβ)](u) =
uγ−1

1 −±uβ
,

finally, we have {
y
α
(x) = y

α
(0)E2β,1[−x

2β] − yα(0)xβE2β,β+1[−x
2β],

yα(x) = yα(0)E2β,1[−x
2β] − y

α
(0)xβE2β,β+1[−x

2β],

where,

E2β,1[−x
2β] =

∞∑
k=0

(−x2β)k

Γ(2βk+ 1)
and E2β,β+1[−x

2β] =

∞∑
k=0

(−x2β)k

Γ(2βk+β+ 1)
,

are the Mittag-Leffler functions.
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Assume that ỹ(x0) = [1+α, 3−α]. The numerical solutions of (5.1) for Cases 1 and 2 at x = 2 are listed
in Tables 1 and 2, respectively. For graphical results, please see in Figs. 1 and 2. Numerical solutions for
both cases are obtained by expanding the Mittag-Leffler functions up to 11 terms. It can be concluded
that the solutions of Eq. (5.1) are in agreement with the solutions of fuzzy differential equation as β
approaches to 1.

Table 1: Numerical solutions of Eq. (5.1) for Case 1 using different values of β.

β = 0.4 β = 0.6 β = 0.8 β = 1.0

α yβ(x) yβ(x) yβ(x) yβ(x) yβ(x) yβ(x) yβ(x) yβ(x)

0 16.5737 49.7212 12.0222 36.0667 9.1583 27.4749 7.3890 22.1670
0.1 18.2311 48.0638 13.2244 34.8644 10.0741 26.5590 8.1279 21.4281
0.2 19.8885 46.4064 14.4267 33.6622 10.9899 25.6432 8.8668 20.6892
0.3 21.5459 44.7491 15.6289 32.4600 11.9058 24.7274 9.6057 19.9503
0.4 23.2032 43.0917 16.8311 31.2578 12.8216 23.8116 10.3446 19.2114
0.5 24.8606 41.4343 18.0333 30.0556 13.7374 22.8957 11.0835 18.4725
0.6 26.5180 39.7770 19.2356 28.8533 14.6533 21.9799 11.8224 17.7336
0.7 28.1753 38.1196 20.4378 27.6511 15.5691 21.0641 12.5613 16.9947
0.8 29.8327 36.4622 21.6400 26.4489 16.4849 20.1482 13.3002 16.2558
0.9 31.4901 34.8048 22.8422 25.2467 17.4008 19.2324 14.0391 15.5169
1.0 33.1475 33.1475 24.0444 24.0444 18.3166 18.3166 14.7780 14.7780

Figure 1: Numerical solutions of (5.1) for (a) β = 0.4, (b) β = 0.6, (c) β = 0.8, and (d) β = 1 (Case 1).
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Table 2: Numerical solutions of Eq. (5.1) for Case 2 using different values of β.

β = 0.4 β = 0.6 β = 0.8 β = 1.0

α yβ(x) yβ(x) yβ(x) yβ(x) yβ(x) yβ(x) yβ(x) yβ(x)

0 -1.2888 0.1705 -1.5531 -0.4324 -2.1398 -1.2789 -3.1440 -2.1577
0.1 -1.2158 0.0976 -1.4971 -0.4884 -2.0967 -1.3219 -3.0947 -2.2071
0.2 -1.1428 0.0246 -1.4410 -0.5444 -2.0537 -1.3650 -3.0454 -2.2564
0.3 -1.0699 -0.0484 -1.3850 -0.6005 -2.0106 -1.4080 -2.9961 -2.3057
0.4 -0.9969 -0.1213 -1.3289 -0.6565 -1.9676 -1.4511 -2.9468 -2.3550
0.5 -0.9239 -0.1943 -1.2729 -0.7125 -1.9245 -1.4941 -2.8975 -2.4043
0.6 -0.8510 -0.2673 -1.2169 -0.7686 -1.8815 -1.5372 -2.8481 -2.4536
0.7 -0.7780 -0.3402 -1.1608 -0.8246 -1.8385 -1.5802 -2.7988 -2.5029
0.8 -0.7051 -0.4132 -1.1048 -0.8807 -1.7954 -1.6232 -2.7495 -2.5523
0.9 -0.6321 -0.4862 -1.0488 -1.9367 -1.7524 -1.6663 -2.7002 -2.6016
1.0 -0.5591 -0.5591 -0.9927 -0.9927 -1.7093 -1.7093 -2.6509 -2.6509

Figure 2: Numerical solutions of (5.1) for (a) β = 0.4, (b) β = 0.6, (c) β = 0.8, and (d) β = 1 (Case 2).

Remark 5.2. One of the disadvantages of the strongly generalized differentiability concept used in this
paper is that a fuzzy fractional differential equation has no unique solution. That is the reason behind
two cases that we solved. This disadvantage, from another point, is also an advantage as we can choose
the singular point where the support of the solution changes its monotonicity. This means that we can
obtain reversible solutions. Plus, we will also obtain stable and almost periodic solutions. Furthermore,
researchers can choose the best solution from all the cases based on the problems faced. Further discussion
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on the advantages of strongly generalized differentiability can be seen in [11, 12]

6. Conclusions

In this paper, we have proposed a new analytical method for dealing with linear FFDEs involving
Caputo fuzzy fractional derivatives. A new property of fuzzy Sumudu transform for Caputo fuzzy
fractional derivative has been introduced. The new property has been used to construct a procedure
for solving linear FFDEs. A numerical example has been solved to show that FST is functional. For future
research, we intend to apply FST on nonlinear fuzzy differential equations of integer and fractional order.
For that purpose, as fuzzy Sumudu transform cannot directly solve nonlinear problems, an integration
with a numerical result has to be made. For example, an integration between fuzzy Sumudu transform
and homotopy perturbation method. This will produce a new hybrid method, which then can be tested
on nonlinear problems.
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[17] F. Bulut, Ö. Oruç, A. Esen, Numerical Solutions of Fractional System of Partial Differential Equations By Haar Wavelets,

Comput. Model. Eng. Sci., 108 (2015), 263–284. 1
[18] V. B. L. Chaurasia, R. S. Dubey, F. B. M. Belgacem, Fractional radial diffusion equation analytical solution via Hankel

and Sumudu transforms, Int. J. Math. Eng. Sci. Aero., 3 (2012), 1–10. 1
[19] V. B. L. Chaurasia, J. Singh, Application of Sumudu transform in Schödinger equation occurring in quantum mechanics,

Appl. Math. Sci. (Ruse), 4 (2010), 2843–2850. 2.13



N. A. Abdul Rahman, M. Z. Ahmad, J. Nonlinear Sci. Appl., 10 (2017), 2620–2632 2632

[20] M. Friedman, M. Ma, A. Kandel, Numerical solutions of fuzzy differential and integral equations, Fuzzy modeling and
dynamics, Fuzzy Sets and Systems, 106 (1999), 35–48. 2.1

[21] V. Garg, K. Singh, An improved Grunwald-Letnikov fractional differential mask for image texture enhancement, Int. J.
Adv. Comput. Sci. Appl., 3 (2012),130–135. 1
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