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Abstract

Recently, Kim et al. [D. S. Kim, T. Kim, Ars Combin., 126 (2016), 435-441], [D. S. Kim, T. Kim, J. Nonlinear Sci. Appl.,
9 (2016), 443-451], [T. Kim, D. S. Kim, H.-I. Kwon, Filomat, 30 (2016), 905-912] and [T. Kim, D. S. Kim, H.-I. Kwon, J.-J. Seo,
D. V. Dolgy, J. Nonlinear Sci. Appl., 9 (2016), 1077-1082] studied symmetric identities of higher-order degenerate g-Euler
polynomials. In this paper, we define the modified higher-order degenerate g-Euler polynomials and give some identities for
these polynomials. Also we give numerical investigations of the zeroes of the modified higher-order g-Euler polynomials and
the zeroes of the modified higher-order degenerate g-Euler polynomials.

Furthermore, we demonstrate the shapes and zeroes of the modified higher-order gq-Euler polynomials and the modified
higher-order degenerate q-Euler polynomials by using a computer. (2017 All rights reserved.

Keywords: Identities of symmetry, modified q-Euler polynomials, modified higher-order degenerate g-Euler polynomials.
2010 MSC: 11B68, 11580, 05A19, 05A30.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Z,, Q,, and C,, denote the ring of p-
adic integers, the field of p-adic rational numbers, and the completion of the algebraic closure of Q,,
respectively. We normalized the p-adic norm as [pl, = %. Let q be an indeterminate in C,, such that
1—qlp < p*ﬁ and the g-analogue of the number x is defined as [x]q = %. Note that limq_,1[x]q = x.

Let f(x) be a continuous function on Z,. Then, the p-adic g-integral on Z, is defined by Kim et al.
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(see [11-13, 18, 20]) to be

1 P
Lalf) = | i) = Jim —— 3 x)(-q)* = 5

N—o0 [pN]_q

where [x]_4 = 1==4)" Note that

1+q
pN—1
lim jzp i le) = fim 3 101" = sz Fx)dn 1 (%) 12)

is the ordinary fermionic p-adic integral on Z, (see [2, 4, 5,9, 14,17, 19, 22, 25, 26]). From (1.1), we have
ql_q(f1) +1_4(f) = [2]4f(0), where fi(x) = f(x +1). (1.3)

From (1.2), we have
[_4(f1) +1_1(f) =2f(0), where fi(x)=f(x+1). (1.4)

Recall that the Carlitz’s q-Euler numbers are defined by the p-adic g-integral on Z, as follows:
J Xlgrdi—q(x) = Em,q (see [10, 12]).
Z'P

From (1.3) with f(x) = [x]g", we can derive

qJ [X+1]Hldpq(x)+J [x]?duq(x):{

z, z,

We note that

_oaxHI\ ™ m
x+1g = <11_qq ) —(1+q[x]q)m—z<nll>ql[x]h (1.5)
1=0
and hence
J x+1grdp—q(x) = Z (T)qu [X]hdu_q(x) = Z <T>q181,q =(q€q+1™ (1.6)
z, 1=0 Zp 1=0

Combining (1.6) and (1.3), the Carlitz’s g-Euler numbers &, q satisfy as follows:

2]q, ifm=0,

Eq+ 1) +Emq =
q(d€q +1) A {o, if m >0,

with the usual convention about replacing 831 by Em,q, (see [1, 3-5, 8]).
Then, the modified g-Euler numbers E,;,,  are defined by Kim et al. (see [8, 12, 23]) as follows:

| wpawa —Ena
Z

P
From (1.5), we have

m

J x+UTdp(x) =)

Zy 1—

0

(T{L)quzp Mgdu1(x) =) <T>q1ELq = (qEq +1)™ (1.7)



L.-C. Jang, et al., ]. Nonlinear Sci. Appl., 10 (2017), 2524-2538 2526

Combining (1.7) and (1.4), the modified g-Euler numbers E,,  satisfy the followings:

