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Abstract

In this manuscript, we define the generalized fractional derivative on AC$ [a, b], the space of functions defined on [a, b]

such that y"~f € AC[a, b], where y = x!~° %. We present some of the properties of generalized fractional derivatives of these
functions and then we define their Caputo version. (©2017 All rights reserved.
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1. Introduction and preliminaries

The fractional calculus is an important developing field in both pure and applied mathematics [16,
20, 21]. Many real world problems have been investigated within the fractional derivatives, particularly
Caputo fractional derivative is extensively and successfully used in many branches of sciences and engi-
neering [11, 18-20]. We recall that the system having memory effect are better described within fractional
differential operators mainly due to the non-locality of these operators [11, 16, 19-21]. However, the
non-locality has various forms. Therefore, the researchers try to generalize the fractional operators to
capture the hidden aspects of the real non-local phenomena. On the other hand, many researchers work
on fractional integrals and derivatives with non-local and non-singular kernels [7, 9, 17, 22, 23]. One of
the trends in fractional is the discrete fractional operators which are proved to have good applications in
various fields [1-4, 6, 10].

From the classical fractional calculus, we recall [16, 20, 21].

e The left Riemann-Liouville fractional integral of order o > 0 starting from a has the following form

(I*F)(x) = r(l(x) J (x —t)* £ (t)dt.
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e The right Riemann-Liouville fractional integral of order « > 0 ending at b > a is defined by

b
(186)(x) = r(lo()j (t— %)% 1F(0)dt.

The left Riemann-Liouville fractional derivative of order o > 0 starting at a is given below

(D)%) = (-

QI ) (x), n =[]+ 1.
dx

The right Riemann-Liouville fractional derivative of order « > 0 ending at b becomes

(DEN() = (— o (I *F)(x).

The left Caputo fractional of order « > 0 starting from a has the following form

(D)%) = (™M) (x), n =[] +1.

The right Caputo fractional derivative of order « > 0 ending at b becomes
(DY) (x) = (15~ * (D)™™ (x).

The Hadamard type fractional integrals and derivatives were introduced in [15] as:

e The left Hadamard fractional integral of order « > 0 starting from a has the following form

(ad%F)(x) = r(loc) J lnx—Ing)* (o)t

e The right Hadamard fractional integral of order « > 0 ending at b > a is defined by

x 1 ° ax—1
(Apf)(x) = F(oc)J (Int —Inx)* *f(t)dt.

X

e The left Hadamard fractional derivative of order « > 0 starting at a is given below
d
(D) = (e )" (")), n=lad+1.
e The right Hadamard fractional derivative of order & > 0 ending at b becomes

(DA = (—x M IFF) ).

The authors in [8, 12] defined the Caputo-Hadamard fractional derivatives as:

e The left Caputo-Hadamard fractional of order « > 0 starting from a has the following form

3
—_

5kf(a)

k!
0

(log +)¥x), 8=,

(S$DXF)(x) = o DX[F(t) —

~
I

and in the space ACla, bl ={g: [a,b] — C: 8" ![g(x)] € ACla, b} equivalently by

(SD0)00 = (8™ (e M), 1= 41
X
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e The right fractional derivative of order o > 0 ending at b was defined by

U C)ksRf(a) . b

(¢D¥)(x) = o D) =} ——— —(log ) I(x),
k=0 '
and the space AC}[a, b] equivalently by
(DEN0) = (G5 (210

Fora<b, ce Rand 1 < p < oo, define the function space
1/p
b
dt
XP(a,b) = {f: [a,b] = R: |[f[[xp = (J Itcf(t)Ipt> < oo}.
a

For p = oo, |[f[[xp = esssup <y, [t°If(t)l]. The generalized left and right fractional integrals (in the sense
of Katugampola) are defined by [13]

X P _ 4P
W11 = s | o Mg,
and . ;
P _
000 = o | (= 055,

respectively. In [13] it was shown that the integral operator [*? is bounded on the function space X£ (a, b),
p—1 > c. Indeed,

bocpfl b/a ul —1 a—1
1%Pf|lp < K|fllyr, K= J ye—xp—l <> du, 0.
lla 5% [ fllxr Mo ), 0 p#

Also, the semigroup property
Ql%P (IWPf =, I¥FHWPf  feXP(a,b), >0, 0>0, 1<p<oo, a€(0,0), p,ceR, p=c.

