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Abstract
In this paper, an adaptive control scheme is developed to study the add order synchronization and the add order anti-

synchronization behavior between two different dimensional fractional order chaotic systems with fully uncertain parameters.
This design of adaptive controller is based on the Lyapunov stability theory. Analytic expression for the controller with its
adaptive laws of parameters is shown. The adaptive add order synchronization and add order anti-synchronization between
two fractional order chaotic systems are used to show the effectiveness of the proposed method. Theoretical analysis and
numerical simulations are used to verify the results. c©2017 All rights reserved.
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1. Introduction

Since Leibniz coined the concept of fractional derivative in his 1695 letter to L’Hopital, fractional
calculus has emerged as a new subject. Fractional calculus has a 300-year-old history, however its ap-
plications in physics and engineering were only recently identified. Some very recent papers on its
applications are given in [13, 16, 18, 22, 26, 30, 38, 39] and the references therein. It was found that
many systems in interdisciplinary fields can be elegantly described with the help of fractional deriva-
tive such as given in [22] and [30]. Chaos synchronization and anti-synchronization of the fractional
chaotic and hyperchaotic systems have become interesting topics in nonlinear sciences due to their wide
range applications in various fields, such as biology, cryptography, physics, chemistry, and cryptography
[8, 17, 24, 31, 33, 34, 36]. A number of synchronization and anti-synchronization schemes such as adaptive
control [1, 2, 4–6, 14, 15, 27, 32, 41], active control [3, 9, 25], sliding mode control [12, 19, 20, 29, 37, 42],
and impulsive control [7, 23] have so far been presented. At present, most of theoretical results are
about synchronization and anti-synchronization of fractional order chaos focus on the systems whose
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models are identical, similar or with mismatched parameters [10]. However, synchronization and anti-
synchronization of fractional order chaotic systems can also be induced even in strictly different systems
and systems of different orders [40], especially in biological and social sciences, many engineering sys-
tems, also the fractional models have applications in the design of control systems, wave propagation,
imaging, thermal flux, temperature, entropy generation and diffusion [28]. One example is the chaotic
synchronization that occurs between the heart and lungs, where one can observe that both circulatory
and respiratory systems behave in synchronous way, but their models are essentially different and they
have different order. Therefore, the study of synchronization and anti-synchronization for strictly differ-
ent fractional order dynamical systems is both very important from the perspective of control theory and
necessary from the perspective of practical application. It has been observed, in practical engineering
situations, the parameters are probably unknown and may change from time to time. Therefore, there
is a vital need to effectively synchronize and anti-synchronize two fractional chaotic systems with differ-
ent order and with unknown parameters. However, to the best of our knowledge, most of the results
and methods dealing with the integer-order systems cannot be automatically extended to the case of
fractional-order systems, such as Lyapunov’s direct method. A number of papers have been written on
fractional order chaos synchronization in order to develop and improve existing synchronization control
methods. One of these methods is the modified adaptive control for the synchronization of fractional
order as well as integer order chaotic systems, which was proposed by Agrawal et al. [1].

Motivated by the above discussion, the aim of this paper is to study the add order synchronization and
anti-synchronization of fractional order chaotic systems using the modified adaptive control, which could
translate the problem of synchronization and anti-synchronization of fractional order chaotic systems with
different dimensions into the synchronization and anti-synchronization of systems with identical orders.
The rest of this paper is organized as follows. In Section 2, we briefly describe the problem. In Section 3,
we present the adaptive add order synchronization scheme with a parameter update law for two different
fractional order chaotic systems. Section 4, presents the adaptive add order anti-synchronization scheme
with a parameter update law for two different fractional order chaotic systems. The conclusion are given
in Section 5.

2. Preliminaries of fractional-order calculus

There are several definitions of fractional derivatives [16, 18, 22, 24, 39], the commonly used definition
is the Riemann-Liouville definition, as follows:

aD
q
t z (t) =

dn

dtn
J
n−q
t z (t) , q > 0,

where n = dqe, and

Jϑtψ (t) =
1

Γ (ϑ)

t∫
0

ψ (υ)

(t− υ)1−ϑ
dυ,

where 0 < ϑ 6 1 and Γ(.) is gamma function. The Caputo differential operator of fractional order q is
defined as

cD
q
t z (t) = J

n−q
t zn (t) , q > 0,

where n = dqe.

Lemma 2.1 ([1, 2, 24]). If p > q > 0, and m and n are integers such that 0 6 m− 1 6 p < m, 0 6 n− 1 6 q <
n, then

aD
q
t

(
aD

−q
t f (t)

)
= aD

p−q
t f (t) .
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Lemma 2.2 ([1, 2, 24]). If p,q > 0, then there exist integers m and n such that 0 6 m− 1 6 p < m, 0 6 n− 1 6
q < n, then

aD
p
t

(
aD

q
t f (t)

)
= aD

p+q
t f (t) −

n∑
j=1

[
aD

q−j
t f (t)

]
t=a

(t− a)−p−j

Γ (1 − p− j)
.