2, ifm=0
Eq+1)™+E =7 ! 1.8
(4Bq +1) A {0, if m > 0. (18)

It is well-known that the Euler numbers are defined by the generating function

2 —eEt—iEi 1.9
et+1 _n:O Tt (1.9)

with the usual convention about replacing E™ by E,. From (1.9), we have

(o) tn

2=cF(e' + 1) =Pt peft =) ((E+1)"+En) —.

n!

n=0
Thus, we have
2, ifn=0

E+1)"4+E, =< ! 1.10
( ) " {0, if n> 0. (1.10)

We note that limgq_,1 E q = En and that if q approaches to 1, then the equation (1.8) is equal to the
equation (1.10).

The purpose of this paper is to define the modified higher-order degenerate q-Euler polynomials
which are defined from fermionic p-adic integral on Z, and to give some explicit identities for those

polynomials. Furthermore, we demonstrate the shapes of the modified higher-order g-Euler polynomi-

(r)

als EEIT, 21 (x) and the modified higher-order degenerate g-Euler polynomials E, ) .

(x) (see Figure 1) and

investigated the zeroes of Eg’ 2] (x) and g

nq (%) by using a computer.

2. The modified higher-order degenerate q-Euler polynomials

Let r € N and A, t € C be such that [At], < p*ﬁ. We note that if we take f(x) = e*!, then, by (1.4),
we have

2

. = 14, 16,17, 19]).
sze dial0) = <5, (see [14,16,17,19] 2.1)

By (2.1), we have

J J e(xﬁxﬁmﬂr)tdu1(X1)"'du1(Xr)=J exltdul(xl)"'J e*tdp_q(xy)
z z z

P P Zy P

T-times (2 .2)

_ 2 T:iE(T)i
et +1 "ol

n=0

where Eg ) are called the higher-order Euler numbers (see [15, 19, 26]). We also note that

J J e(xiHxt Xt gy () dp g (xy)
z, Jz,

r-times
o (2.3)

:ZJ J (a4 +xe) o (xa) - - dpea (xe) -
n=02%r  Zp n
—_———

r-times

From (2.2) and (2.3), we obtain the following theorem.
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Theorem 2.1. Let n € N U{0}. Then we have

Eg):J J (x1 4+ +x)"du_1(x1) - - dp_q (xr).
Z Z

P P

r-times

In [11], the modified higher-order g-Euler numbers are defined by Kim to be

EY) :J J X1 +x2+ -+ xlgdp—i(x1) - - dpq (xr).
z, Jz,
~———

T-times

The next diagram illustrates the variations of several types of degenerate g-Euler polynomials and
numbers. Those polynomials in the first row and the third row of the diagram are introduced by Carliz
et al. [1, 3-5, 8] and Kim et al. [12, 18, 20], respectively. A research of these has yielded fruitful results in
number theory and combinatorics (see [6, 7, 21, 24]). The motivation of this paper is to investigate some
explicit identities for those polynomials in the second row of the diagram.

[xq+xp+-+xr+xlg

Iz (1+?\t) L g (y) Jz, - Iz, A+M) A dp g (xa) - dpg (%)
_anogn,)\,q( );1 ) _— _Zn Ogn?\q( )t
(degenerate g-Euler polynomials) (higher-order degenerate q-Euler polynomials)
(see [12, 18, 20]) (see [12, 18, 20])
[x]+xg++xr+x]
[z, 1+A0 "% dus (y) [z, [z, 0+M) "% dua(xa) - dua ()
o _Zn 0En7\q( )t . _Zn OEn;\q( )t"
(modified degenerate g-Euler polynomlals) (modified higher-order degenerate q-Euler polynomials)
fzp el tulatdp 4 (y) fzp "'fzp ebattxetxlatay g (xq) - dpg ()
D Ry I = TN By (0L
(modified g-Euler polynomials) (modified higher-order g- Euler polynomials)
(see [8, 12, 23]) (see [8, 12, 23])

Recently, Kim defined the higher-order degenerate q-Euler polynomials given by the generating func-
tion (see [18, 20]) as follows:

e
.