The left and right generalized fractional derivatives of order « are defined by [14]

n X P _ P
(D10 =Y oI"P1)0) = s [ (o

and N ;
DFFDN) = (7 MaI™ P = o [ (et

respectively, where p > 0.

The authors in [5] did define the Caputo version of the generalized fractional derivatives. From the
mathematical view, we have to consider the fractional derivatives of functions belonging to specific spaces.
In this aspect, this will help us to treat efficiently the numerical solutions of differential equations involv-
ing the generalized fractional derivatives. The main purpose of this article is to present the generalized
fractional derivatives of absolute differentiable continuous and differentiable continuous functions and
consider some of their properties that will lead us to define the Caputo modification of these derivatives.

The organization of the paper is as follows. In Section 2, we present the generalized fractional deriva-
tives of functions in the spaces ACJ}[a,b] and C;}[a, b]. In Section 3, we define the Caputo version of
generalized fractional derivatives. Section 4 contains the conclusion.
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2. The generalized fractional derivatives on the space ACJ[a, b] and CY[q, b]

From basic analysis we recall that f € ACl[a,b] is the space of absolutely continuous functions on
[a, b] if and only if f(x) = c—i—f @(t)dt, ¢(t) € L(a,b) (see also [16, 1.1.5]). Let’s denote the space
of all continuous real (Banach-) Valued functions on [a, b] by Cla, b] endowed with the norm ||f||c =
SUP, ¢ [ab) If(x)], .| is the absolute value in the real line or the norm in the Banach space. Next we introduce
a space of p— weighted continuous functions in which continuity at a is not stressed. For 0 < e < 1, we
define
Cepla, bl ={f:(a,b] = R: (x? —aP)¢f(x) € Cla,bl}, p#0,

endowed with the norm ||f|[c_, = [|(x? —aP)<f(x]||c.
Cepla, bl ={f:(a,b] - R: (logx —loga)“f(x) € Cla,bl}, p=0,

endowed with the norm |[[f[c., = [[fllc.,,, = I[(logx —loga)¢f(x)|[c. The convention that Co,la, bl =
Cla, b] is used.

Definition 2.1. Let [a,b] be a finite interval, 0 < ¢ < 1 and ACla, b] be the set of absolute continuous
functions on [a, b]. Then, we define

ACYla, bl = {f: [a,b] — C and Y™ !f € AC[a,b],y = xl*pi

1 —
—}, ACLla,bl = ACla,bl.

d
Cycla, bl = {f:[a,b] > Cand y"'f € Cla,b], y"f € Cepla, b,y =x' P |,

endowed with the norm |[f[[cn = S0 vl + [y"*fllc.,- The convention C7la,b] = C}la,b] en-
dowed with the norm |[f|[cn = > ko Y|l c is used.

Lemma 2.2. Assume p # 0. A function f € ACYla, bl if and only if f is presented in the form

= g ], (55 ) e g T ()" @)
Proof. Since f € ACY [a, b], from Definition 2.1, Y™ 1f € ACl[a, b]. Hence one can write
vy lE(x) = JX g(t)dt+ co, (2.2)
a
for some function g € L;[a, b] and ¢y is a constant.
Dividing both sides of (2.2) by x!~° and then integrating gives
Y2 (x) = J: tlép < J: g(uw)du+ co) dt = J: (Xp — tp)g(t)dt + co(Xp — ap) +c1. (2.3)

Dividing both sides of (2.3) by x!~° and then integrating once more yields

vt = | () e a2 e (Ko ey

Repeating the same procedure n — 3 times, one gets

X P 4P\ (t) n-1 P_ qP\n—k—1
f(x):Ja (X pt ) 1(ng—t1)!dt+];J n v .(X p(1 ) ’ 24)
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It is clear from (2.1) that y™“f(x) = x!7Pg(x) and from the proof that
cx =y"*f(a), k=0,1,--- ,n—1.