Lemma 2.3 ([1, 2, 24]). Suppose f(t) has a continuous kth derivative in [0, t](k ∈ N, t > 0) and let p,q > 0,
then there exists some n ∈ N with n 6 k and p,p+ q ∈ [n− 1,n], such that

aD
p
t aD

q
t f (t) = aD

p+q
t f (t) .

2.1. Modified adaptive add order problem controller design
To formulate the adaptive add order controller, consider the nonlinear chaotic system as follows:

D
q
t x = f(x) + F(x)α, (2.1)

where x ∈ Ω1 ⊂ Rm is the state vector, α ∈ Rk is the unknown parameter vector, f(x) is an m× 1 matrix,
and F(x) is an m× k matrix. The slave system is assumed by,

D
q
t yi = gi(yi) +Gi(yi)β+ ui, (2.2)

where yi ∈ Rn is the state vector, β ∈ R` is the parameter vector of the system, gi is an n× 1 matrix,
Gi(x) is an n× ` matrix and ui ∈ Rn is control function. When m = n,k = ` and f = gi, F = Gi the slave
system is identical to the master system. When two systems satisfy the condition that is m > n, the order
of the slave oscillator is lower than that of the master system, then the added order synchronization and
added order anti-synchronization are the only possible types of synchronization. The controlled response
system is rewritten as follows:

D
q
t y = g(y) +G(y)β+ u, (2.3)

where, y =

(
yi
yj

)
, g (y) =

(
gi (yi)

0

)
,G (y) =

(
Gi (y)

0

)
,u =

(
ui
uj

)
, ui,yi ∈ Rn, and yj,uj ∈

Rm−n.
In the following, our goal is to design an effective adaptive controller U to achieve the add order

synchronization and the add order anti-synchronization between two different dimensional fractional
order chaotic systems with fully unknown parameters. Therefore, we need to show that

lim
t→∞ ‖y(t) − x(t)‖ = 0 and lim

t→∞ ‖y(t) + x(t)‖ = 0,

respectively.

2.2. Modified adaptive add order synchronization controller design
The following theorem shows that the systems (2.1) and (2.3) can be effectively add order synchro-

nized.

Theorem 2.4. If the nonlinear control function is selected as

u = f(x) + F(x)α− g(y) −G(y)β+Dq−1
t

[
F(x)α̃−G(y)β̃− (Dq−1

t e(t))
(t)−(q−1)−1

Γ(−(q− 1))
− e
]

(2.4)

and adaptive laws of parameters are taken as

˙̂α = −[F(x)]Te, ˙̂β = [G(y)]Te, (2.5)

where q ∈ [0, 1] is the order of the derivative and α̂, β̂ are the estimated parameters of α and β, respectively.
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Proof. From (2.1) and (2.3) we get the error dynamical system as follows:

D
q
t e (t) = g (y) +G(y)β− f(x) − F(x)α+ u, (2.6)

where e = y− x. Inserting (2.4) into (2.6) yields the following:

D
q
t e(t) = D

q−1
t

[
F(x)(α̂−α) −G(y)(β̂−β) − (Dq−1

t e(t))
(t)−(q−1)−1

Γ(−(q− 1))
− e
]
. (2.7)

If a Lyapunov function candidate is chosen as

V =
1
2

[
eTe+ α̃T α̃+ β̃T β̃

]
,

where, α̃ = α̂− α, β̃ = β̂− β, the time derivative of V along the trajectory of the error dynamical system
(2.7) is as follows

V̇ =
[
eT ė+ ˙̃αT α̃+ ˙̃βT β̃

]
. (2.8)

Using Lemma 2.2 in (2.8) we get

V̇ = eT

[
D

q−1
t (Dq

t e(t)) + (Dq−1
t e(t))

(t)−(q−1)−1

Γ(−(q− 1))

]
+ ˙̃αT α̃+ ˙̃βT β̃.

From (2.7), we get

V̇ = eT

[
D

q−1
t D

q−1
t

[
F(x)α̃−G(y)β̃− (Dq−1

t e(t))
(t)−(q−1)−1

Γ(−(q− 1))
−e
]

+ (Dq−1
t e(t))

(t)−(q−1)−1

Γ(−(q− 1))

]
+ ˙̃αT α̃+ ˙̃βT β̃.