r-times

[xq+xp+- +xr+x]q

dp— q(Xl) ~dp—gq (x+) Zg ") q
n=0

Accordingly, we define the modified higher-order degenerate q-Euler polynomials given by the generating

function as follows:

1 tTl.
L. 14+ At~ [x1+-4xr+x]g - . - — E(r) -
J, ], o i) a0 = 3BT 04
—_— =
T-times

Note that limy_,q En A q( X) = F—‘EIT; 24 (x), where EE{ 21 (x) are the higher-order g-Euler polynomials.
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We observe that

Me

(14 At)rDatxetxlg — <ix1+ +X*+X]q>7\“t“

3
g}

n

}\ n
X1+"'+X‘r +X]q) Ft
n

>

HHg

3
g

(
(% X1+ - —f—xr—l—x]q)<%[x1+---+xr+x]q —1)

H'm

3
g

tn (2.5)
n!

> =

X1+ xe X n+1>)\“

([x1 +xz+-~+xr+x]q)([x1 +x2 4+ % +xlg —?\)

r'%g;

3

Il
/‘\O

tT‘L
X1 +x2+ -+ %X +X]qg (n—1)7\>ﬁ

tTl
n,A n! !

o0
=) ([x1 +X2+"'+Xr+X]q)
n=0

where ([x]q) = Xlg(Xlqg =A)([xlq —=2A) - - - ([x]g — (n — 1)A). By (2.4), we have

n,

JZ JZ (1+}\t)’1\ X1+ xr+x] qdufl(xl)"'dufl(xr)
P

P

H—/
T-tlmois (26)
t‘I’L
= Z J - J ([Xl +x2+ Xy +X]q> dp—1(x1) - dp1 (%) —
=0 %p Zy A n
—_——
T-times
Using (2.4) and (2.6), we obtain the following Witt’s formula.
Theorem 2.2 (Witt’s formula). For n € IN U{0}, we have
(r)
. Xy - coedu_1(x) = E .
sz sz ([x1 +xo 4+ X +x]q>mdu 1(x1) - dp—g(xr) = B 3 (%) @7
T-times
We observe that
n
([Xl x4+ Xy +X]q)n,7\ = Z Si(m, UAY Yxg +x0 + -+ -+ %r —i—X]}], (2.8)

1=0
where S1(n, 1) is the Stirling numbers of the first kind. By (2.7) and (2.8), we have

Eif,)x,q(x) = JZ "'JZ ([Xl +X2+ Xy +x]q)n)\du,1(x1) coedpp(xy)

P P
T-times
n
= Z Sp(n, HAnt J : J D1 %2+ 4% +xlgdpo1 () - dpo ()
1=0 Zy Zy
~—_——
r-times

n
=Y SinUA™ 'Eq(x).
1=0

Thus, we obtain the following theorem.
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Theorem 2.3. For n € IN U{0}, we have

n
g = S, AN ().
1=0

rm

Remark that limy_,q En;\ q( x) = Eg, )q (x) are the modified higher-order q-Euler polynomials and that

limg_ En,q (x) = EY (x) are the higher-order Euler polynomials. We note that

1 l N—o00 - 0
B i n 1+ qlp
B ( n 1 N~>oo 1+ q
1=0
o/
1=0
m:0 1=0
=2y (—1)‘“([qu)
m=0
Summarizing this, we have the following equation.
Theorem 2.4. For n € IN U{0}, we have
En q _J [ ]ndu 1 Z
Zy m=0

For r € IN, we derive

Zy Zyp
T-times
1 n
:() J J (T=g ) dp g (xq) - - dpa (xr)
]._q Zy Zy

T-times

I
N
—_
[ ]| =
e}
N—
3
_
LM=
N
- =
N————

_1)1J J qUat et Ilqy g (xq) - dpg (xr)
z, Jz,
—

T-times

n pN—1
- (11q)nZ®(_”L (1&5“00 2 (1)*l*"'*"fq‘*l+"'“*r> q™ (29)