This was the proof of the necessity. To proof the sufficiency it is enough to apply the operator y™ to both
sides of (2.1). We should mention that Lemma 2.2 can be adapted to the case of the right integration as

1 [P P =xP\ ot (DN Ly (CDRORA(b) (B —xPk
) == L ( ) e dt+};} k! ( ) ‘

p p
O

Notice that if we let p — 0 in the representation (2.1) then we get the representation (3.1) in [15] with
i = 0. An analogous lemma can be written for the space Cle [a, b] as follows.

Lemma 2.3. Assume p # 0. A function f € CJ .[a, bl if and only if f is presented in the form

f(x) = t)dt , 2.5

W=y, () e 3 a(555) @9
where g(t) € Ce pla, b]. Moreover, g(x) = (y:f,)g") and ¢y = w In particular, £ € CYla, bl if and only if
f is presented in the form of (2.5), where g(t) € Cla, b].

Proof. The proof is similar to the proof of Lemma 2.2. O

Notice that if we let p — 0 in the representation (2.5) then we get the representation (1.1.29) in [16].
Also, if we let p — 1 in the representations (2.1) and (2.5), respectively, then, we get the representations
(1.1.8) and (1.1.23) in [16], respectively.

Now we present a formula for the generalized fractional derivatives of functions in the space f €
AC3la,bl.

Theorem 2.4. Let Re() >0, n=Re(x)+1andf € AC;}[a, blorfec Cg}[a, b] . Then the generalized fractional
derivatives of f exist almost everywhere and can be represented in the form

x, . 1 xP — P\ n—a—1 (yMg)( — xP — qP\ k—a
D) = = L< p ) £ Z Xl k oc+l ( 0 ) (2.6)
& (=" t0 —xP\noal (yhg)(t)dt k= (—1)*(yFf(b)) (b —xPy ke
Dy () = Mn— oc),[ ( P ) tl—e +Z Mk—oa-+1) ( 0 ) : 2.7)

Proof. Here we prove (2.6). Equation (2.7) can be proved similarly. Apply (D% to both sides of equation
(2.4), then using property (2.11) one gets

DYPF(x) = e oj(n_ 1)!Yn{ JX J: (xp ;tp>nal(tp ;up>n1 (yng(_t)dutld_tp}

a

n—1
(YEFa) (xP— Py
+ Z r ) ( 0 ) )

Reversing the order of integration one gets

@DFH0) = F oj(n— 1)!Vn{ JX E (Xp ;tp)nal (tp _pup>n1 (ynfl)—(?dt u(ligp J

a

+“‘1 (Y*f(a)) (Xp - ap)kffx_

= Nk—o+1) P
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1P —uP
Using the change of variable v = 7u, one obtains
xP —uP
1 * xP —uP\2n—a—1(y™f)(u)du Jl o] m—1
D*Pf —_— 1—v)"
DT = ) )'V . (=) e U
+Z I'( k oc+1 ( ) )
Evaluating the second integral in (2.8), one gets
MNn—o)l'(n) * xP —uPy\2n—a—1(y™f)(u)du
D) = o, T
ren—o)frin —a)(n—1)! a o) ul—pe
_ 2.9
LY a0 atyees 9
— Mk—a+1) P '
Now applying the operator y™ on the integral, (2.9) becomes
1 x xP —uyuP\n—oa— 1( du n-l xP —aP\k—«
D*Pf(x) = :
¢ () F(noc)L< 0 ) ulp kZOFk ochl( P )
O
Theorem 2.5. Let o« > > 0,1 < p < coand ¢ € R. Then for f € Xt (a, b) we have
aDPP I%Pf = I%BPf, and DEP IZPf =15 POy,
Proof. If 3 = m a positive integer, then we have
1 (% /xP —tP\x—1f(t)dt
m,P &, P _ m
D arert) =y | (S55)T ]
_ 1 X xP — P\ a—2f(t)dt
_ .m—1
=Y [r(oc—1) Ja ( 0 ) ti—e }
_ 1 X xP — P\ a3 f(t)dt
_ .m—2
=Y [r(oc—z) Ja ( 0 ) ti—p }
B 1 JX (xp —t")“*m*l f(t)dt
- T(x—m) ) tl—e
=q I ™Pf(x).
Now, if m—1 < 3 < m we have
D L s L o B e T L
This was the end of the proof of the first formula. The second can be proved in a similar way. O