(2.9)

Now using Lemma 2.1 and (2.5), (2.9) reduces to

V̇ = eT

[
F(x)α̃−G(y)β̃− (Dq−1

t e(t))
(t)−(q−1)−1

Γ(−(q− 1))
−e+ (Dq−1

t e(t))
(t)−(q−1)−1

Γ(−(q− 1))

]
− eTF(x)α̃+ eTG(y)β̃

= −eTe < 0.

According to the Lyapunov stability theory [21], the error variable becomes zero as time t tends to infinity,
i.e., lim

t→∞ ‖e(t)‖ = 0. This means that the drive system (2.1) and the response system (2.3) achieved the

add order synchronization.

2.3. Modified adaptive add order anti-synchronization controller design
The following theorem shows that system (2.1) and system (2.3) can be effectively add order anti-

synchronized.

Theorem 2.5. If the nonlinear control function is selected as

u = −f(x) − F(x)α− g(y) −G(y)β+Dq−1
t

[
− F(x)α̃−G(y)β̃−

(
D

q−1
t e (t)

) (t)−(q−1)−1

Γ (− (q− 1))
− e
]

(2.10)

and the adaptive laws of the parameters are taken as

˙̂α = [F(x)]Te, ˙̂β = [G(y)]Te, (2.11)

where, q ∈ [0, 1] is the order of the derivative, and α̂, β̂ are the estimated parameters of α and β, respectively, then
the systems (2.1) and (2.3) can be add order anti-synchronized.
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Proof. From (2.1) and (2.3), we get the error dynamical system as follows:

D
q
t e (t) = g (y) +G(y)β+ f(x) + F(x)α+ u, (2.12)

where e = y+ x. Inserting (2.10) into (2.12) yields the following:

D
q
t e(t) = D

q−1
t

[
− F(x)(α− α̂) −G(y)(β− β̂) − (Dq−1

t e(t))
(t)−(q−1)−1

Γ(−(q− 1))
− e
]
. (2.13)

If a Lyapunov function candidate is chosen as

V =
1
2

[
eTe+ α̃T α̃+ β̃T β̃

]
,

where α̃ = α− α̂, β̃ = β− β̂, the time derivative of V along the trajectory of the error dynamical system
(2.13) is as follows

V̇ =
[
eT ė+ ˙̃αT α̃+ ˙̃βT β̃

]
. (2.14)

Using Lemma 2.2 in (2.14) we get

V̇ = eT
[
D

q−1
t (Dq

t e(t)) + (Dq−1
t e(t))

(t)−(q−1)−1

Γ (− (q− 1))

]
+ ˙̃αT α̃+ ˙̃βT β̃.

From (2.11) and (2.14), we get

V̇ = eT

[
D

q−1
t D

q−1
t

[
− F(x)α̃−G(y)β̃− (Dq−1

t e(t))
(t)−(q−1)−1

Γ(−(q− 1))
−e
]

+ (Dq−1
t e(t))

(t)−(q−1)−1

Γ(−(q− 1))

]
+ ˙̃αT α̃+ ˙̃βT β̃,

(2.15)

since ∀q ∈ [0, 1], (1 − q) > 0 and (q− 1) < 0. Now, using Lemma 2.1, (2.15) reduces to

V̇ = eT

[
− F(x)α̃−G(y)β̃− (Dq−1

t e(t))
(t)−(q−1)−1

Γ(−(q− 1))
−e+ (Dq−1

t e(t))
(t)−(q−1)−1

Γ(−(q− 1))

]
+ eTF(x)α̃+ eTG(y)β̃ = −eTe < 0.

According to the Lyapunov stability theory [21], the error variable becomes zero as time t tends to infinity,
i.e., lim

t→∞ ‖e(t)‖ = 0. This means that the drive system (2.1) and the response system (2.2) achieved the

add order anti-synchronization.

3. Modified adaptive add order synchronization of two different dimensional fractional order chaotic
systems

In order to achieve behavior of the add order synchronization between two different dimensional
fractional order chaotic systems with fully unknown parameters, we take the fractional-order hyperchaotic
Chen system [35] to be the master system and the fractional-order chaotic Chen system [11] to be the
slave system. The variables of the master system are represented by subscript 1 and the slave system by
subscript 2. Both the systems are described, respectively by the following equations:

D
q1
t x1 = a1(y1 − x1) +w1,

D
q2
t y1 = d1x1 − x1z1 + c1y1,
D

q3
t z1 = x1y1 − b1z1,

D
q4
t w1 = y1z1 + r1w1,

(3.1)
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and

D
q1
t x2 = a2(y2 − x2) + u1,

D
q2
t y2 = (c2 − a2)x2 − x2z2 + c2y2 + u2,
D

q3
t z2 = x2y2 − b2z2 + u3,

D
q4
t w2 = u4,

(3.2)

where U = (u1,u2,u3,u4)
T is the control function to be designed. The difference of (3.2) and (3.1) gives

error dynamical system as below,

D
q1
t e1(t) = a2(y2 − x2) − a1(y1 − x1) −w1 + u1,

D
q2
t e2(t) = (c2 − a2)x2 − x2z2 + c2y2 − d1x1 + x1z1 − c1y1 + u2,

D
q3
t e3(t) = x2y2 − b2z2 − x1y1 + b1z1 + u3,

D
q4
t e4(t) = −y1z1 − r1w1 + u4,

(3.3)

where e1 = x2 − x1, e2 = y2 − y1, e3 = z2 − z1, and e4 = w2 −w1. Our goal is to derive the controller U
with a parameter estimation update law such that (3.2) globally and asymptotically add order synchronize
(3.1).

Theorem 3.1. The fractional-order hyperchaotic Chen system can be asymptotically add order synchronized for any
different initial condition with the fractional-order chaotic Chen system with the following adaptive controller:

u1 = a1(y1 − x1) +w1 − a2(y2 − x2) +D
q1−1
t

[
ã1(y1 − x1) − ã2(y2 − x2)

− (Dq1−1
t e1(t))

(t)−(q1−1)−1

Γ(−(q1 − 1))
− e1

]
,

u2 = −(c2 − a2)x2 + x2z2 − c2y2 + d1x1 − x1z1 + c1y1 +D
q2−1
t

[
− (c̃2 − ã2)x2

− c̃2y2 + d̃1x1 + c̃1y1 − (Dq2−1
t e2(t))

(t)−(q2−1)−1

Γ(−(q2 − 1))
− e2

]
,

u3 = −x2y2 + b2z2 + x1y1 − b1z1 +D
q3−1
t

[
b̃2z2 − b̃1z1 − (Dq3−1

t e3(t))
(t)−(q3−1)−1

Γ(−(q3 − 1))
− e3

]
,

u4 = y1z1 + r1w1 +D
q4−1
t

[
r̃1w1 − (Dq4−1

t e4(t))
(t)−(q4−1)−1

Γ(−(q4 − 1))
− e4

]
,

(3.4)

and parameter update rules

˙̂a1 = −(y1 − x1)e1, ˙̂b1 = z1e3, ˙̂c1 = −y1e2, ˙̂d1 = −x1e2,

˙̂r1 = −w1e4, ˙̂a2 = y2e1 − (e1 + e2)x2, ˙̂b2 = −z2e3, ˙̂c2 = (x2 + y2)e2,
(3.5)

where â1, b̂1, ĉ1, d̂1, r̂1, â2, b̂2, ĉ2 are estimates of a1,b1, c1,d1, r1,a2,b2, c2, respectively.

Proof. Applying control law equation (3.4) to (3.3) yields the closed-loop error dynamical system as fol-
lows:

D
q1
t e1(t) = D

q1−1
t

[
ã1(y1 − x1) − ã2(y2 − x2) − (Dq1−1

t e1(t))
(t)−(q1−1)−1

Γ(−(q1 − 1))
− e1

]
,

D
q2
t e2(t) = D

q2−1
t

[
− (c̃2 − ã2)x2 − c̃2y2 + d̃1x1 + c̃1y1 − (Dq2−1

t e2(t))
(t)−(q2−1)−1

Γ(−(q2 − 1))
− e2

]
,

D
q3
t e3(t) = D

q3−1
t

[
b̃2z2 − b̃1z1 − (Dq3−1

t e3(t))
(t)−(q3−1)−1

Γ(−(q3 − 1))
− e3

]
,

D
q4
t e4(t) = D

q4−1
t

[
r̃1w1 − (Dq4−1

t e4(t))
(t)−(q4−1)−1

Γ(−(q4 − 1))
− e4

]
,

(3.6)
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where ã1 = â1 − a1, b̃1 = b̂1 − b1, c̃1 = ĉ1 − c1, d̃1 = d̂1 − d1, r̃1 = r̂1 − r1, ã2 = â2 − a2, b̃2 = b̂2 − b2, c̃2 =
ĉ2 − c2. Consider the following Lyapunov function candidate

V =
1
2
(
eTe+ ã2

1 + b̃
2
1 + c̃

2
1 + d̃

2
1 + r̃

2
1 + ã

2
2 + b̃

2
2 + c̃

2
2
)

, (3.7)

then the time derivative of V along the solution of error dynamical system equation (3.6) gives

V̇ = (eT ė+ ã1 ˙̃a1 + b̃1
˙̃b1 + c̃1 ˙̃c1 + d̃1

˙̃d1 + r̃1 ˙̃r1 + ã2 ˙̃a2 + b̃2
˙̃b2 + c̃2 ˙̃c2).