X1 X =0
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1 ~ /n 2 2 2
- - —1 1 A x
(1—q)“§)<1>( ) <1+q‘> <1+q1> <1+q‘>q
n i( > (_1)m1+~~—|—mrqlm1+-~-+lmrqlx
1=0 ,mT:O

= (1_2q)n Z ( 1)TT11+ My Z (T) (—1)Lq1(m1+m2+'“+mr+x)

0]

— T Z (—1)m1+"'+mr[m1+-~'+mr+xn}.

myq,---,mye=0
By (2.9), we obtain the following theorem.
Theorem 2.5. For n € IN U {0}, we have

Eng(x)=2" > (=)™ iy 4 pmy X3, (see[8, 12, 23]).

my,,my=0

Theorem 2.6. For wi,wyp,--- ,wn € N with wi = 1 (mod 2), (i = 1,2,---,n), and m > 0, the following
expressions

= v (P ymop Womyla  \P "
p=01i=0 [T wois)] q
X & qWol1) Vo) Won-1) (Wo(n)X)T(p)Wg(n) Woy,  Wom-1)lt+1)

n,qgq

are the same for any permutation o in the symmetry group of degree n.

3. The modified higher-order degenerate q-Euler polynomials and the higher-order q-zeta functions

In [11, 12], Kim introduced the generating function of the higher-order q-Euler polynomials. From the
generating function of the higher-order g-Euler polynomials, we have

%) . t
=Y Eny(0=
n=0
00 00 m
:2T Z (_1)m1+---+mr Z[m1++mT+X}HF (31)
myq,--,my=0 n=0
— 9T Z (_1)m1+-.~+mre[m1+~..+mr+>dqt’ (see [12, 18, 20]).
m1,~~-,mr=0
From (3.1), Kim [11] defined the higher-order q-zeta functions as follows:
(r) L [*em s—1
x)=— | Fq'(x,—t)ts7ldt, 2
(s = L ) (x, 1) (3.2)
where I'(s) = fgo y*le Ydy. By (3.1) and (3.2) we derive
(r) _ 1 ., = my+-+m ~ —[my+-4metx]qtes—1
Gl (s,x) = =—=2 (—1)™ TJ e ' att3Tidt
£ rs) . Z ~ 0 0
2 - ot 1 * 1
= 1 mpT- My S— —yd
Ms) Z ( ) [ma 4+ my X L voew (33)

o0

— T Z (_1)m1+---+mT

my,-,my=0

1
[my + -+ my ]
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By (3.3), we obtain the following theorem.
Theorem 3.1. For r € IN, s € C with Re(s) > 0, we have

D=2y —CUMTTY e, 12)
Eaqt [my+ -+ my +x]§ T

my,-,me=0

For s,x € C with Re (x) >0, ay,---, a, € C, the Barnes-type multiple g-zeta functions are defined by
Kim [12] as follows:

(r) ' . o (_1)m1+~~~+mrqm1a1+~~-+mrar
CE/q(SIX|W1/"' yWre, A1, /aT‘) =2 Z
my, ,my=0

[ +wimg + -+ wemg]§

where the parameters wy, - - - , W, are positive. Note that Cg()q (s,x/1,---,1,0,---,0) = Cg; (s,x).
By (3.1), we have

C(T) (S, X) — L JOO F(T)(X, _t)tsildt — L i E_E:;) (X) (_1)m Jw tsflerdt. (34)
ba Ms)Jo Ms) &= ™9 T g
Let s = —n (n € IN). Then, by (3.4), we have
ore (1) 1)‘“ ® neitm
Cp g (- 1) —ngnr ) Z_OE q(x Jo t dt
n
(L““ ) ) <E L )27“ )
S n
e 0 S o — £
Zm na X n! - nalx

© d\" 1 1
MN—m) = J “t 14t = lim 2ml — ) (t"e v ) =2mi—(—1)" lime ' = 27— (—1)™.
0 t—=0 dt n! t—=0 n!

By (3.5), we obtain the following theorem.
Theorem 3.2. For n € IN, we have
CE (=, x) = g (%), (see [12]).