Theorem 2.6 ([14]). Let « > 0,1 < p < oo and ¢ € R. Then for f € XE (a, b) where a > 0, p > 0, we have
aDYP (I%Pf=f, and Dy® IVPf =f.

Theorem 2.7. Let Re(a) >0, n = —[—Re(«)], f € L(a,b) and o1%°f € AC}[a,b] (I7"°f € AC}la,bl). Then
n .
D“ ) pf Xp — ap xX—)
I ,D%P)
la Z x—j+1) < P ) ’

j=1
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oot = (1) Dy PF(b) (5P —xP\ «
(Ib’pr’p)f(x):f(x)—j;( r)“jj+1)( )( p" ) ' (2.10)
Proof.
(W D)) = s | ()T Dt

g [ 55 et arenw) ai.

Now integrating by parts repeatedly leads to

dt

1 X xP 4P\ a—n
[P D%P)f(x) — %P f(t) —
(I WD) =¥ [y | ()Tl

v (I P)E(a) (=)
Moe+2—j) P

j=

amilp oo L (Y GIVP)) () (xP — Py a—itl
:v[al +e | pf(x)—z Fat2_]) ( 5 ) }

j=1

By using the semigroup property (Theorem 4.1.) in [13], one obtains

, n Doclpf ) xP — aPy a—j+1

The result is reached after applying the operator vy to the integral. (2.10) is proved analogously O
Lemma 2.8. Let Re() > 0 and Re(p) > 0. Then,

(205 o= O (5 n
o5 () - ()
( aD“rP(tp ; ap> - )(x) —0, i=1,2,---,[Re(a)] +1, (2.12)
(D{fp(bp ;tp)“i) (x) =0, i=1,2,[Re(a)] +1.

Proof. Here we prove (2.11) and (2.12). The rest of the results are proved analogously.

P_qP\pB-1
D% ()

Y

X xP —tP\n—ax—1,¢tP — P\ B—-1 dt
( P ) ( 0 ) tlfp}
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g A T et e w52

r(n - dx P 0 & —ap
_ FpIrn—o) 1_‘)1 nr/xP —aqP\n—at+p-1 ) . ‘
CTR+n—a)Mn—«) (x dx) [( 0 ) } (using properties of the beta function)

_ r'(p) N'p+n—ow (xp—ap)ﬁ—cx—l ~ T(B) <xp_ap)5_a_1
CTR+n—«a) T(P—«) 0 TT(R—w) 0 .

This was the end of the proof of (2.11). Now,

D%P (tp ; ap)“*i(x) _ r(nl_ . <X17p%)n [JX (XP ptF’)ncxl <tp ; ap>ocfit1d;tp]
)

d
_ 1 1-p d\"mr/xP—aPyn—i ! n—a—1, x—i
CTn—a) <X dx [ ) L(l—u) ut

e 7w (55 ] o

O

The limiting case p — 0 in Lemma 2.8 will lead to the Hadamard fractional formulas with ("p;‘fp)
replaced with In(x/a) and (R2=xP) replaced with In(b/x). Also, the case p — 1 will result in the Riemann-

P
Liouville’s formulas.

3. Caputo modification of the generalized fractional derivative

Below we present the definition of the generalized Caputo fractional derivative of any order which is
different from the definition stated in [13].