Using Lemma 2.2 in (3.7) we get

V̇ =

(
e1

[
D

1−q1
t (Dq1

t e1(t)) + (Dq1
t e1(t))

(t)−(q1−1)−1

Γ(−(q1 − 1))

]
+ e2

[
D

1−q2
t (Dq2

t e2(t))

+ (Dq2
t e2(t))

(t)−(q2−1)−1

Γ(−(q2 − 1))

]
+ e3

[
D

1−q3
t (Dq3

t e3(t)) + (Dq3
t e3(t))

(t)−(q3−1)−1

Γ(−(q3 − 1))

]

+ e4

[
D

1−q4
t (Dq4

t e4(t)) + (Dq4
t e4(t))

(t)−(q4−1)−1

Γ(−(q4 − 1))

]

+ ã1 ˙̃a1 + b̃1
˙̃b1 + c̃1 ˙̃c1 + d̃1

˙̃d1 + r̃1 ˙̃r1 + ã2 ˙̃a2 + b̃2
˙̃b2 + c̃2 ˙̃c2

)

=

(
e1

[
D

1−q1
t

(
D

q1−1
t

[
ã1(y1 − x1) − ã2(y2 − x2) − (Dq1−1

t e1(t))
(t)−(q1−1)−1

Γ(−(q1 − 1))
− e1

])
+ (Dq1

t e1(t))
(t)−(q1−1)−1

Γ(−(q1 − 1))

]
+ e2

[
D

1−q2
t

(
D

q2−1
t

[
− (c̃2 − ã2)x2 − c̃2y2 + d̃1x1 + c̃1y1

− (Dq2−1
t e2(t))

(t)−(q2−1)−1

Γ(−(q2 − 1))
− e2

])
+ (Dq2

t e2(t))
(t)−(q2−1)−1

Γ(−(q2 − 1))

]

+ e3

[
D

1−q3
t

(
D

q3−1
t

[
b̃2z2 − b̃1z1 − (Dq3−1

t e3(t))
(t)−(q3−1)−1

Γ(−(q3 − 1))
− e3

])
+ (Dq3

t e3(t))
(t)−(q3−1)−1

Γ(−(q3 − 1))

]
+ e4

[
D

1−q4
t

(
D

q4−1
t

[
r̃1w1 − (Dq4−1

t e4(t))
(t)−(q4−1)−1

Γ(−(q4 − 1))
− e4

])
+ (Dq4

t e4(t))
(t)−(q4−1)−1

Γ(−(q4 − 1))

]
+ ã1 ˙̃a1 + b̃1

˙̃b1 + c̃1 ˙̃c1 + d̃1
˙̃d1 + r̃1 ˙̃r1 + ã2 ˙̃a2 + b̃2

˙̃b2 + c̃2 ˙̃c2

)
.

(3.8)

Now using Lemma 2.1, (3.8) reduces to

V̇ = e1

[
ã1(y1 − x1) − ã2(y2 − x2) − e1

]
+ e2

[
− (c̃2 − ã2)x2 − c̃2y2 + d̃1x1 + c̃1y1 − e2

]
+ e3

[
b̃2z2 − b̃1z1 − e3

]
+ e4

[
r̃1w1 − e4

]
+ ã1

(
− (y1 − x1)e1

)
+ b̃1

(
z1e3

)
+ c̃1

(
− y1e2

)
+ d̃1

(
− x1e2

)
+ r̃1

(
−w1e4

)
+ ã2

(
(y2e1 − (e1 + e2)x2)

)
+ b̃2

(
− z2e3

)
+ c̃2

(
(x2 + y2)e2

)
= −eTe < 0.

Since V is positive definite and V̇ is negative definite in the neighborhood of zero solution of system
equation (3.6), it follows lim

t→∞ ‖e (t)‖ = 0. Therefore system (3.2) can add order synchronize system (3.1)

asymptotically.
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3.1. Numerical simulations
In the numerical simulation, Adams-Bashforth-Moulton method is used to solve the systems. The frac-