From Theorem 2.3 and Theorem 2.5, and (2.8), we have

> (=™ Iy e my xSy DA
-,m

1=0 m, +=0
(3.6)
o0 n
=2" ) (=)™ Y g 4 my xS (n, DA
my,-,my=0 1=0

By (3.6), we obtain the following theorem.
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Theorem 3.3. For n € IN U{0}, we have

o
B g =27 Y (-pymtetm ([ml o my +x]q) K 3.7)
my, -, my=0 i
Applying (3.7) and using (2.5), we have
N b, n,
Z En,?\,q (x)F —or Z (_1)m1+ +m Z -
n=0 my,- My =0 n=0 (3.8)
— 2T Z (_1)m1++mr (1 + )\t) 4[‘n1+'“4;\mr+><]q
my, -, my=0
By (3.8), we obtain the following theorem.
Theorem 3.4. For r € IN, we have
s tn s [mq+--+mr+xlg
Erag(g=2" Y (CD™Iaaay T (3.9)
n=0 myq,---,my=0
Replacing t by +(e* —1) in (3.9), and by using (3.1), we have
0 . A—m At 1™ 0 o0 tn
Z E](“,))\,q (X) (em' ) — 21‘ Z (_1)m1+...+mre[m1+4..+mr+x]qt — Z E'E’]:zq (X) F/
m=0 ’ my, -, my=0 n=0 ’
and
i AR L S i BT oAy i Sa(n, mAT -
mAq m! B mAd m! 2 n!
m=0 m=0 n=m
© n . (3.10)
=3 3 avmEl) (S, m) .
n=0m=0
By (3.10), we obtain the following theorem.
Theorem 3.5. For n € IN U{0}, we have
n
Eng() =Y A"TMENL (x)Sa(n,m).
m=0
By replacing t by +log(1+At) by in (3.9), and using (3.8), we have
[e¢) m o o
Z E'Er:,)q (X)?\im (]Og(l]:;)\t)) — Z or Z (_1)m1+---+mre[m1+---+mr+x}%log(1+7\t]
m=0 m=0 my,--,my=0
- i 2" i (—1)matm Glog(14AL) XMt mr g
mo:O my, Oomrfo (311)
_ Z or Z (_1)m1+.,-+mr(1+}\t)%[m1+--.+mr+x}q
m=0  my,--,m;=0
= Z ET:}\ q (X)Hl
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and
= __(log(1+At))™ _ 0 AT
S e borm BLEAIT 57 e ponm 3 s, m) Y
m=0 m: 0 n=m :

(3.12)

n

(Z AT mqu x)S1(n, m)) :T'

By comparing the coefficients of (3.11) and (3.12), we obtain the following theorem.

M8ﬁl\’l8

n=0

Theorem 3.6. For n € IN U{0}, we have
Z AT mqu x)S1(n, m).

4. Zeroes of the modified higher-order q-Euler polynomials and the modified higher-order degenerate
g-Euler polynomials

This section aims to demonstrate the benefit of using numerical investigation to support theoretical
prediction and to discover new interesting pattern of the zeroes of the modified higher-order g-Euler

polynomials Eg, 21( ) and the modified higher-order degenerate g-Euler polynomials En Aq(X). We dis-

play the shapes of the modified higher-order g-Euler polynomials En,q (x) and the modified higher-order

degenerate gq-Euler polynomials E(T;\ q(x). Next we investigate the zeroes of the modified higher-order

g-Euler polynomials Eg, L( ) and the modified higher-order degenerate q-Euler polynomials En Aq(X)-
Let q € C,[ql < 1. Forn =1,---,10, we can draw a plot of the modified h1gher—order g-Euler polyno—

mials Eg, q(x) and the modified hlgher—order degenerate q-Euler polynom1als En }\ q(x), respectively. This

shows the ten plots combined into one. We display the shape of En,)\, q(x) and En,q( x), =5 < x < 5 (Figure
1).