Definition 3.1. Let Re(o) > 0 and n = [Re(o)] + 1. If f € ACJ[a, b], where 0 < a < b < oo, we define the
left and right generalized Caputo fractional derivatives of f of order « by

n—1
cDPi() = D% [1(0 - Y LI (Y0 g, G
k=0 )

n—1 _11k4k B
CDEPf(x) = DEP [f(t)—kz_o( R

respectively. In case 0 < Re(«) < 1, we have

CD%Pf(x) =q D%P [f(t) _ f(a)] (x),

and
CDXP(x) = DM [f(t) - f(b)} (x).

Theorem 3.2. Let Re() > 0, n = [Re(at)] + 1 and f € ACYla, b, where 0 < a < b < oo. Then,
1. IfOC §§ No,

O S Lt G W 0 (L3 N

aD pf(x)_r(n—cx)L< P ) ao = ol PO, (3.2)
« 1 PP —xPy\n—a T ()M (yM) (1At noapn

D30 = g [ () I a0
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2. IfeeN
SDXPf =y, Dy Pf = (—1)™y"™. (3.4)

a ’ 4 b N

Proof. (3.2) and (3.3) are consequences of Theorem 2.4. Now, when &« = n we have

n—1 P_ qP\k
f(x) = aIn’p(Ynf)(X)+Zy l:!(a)<t Pa ) '

k=0
From Lemma 2.2, one gets CD%Pf =y™f, The second part of (3.4) can be proved likewise. O
Theorem 3.3. Let Re(«) > 0, n = [Re(a)] + 1 and f € CYla,bl, where 0 < a < b < oco. Then, CD%Pf and

CDg"pf can be represented as in (3.2) and (3.3), respectively if « ¢ Ny. If o« € IN, (3.4) holds. Moreover {D*Pf
and CDY°f are continuous on [a, b] and

CD*Pf(a) =0, CDYPf (b) =0. (3.5)
Proof. The representation of {D%Pf and “Dy’’f can be proved as in the proof of Theorem 2.4. Now,
since 1% xP— 1Py moad (yn)(t)dt
Ch« X" = Y
oo« g [ (55) |
o) = |, (55 o
we have | b8 _ gP (n—Re(a)
C o ‘Y C —a n—kKke(x
oo e
1Pl S i o —Refa)]| o
Thus the continuity is proved. The identities in (3.5) hold since
|h/nf||C xP — qP m—Re(«x)
| SD*Pf < | | , 3.6
‘ T~ o(n—Re(@)l| o &0
e [Nl bP — xP nRe()
2% c — xP m—Re(x
CDEP < | | . 3.7
oS i Re(@)l| - p 7
O

Theorem 3.4. Let Re(a) > 0, n = [Re(«x)]+1. If « ¢ N, {D%P is bounded from the space CY¥la, bl to
the space Cqla,b] = {g € Cla,b] : g(a) = 0} and “Dy'® is bounded from the the space C:[a,b] to the space
Cpla,b] = {g € Cla,b] : g(b) = 0} and

lhy™fllcn bP — aP n—Re(«)
CrHh«
D*flic, < . | | : 3.8
IaD*flles S Fn oy —Retall o (38)
" ™l
Y cn bP — aP |n—Re(a)
CrHo,p by
Dy Hlle, < | | 3.9
17Dy llew < i~ a)m—Retal)ll 9 (39)

Ifx e N, $D%P and “Dy® are bounded from the space C3t[a, b] to the space Cla, b] and
I aD™Pfllc < lifllcy, 1Dy Pfllc < liflley. (3.10)

Proof. Equations (3.8) and (3.9) follow from (3.6) and (3.7), respectively. The inequalities in (3.10) are
straightforward. O
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Below we state the inverse properties.