tional order is chosen as qi = 0.95, i = 1, 2, 3, 4, and the unknown parameters are chosen as a1 = 35,b1 =
3, c1 = 12,d1 = 7, r1 = 0.5 and a2 = 35,b2 = 3, c2 = 28. The initial values of the fractional-order master
system (3.1), the fractional-order slave system (3.2), and the estimated parameters are arbitrarily chosen
in simulations as (x1(0) = 2,y1(0) = 2, z1(0) = 1,w1(0) = 1), (x2(0) = 3,y2(0) = 4, z2(0) = 5,w2(0) = 5),
and â1(0) = 0.1, b̂1(0) = 0.1, ĉ1(0) = 0.1, d̂1(0) = 0.1, r̂1(0) = 0.1 and â2(0) = 0.1, b̂2(0) = 0.1, ĉ2(0) = 0.1,
respectively. Add order synchronization of the systems (3.1) and (3.2) via adaptive control law (3.4) and
(3.5) are shown in Figs. 1-4. Fig. 1 displays the state trajectories of drive system (3.1) and response sys-
tem (3.2). Fig. 2 (a)-(b) shows that the estimates â1(t), b̂1(t), ĉ1(t), d̂1(t), r̂1(t) and â2(t), b̂2(t), ĉ2(t) of the
unknown parameters converge to a1 = 35,b1 = 3, c1 = 12,d1 = 7, r1 = 0.5 and a2 = 35,b2 = 3, c2 = 28 as
t→∞. Fig. 2 (c) displays the add order synchronization errors of systems (3.1) and (3.2). Fig. 3 shows the
steady-state plane of systems (3.1) and (3.2). Fig. 4 shows that the fractional-order chaotic Chen system is
controlled to be the fractional-order hyperchaotic Chen system.
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Figure 1: State trajectories of master system (3.1) and response system (3.2): (a): Signals x1 and x2; (b): signals y1 and y2; (c):
signals z1 and z2 and (d): signals w1 and w2.
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Figure 2: (a): The error signals e1, e2, e3, e4 of the fractional order hyperchaotic Chen and fractional order Chen systems under
the controller (3.4) and the parameters update law (3.5). (b)-(c): Changing parameters a1,b1, c1,d1, r1 and a2,b2, c2 of the drive
system (3.1) and the response system (3.2) with time t.
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Figure 3: Steady-state plane of the master system (3.1) and slave system (3.2): (a): Signals x1 and x2; (b): signals y1 and y2; (c):
signals z1 and z2 and (d): signals w1 and w2.

Figure 4: Fractional-order hyperchaotic Chen system (solid line) and the controlled fractional-order chaotic Chen system (dotted
line) in x− y− z projection.
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4. Modified adaptive add order anti-synchronization of two different dimensional fractional order
chaotic systems

In order to achieve add order anti-synchronization between the fractional-order hyperchaotic Chen
system and the fractional-order chaotic Chen system, we add (3.2) to (3.1) and obtain

D
q1
t e1(t) = a2(y2 − x2) + a1(y1 − x1) +w1 + u1,

D
q2
t e2(t) = (c2 − a2)x2 − x2z2 + c2y2 + d1x1 − x1z1 + c1y1 + u2,

D
q3
t e3(t) = x2y2 − b2z2 + x1y1 − b1z1 + u3,

D
q4
t e4(t) = y1z1 + r1w1 + u4,

(4.1)

where e1 = x2 + x1, e2 = y2 +y1, e3 = z2 + z1, and e4 = w2 +w1. Our goal is to derive the controller Uwith
a parameter estimation update law such that (3.2) globally and asymptotically add order anti-synchronize
(3.1).

Theorem 4.1. The fractional-order hyperchaotic Chen system can be add order anti-synchronized asymptotically for
any different initial condition with the fractional-order chaotic Chen system with the following adaptive controller:

u1 = −a2(y2 − x2) − a1(y1 − x1) −w1 +D
q1−1
t

[
− ã2(y2 − x2) − ã1(y1 − x1)

− (Dq1−1
t e1(t))

(t)−(q1−1)−1

Γ(−(q1 − 1))
− e1

]
,

u2 = −(c2 − a2)x2 + x2z2 − c2y2 − d1x1 + x1z1 − c1y1 +D
q2−1
t

[
− (c̃2 − ã2)x2

− c̃2y2 − d̃1x1 − c̃1y1 − (Dq2−1
t e2(t))

(t)−(q2−1)−1

Γ(−(q2 − 1))
− e2

]
,

u3 = −x2y2 + b2z2 − x1y1 + b1z1 +D
q3−1
t

[
b̃1z1 + b̃2z2 − (Dq3−1

t e3(t))
(t)−(q3−1)−1

Γ(−(q3 − 1))
− e3

]
,

u4 = −y1z1 − r1w1 +D
q4−1
t

[
− r̃1w1 − (Dq4−1

t e4(t))
(t)−(q4−1)−1

Γ(−(q4 − 1))
− e4

]
,

(4.2)

and parameter update rules

˙̂a1 = (y1 − x1)e1, ˙̂b1 = −z1e3, ˙̂c1 = y1e2, ˙̂d1 = x1e2,

˙̂r1 = w1e4, ˙̂a2 = y2e1 − (e1 − e2)x2, ˙̂b2 = −z2e3, ˙̂c2 = (x2 + y2)e2,
(4.3)

where â1, b̂1, ĉ1, d̂1, r̂1, â2, b̂2, ĉ2 are estimates of a1,b1, c1,d1, r1,a2,b2, c2, respectively.