10000

\ 1 5000
\

I / ‘ ] [
f f /
500000~ | | - I - /
[ 5000 [ - 5000 [
] f

I 1 1
I L i
_ B 2

Figure 1: Curve of the ES;\ q (x) and Ef{"é (x).

In Figure 1 (left), we choose r = 5, A = 1/2 and q = 1/2. In Figure 1 (middle), we choose r = 5,
A = 1/10000 and q = 1/2. In Figure 1 (right), we choose v = 5 and q = 1/2. It is obvious that, by

letting A tend to 1 from the curve of ET(: ;\ q (x) of left side, we lead to the curve of the ng, )q (x). By using

computer, the modified higher-order g-Euler numbers Eg, )q and the modified higher-order degenerate
g-Euler numbers E(") are listed in Table 1.

We investigate the beautiful zeroes of the modified higher—order g-Euler polynomials EE: )q (x) and the
modified higher-order degenerate q-Euler polynomials En Aq(x) by using a computer. We plot the zeroes

n)\q
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of the modified higher-order g-Euler polynomials Eg, 24 (x) and the modified higher-order degenerate g-
Euler polynomials ) (x) for n =50,q =1/2 and x € C (Figure 2).

A, q
Table 1: The first few Eg, 21 and EEI, ;\ q-
Efng Erag
degree n q=1/2,r=5 q=1/2,r=5A=1/10
0 1 1
1 —1562/243 —1562/243
2 9287996,/759375 10264246,/759375
3 3037448168/184528125 4674974089/922640625
4 —1425517528162096,/262003549978125 —240516181113919276,/6550088749453125
2r 2 /
Im(x) 0O Im(x) 0 0000 L 2
2 -2 \.
Re(x)
20 ,’. 1 2 /
Imx) 0 \ 00 & L : Imx) 0 0 0 ¢ L
2k \. E -2 \.
_710““7‘5““0““5‘““”] _(110“"7‘5““0““‘5““]0
Re(x) Re(x)

Figure 2: Zeroes of Eg;\ q (x) and Eg)q (x).

In Figure 2 (top-left), we choose n = 50,q = 1/2, and A = 1/100. In Figure 2 (top-right), we choose
n =>50,q =1/2 and A = 1/1000. In Figure 2 (bottom-left), we choose n =50, q = 1/2 and A = 1/10000. In
Figure 2 (bottom-right), we choose n =50,q =1/2 and A — 0.

Stacks of zeroes of the modified higher-order g-Euler polynomials Eg’ 21 (x) and the modified higher-

(r)

order degenerate g-Euler polynomials E, ) .

Figure 3.

(x) for 1 < n < 40 from a 3-D structure are presented in
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(T)
nA,q

Figure 3: Stacks of zeroes of E (x) and EE{Q (x) for 1 < n < 40.

In Figure 3 (left), we choose 1 < n < 40,q = 1/2 and A = 1/10. In Figure 3 (right), we choose
1<n<40,q=1/2,and A — 0.

It was known that Eg, L (x),x € C, has Im(x) = 0 reflection symmetry analytic complex functions, (see

(r)

[12]). However, we observe that ELA q

functions (Figures 2 and 3).

Our numerical results for approximate solutions of real zeroes of the modified higher-order q-Euler

polynomials Eg, Zq(x) and the modified higher-order degenerate g-Euler polynomials EE:/ ;\ q(x) are dis-

played in Tables 2, 3, and 4. We observe a remarkably regular structure of the complex roots of the

(x),x € C, has not Im(x) = 0 reflection symmetry analytic complex

modified higher-order g-Euler polynomials Eg, )q (x) and the modified higher-order degenerate q-Euler
polynomials Eg, ;\ q(x) are displayed in Table 2. We hope to verify a remarkably regular structure of the
complex roots of the modified higher-order g-Euler polynomials Eﬁf, )q (x) and the modified higher-order

degenerate q-Euler polynomials Eg’ ;\ q (x) (Table 2).

Table 2: Numbers of real and complex zeroes of E](f ;\ q (x) and Eg/ 2] (x).