Theorem 3.5. Let Re(x) > 0, n = [Re(«)] +1 and f € Cla, b].
1. If Re(x) # 0 or « € IN, then

CD%P L IPF(x) = f(x), DRI E(x) = f(x). (1D

2. IfRe(a) # 0 and Re(x) € IN, then

Ioc+17n,pf(a) xP — qP\n—«
Crhop o, P _ _a
SDP I P H() = 1) — = (T ) (3.12)
Ioc+1—n,9f(b) bP —xP\n—a
CyXPToP _ _
DY IEPH0) =00~ P ( 5 ) . (3.13)
Proof. From (3.1), one has
Cpop Toup x,PTX,0 V aI%Pf)(a) /xP —aP\k
CD%P [%Pf(x) = DXPI%Pf(x Z ka+1<p)‘ (3.14)

From Theorem 2.7 and Theorem 3.2 one has y*(I%P)f = I* %Pfand D% I%Pf =f, respectively.
Thus (3.14) reads

n—1 a—k, -
SD™P (I%PF(x) = f(x) — ) (F(Ik_ :f(lc;) (Xp . ap)k- (3.15)
k=0

On the other hand, it should be easy to verify that (o I*7%P)f(a) = 0, because of the following estimate

| QI F(x)| <

S o ( ) . (3.16)

Mo — k) (Re(a) — P

This is the end of the proof of the first identity in (3.11). The second identity is proved in a similar way.
Now if « = m+1if, B # 0, then we have n = m+1 > 2 and y¥(I*P)f = I*%Pf is valid when

k =0,1,2,--- ,m—1. Because of the estimate (3.16) we have (I* *P)f(a) =0,k =0,1,2,---,m—1.

Substituting in (3.15), we get (3.12). (3.13) is proved similarly. O

Theorem 3.6. Let f € ACT[a, b] or C{}[a, b] and o € C. Then

(v“f3(a) (X" - a")k,

M2

ol CD*Pf(x) = f(x) —

[
k=0
1
&0 CD%Pf(x — )(b)(bp—xp>k
k=0 P

In particular, if 0 < « <1, we have
aI%? GD*Pf(x) = f(x) — f(a),

I7? CDYPF(x) = f(x) — f(b). (3.17)
Proof. The proof is done by using the semigroup property [13, Theorem 4.1] and Theorem 2.7 (& =n)

n—1 k

f P_ qP\k

Q[P aCDOC,Pf(X) = %P JINTXPyT = [P TR (x) — Z (vy*f)(a) (X a ) _
k=0 kt P

Equation (3.17) can be proved analogously. O
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Next we present the composition rule for two generalized Caputo fractional derivatives.

Theorem 3.7. Let f € AC%’,”“[a,b], O<a<b<oo,a>0andp > 0suchthatn—1 < o« < n and

m—1<p <m. Then

C C
CD*P SDPPf(x) = SD*TRPf(x).

Proof. Let us assume that m > n. Thus m =n+k, k=0,1,2,--- ,m —n. Then the proof can be done by
using Theorem 2.7, Theorem 3.2 and [13, Theorem 4.1]. In fact,

aDP EDPPf(x)

= (IR TPy ()

_ aInfoc,p n aInJrkfﬁ,p Tthf(X)

Y Y
_ aIn—oc,pyn aIn—B,p aIk’p’YTH_kf(X)
= al"T%P o DPP TPy (x)

aInfocf[S,p aI[S,p aDB,p Ikp n+kf( ) n+kf( )

B aIn—oc—B,p r aIk'py“+kf(x) %k )( In B, Pk, pYnJrkf( ) (Xp _ aP)j}

rp—j+1) P

'Mﬁ

H
I
_

_ aITL—oc—[S,p [ aIk,p,YTH—kf(X) Yy SDB'pf(a)) <Xp — ap)i]
L p

re—ji+1

u
I
KR

'M:

_ aInfoch,p [ aIk’pYn+kf(X) 0

[——

_ a1n+k_“_ﬁ’pyn+kf(x)

= CDTBP(x).