Proof. Applying control law equation (4.2) to (4.1) yields the closed-loop error dynamical system as fol-
lows:

D
q1
t e1(t) = D

q1−1
t

[
ã2(y2 − x2) + ã1(y1 − x1) − (Dq1−1

t e1(t))
(t)−(q1−1)−1

Γ(−(q1 − 1))
− e1

]
,

D
q2
t e2(t) = D

q2−1
t

[
(c̃2 − ã2)x2 + c̃2y2 + d̃1x1 + c̃1y1 − (Dq2−1

t e2(t))
(t)−(q2−1)−1

Γ(−(q2 − 1))
− e2

]
,

D
q3
t e3(t) = D

q3−1
t

[
− b̃1z1 − b̃2z2 − (Dq3−1

t e3(t))
(t)−(q3−1)−1

Γ(−(q3 − 1))
− e3

]
,

D
q4
t e4(t) = D

q4−1
t [r̃1w1 − (Dq4−1

t e4(t))
(t)−(q4−1)−1

Γ(−(q4 − 1))
− e4

]
,

(4.4)
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where ã1 = a1 − â1, b̃1 = b1 − b̂1, c̃1 = c1 − ĉ1, d̃1 = d1 − d̂1, r̃1 = r1 − r̂1, ã2 = a2 − â2, b̃2 = b2 − b̂2, c̃2 =
c2 − ĉ2. Consider the following Lyapunov function candidate

V =
1
2
(
eTe+ ã2

1 + b̃
2
1 + c̃

2
1 + d̃

2
1 + r̃

2
1 + ã

2
2 + b̃

2
2 + c̃

2
2
)

, (4.5)

then the time derivative of V along the solution of error dynamical system equation (4.4) gives

V̇ = (eT ė+ ã1 ˙̃a1 + b̃1
˙̃b1 + c̃1 ˙̃c1 + d̃1

˙̃d1 + r̃1 ˙̃r1 + ã2 ˙̃a2 + b̃2
˙̃b2 + c̃2 ˙̃c2).

Using Lemma 2.2 in (4.5) we get

V̇ =

(
e1

[
D

1−q1
t (Dq1

t e1(t)) + (Dq1
t e1(t))

(t)−(q1−1)−1

Γ(−(q1 − 1))

]
+ e2

[
D

1−q2
t (Dq2

t e2(t))

+ (Dq2
t e2(t))

(t)−(q2−1)−1

Γ(−(q2 − 1))

]
+ e3

[
D

1−q3
t (Dq3

t e3(t)) + (Dq3
t e3(t))

(t)−(q3−1)−1

Γ(−(q3 − 1))

]

+ e4

[
D

1−q4
t (Dq4

t e4(t)) + (Dq4
t e4(t))

(t)−(q4−1)−1

Γ(−(q4 − 1))

]

+ ã1 ˙̃a1 + b̃1
˙̃b1 + c̃1 ˙̃c1 + d̃1

˙̃d1 + r̃1 ˙̃r1 + ã2 ˙̃a2 + b̃2
˙̃b2 + c̃2 ˙̃c2

)

=

(
e1

[
D

1−q1
t

(
D

q1−1
t

[
ã2(y2 − x2) + ã1(y1 − x1) − (Dq1−1

t e1(t))
(t)−(q1−1)−1

Γ(−(q1 − 1))
− e1

])
(4.6)

+ (Dq1
t e1(t))

(t)−(q1−1)−1

Γ(−(q1 − 1)

]
+ e2

[
D

1−q2
t

(
D

q2−1
t

[
(c̃2 − ã2)x2 + c̃2y2 + d̃1x1 + c̃1y1

− (Dq2−1
t e2(t))

(t)−(q2−1)−1

Γ(−(q2 − 1))
− e2

])
+ (Dq2

t e2(t))
(t)−(q2−1)−1

Γ(−(q2 − 1))

]

+ e3

[
D

1−q3
t

(
D

q3−1
t

[
− b̃1z1 − b̃2z2 − (Dq3−1

t e3(t))
(t)−(q3−1)−1

Γ(−(q3 − 1))
− e3

])
+ (Dq3

t e3(t))
(t)−(q3−1)−1

Γ(−(q3 − 1))

]
+ e4

[
D

1−q4
t

(
D

q4−1
t

[
r̃1w1 − (Dq4−1

t e4(t))
(t)−(q4−1)−1

Γ(−(q4 − 1))
− e4

])
+ (Dq4

t e4(t))
(t)−(q4−1)−1

Γ(−(q4 − 1))

]
+ ã1 ˙̃a1 + b̃1

˙̃b1 + c̃1 ˙̃c1 + d̃1
˙̃d1 + r̃1 ˙̃r1 + ã2 ˙̃a2 + b̃2

˙̃b2 + c̃2 ˙̃c2

)
.

Now using Lemma 2.1, (4.6) reduces to

V̇ = e1

[
ã2(y2 − x2) + ã1(y1 − x1) − e1

]
+ e2

[
(c̃2 + ã2)x2 + c̃2y2 + d̃1x1 + c̃1y1 − e2

]
+ e3

[
− b̃1z1 − b̃2z2 − e3

]
+ e4

[
r̃1w1 − e4

]
+ ã1

(
− (y1 − x1)e1

)
+ b̃1

(
z1e3

)
+ c̃1

(
− y1e2

)
+ d̃1

(
− x1e2

)
+ r̃1

(
−w1e4

)
+ ã2

(
− (y2e1 − (e1 − e2)x2)

)
+ b̃2

(
z2e3

)
+ c̃2

(
− (x2 + y2)e2

)
= −eTe < 0.

Since V is positive definite and V̇ is negative definite in the neighborhood of zero solution of the system
of equations (3.6), it follows lim

t→∞ ‖e (t)‖ = 0. Therefore system (3.2) can asymptotically add order anti-

synchronize system (3.1).
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4.1. Numerical simulations
In the numerical simulation, Adams-Bashforth-Moulton method is used to solve the systems. The

fractional order is chosen as qi = 0.95, i = 1, 2, 3, 4, and the unknown parameters are chosen as a1 =
35,b1 = 3, c1 = 12,d1 = 7, r1 = 0.5, and a2 = 35,b2 = 3, c2 = 28. The initial values of the fractional-order
master system (3.1), the fractional-order slave system (3.2), and the estimated parameters are arbitrarily
chosen in simulations as (x1(0) = 2,y1(0) = 2, z1(0) = 1,w1(0) = 1), (x2(0) = 3,y2(0) = 4, z2(0) =
5,w2(0) = 5), and â1(0) = 0.1, b̂1(0) = 0.1, ĉ1(0) = 0.1, d̂1(0) = 0.1, r̂1(0) = 0.1 and â2(0) = 0.1, b̂2(0) =
0.1, ĉ2(0) = 0.1, respectively. Add order anti-synchronization of the systems (3.1) and (3.2) via adaptive
control law (4.2) and (4.3) are shown in Figs. 5-8. Fig. 5 displays the state trajectories of drive system
(3.1) and response system (3.2). Fig. 6 (a)-(b) shows that the estimates â1(t), b̂1(t), ĉ1(t), d̂1(t), r̂1(t) and
â2(t), b̂2(t), ĉ2(t) of the unknown parameters converge to a1 = 35,b1 = 3, c1 = 12,d1 = 7, r1 = 0.5 and
a2 = 35,b2 = 3, c2 = 28 as t→∞. Fig. 6 (c) displays the add order anti-synchronization errors of systems
(3.1) and (3.2). Fig. 7 shows the steady-state plane of systems (3.1) and (3.2). Fig. 8 shows that the
fractional-order chaotic Chen system is controlled to be the fractional-order hyperchaotic Chen system.
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Figure 5: State trajectories of master system (3.1) and slave system (3.2): (a): Signals x1 and x2; (b): signals y1 and y2; (c): signals
z1 and z2 and (d): signals w1 and w2.
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Figure 6: (a): The error signals e1, e2, e3, e4 of the fractional order hyperchaotic Chen and fractional order Chen systems under
the controller (4.2) and the parameters update law (4.3). (b)-(c) Changing parameters a1,b1, c1,d1, r1 and a2,b2, c2 of the drive
system (3.1) and the response system (3.2) with time t.
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Figure 7: Steady-state plane of the master system (3.1) and slave system (3.2): (a): Signals x1 and x2; (b): signals y1 and y2; (c):
signals z1 and z2 and (d): signals w1 and w2.

Figure 8: Fractional-order hyperchaotic Chen system (solid line) and the controlled fractional-order chaotic Chen system (dotted
line) in x− y− z projection.
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5. Conclusion

In this paper the add order synchronization and the add order anti-synchronization of two different
dimensional fractional-order chaotic systems with fully unknown parameters are investigated. The add
order synchronization and the add order anti-synchronization problem are demonstrated and proved
using rigorous analytical and numerical procedures. This was based upon the parameters modulation and
the adaptive control techniques. The proven techniques were applied to the fractional order hyperchaotic
Chen system (4th-order) with fractional order Chen system (3rd order). The theoretical analysis and
numerical simulations have verified and supported our assumptions.
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