Equation (3.17) is proved using similar arguments. O

Lemma 3.8. Let Re() >0, n = [Re(e) +1] +1 and Re(B) > 0. Then

SDM)CP — ap)ﬁ—l(x) _ r(F([:’,) (xp — ap)ﬁ—cx—l/ Re(B) > n,

P B—o)\ p
bP — P\ B—1 MB) /bP—xP\B—a-1
Cpop —
D2 ( ; ) (x) = F(B—oc)( . ) , Re(B) > n. (3.18)
Proof.
tP—af\R-1 1 *xP —tPyn—a—l d\n/tP —aP\R-17 dt
Cpxp — 1-p =
aD ( P ) (X)_F(n—cx) Ja( p ) [(t dt) ( p ) }tlfp
B rp) X xP _tP\n—a—1,tP — qP\B-n—-1 dt ' o .
= B o L ( > ) ( 5 ) = (differentiation inside the integral)
(B xP — aP a1 Jl et pna _t—a
N F([S—n)F(n—oc)( P ) 0(1 u) v du, Y= e —ae
B I'(p) xP —aP\B—x—1T(n—)I'(p —n) ) ) X
= T —mrn—o) ( 5 ) FB— o) (using properties of the beta function)
S TB—a)\ p
Equation (3.18) can be proved likewise. O

Lemma 3.9.

coe

P_aP\k bP —xP\k
%) :O, CD%"( pX > (X):O, k:ol]_lzl...,n_l.
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Particularly
GD?(1) =0, Dy (1) =0.

Proof.

gDcx,p(t"—pa")k(x) = aIn—a,pKtl—pc‘lit)“(tp—p“p)k} (x) = oI *P[0](x) = 0.

The rest formulas can be proved similarly. O

From Definition 3.1 and Lemma 3.8, we can set the following relation between generalized Caputo
and Riemann derivatives:

Theorem 3.10. For and o« > 0 and p # 0, we have

n—1
GDYPF(x) = oD*PF(x) - ) =
k=0

xp—ap
k+1— p

)k—oc

7

and

(b) bf —xp)k x

n—
“Dy *f(x) = Dy *f(x Z k+1_cx) 5

At last, we give the relation between the generalized Caputo fractional derivatives and the known
ones.

Theorem 3.11. Let & € C,Re(a) > 0 and n = [Re(x)] + 1. Then
1.

1 X
3’1311 CD%Pf(x) = ML(x—t)““lfm(t)dt: CD*f(x). (3.19)
2. . .
lim CDPf(x) RlC— L(x—t)n“1(—1)“f<“J(t)dt: “Df(x). (3.20)
3.
. [0 4 1 x n—x— d dt o4
Fl)lg}) SD P(x) _F(n—oc)L(logX_logt) "t dt) filt)— P §® f(x). (3.21)
4.

1 x d dt
Cryxp o n—oa—1;__ yn _ Cna
‘1)13}] D, f(x) = o) Ja(logt log x) (=)™ ((— tdt) )(t)— + Dy f(x). (3.22)
Proof. The limits in (3.19) and (3.20) are evaluated replacing p by 0 directly. While, the limits in (3.20) and
(3.21) are evaluated by using the L’'Hospital rule. O

It should be noted that the derivatives on the right hand sides in (3.19) and (3.20) are respectively the
left and right Caputo derivatives [16, 20]. While, the derivatives on the right hand sides in (3.21) and
(3.22) are respectively the left and right Caputo-Hadamard derivatives developed in [8] and [12].

4. Conclusions

The fundamental issue of the fractional operators and their generalized versions is to define them
correctly in the right space of functions. In this paper, we defined the generalized fractional deriva-
tives of functions in the spaces of absolutely differentiable continuous and differentiable continuous
functions. Since Caputo derivatives describe better some physical problems involving memory effect,
we defined the Caputo version of the generalized fractional derivatives. We believe that this Caputo



F. Jarad, T. Abdeljawad, D. Baleanu, J. Nonlinear Sci. Appl., 10 (2017), 2607-2619 2619

version of the generalized fractional derivative would be useful for researchers working on modeling
real world phenomena described by fractional operators. Finally, we noticed that the limiting case as
p — 0 leads to the Hadamard and Caputo-Hadamard results by noting that lim,_,o( xP—afy _ In(3) and

P
limpﬁo(bp*"p) = ln(%). Also, the case p = 1 will result in Riemann-Liouville’s and Caputo fractional
derivatives.
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