E£15,)1/1o,1/2 (x) ES,)l/z (x)
degree n | real zeroes complex zeroes | real zeroes complex zeroes
1 1 0 1 0
2 2 0 2 0
3 3 0 3 0
4 3 1 4 0
5 4 1 3 2
6 3 3 4 2
7 4 3 5 2
8 4 4 4 4
9 5 4 5 4
10 3 7 4 6

Plot of real zeroes of Eff’ ;\ q (x) and E1(1T, 14 (x) for 1 < n < 40 structure are presented in Figure 4.
In Figure 4 (left), we choose r = 5, A = 1/10 and q = 1/2. In Figure 4 (middle), we choose r = 5,
A =1/1000 and q = 1/2. In Figure 4 (right), we choose r =5 and q = 1/2. It is obvious that, by letting A

tend to 1 from the real zeroes of E\™

A (x) of left side, we lead to the real zeroes of the E,(f, 21 (x).
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Next, we calculated an approximate solution satisfying E

Figure 4: Real zeroes of the EE:;\ q (x) and E%ﬂq (x).

results are given in Tables 3 and 4.

(r)

Table 3: Approximate solutions of ES)}\ q (x)=0,q=1/2,A=1/10,x € R.

| degree n | X ‘
1 2.07519
2 0.674416, 2.86795
3 -0.0853565, 1.46616, 3.59324
4 -0.507236, 0.0495496, 1.56211, 3.60538
5 0.064954, 1.2468, 2.5000, 3.7532, 4.9350
6 0.642491, 2.23658, 4.2821
7 -0.00924544, 1.3286, 3.12019, 8.46041
8 -0.422343, 0.65015, 2.17641, 4.17786

Table 4: Approximate solutions of £ (x)=0,g=1/2,x € R.

A q
| degreen || X
1 2.07519
2 0.601538, 2.78882
3 -0.29846, 1.19492, 3.25392
4 -0.707974, 0.0540258, 1.61452, 3.60212
5 0.380137, 1.93959, 3.88122
6 -0.577628, 0.651902, 2.20503, 4.1144
7 -0.820786, -0.396232, 0.88272, 2.42936, 4.31478
8 -0.201325, 1.08272, 2.6236, 4.49051

n’)\,q(x) =0, Eg,)q (x) =0, and x € R. The

Finally, we shall consider the more general problems. How many zeroes does ET(: )q (x) have? Prove

or disprove: Eﬁf, )q(x) = 0 has n distinct solutions. Find the numbers of complex zeroes C

ET(I,)q (x),Im(x) # 0. Since n is the degree of the polynomial ET({)q(x)
lying on the real plane Im(x) = 0 is then R_

See Table 2 for tabulated values of R_-

En/)q (x

)

4 (x)

, where C_,

ELL(

of

x)

, the number of real zeroes R_ (x)
n,q

9 denotes complex zeroes.
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5. Conclusions

Kim et al., [17-20] studied some identities of symmetry on the higher-order degenerate g-Euler poly-
nomials. The motivation of this paper is to investigate some explicit identities for the modified higher-
order degenerate g-Euler polynomials in the second row of the diagram at page 4. So we defined the
modified higher degenerate g-Euler polynomials in the equation (2.4) and obtained the formulas (see
Theorems 2.2-2.5). We also obtained the explicit identities related with the modified higher-order degen-
erate q-Euler polynomials and the higher-order g-zeta functions (see Theorems 3.1-3.6).

Finally, we demonstrated the comparing three facts between modified higher-order g-Euler polyno-

mials EEIT, )q (x) and modified higher-order degenerate q-Euler polynomials EEI, ;\ q (x) as follows:

(1) We displayed the shape of Eg, )q (x) and E\")

A q
(r)
and En)\, q

(x) (see Figure 1) and investigated the zeroes of Eg, 1] (x)
(x) by using a computer (see Figure 2 and Table 1).

(2) We presented stacks of zeroes of EE{ )q (x) and £l

n,q(X) for T <m <40 from a 3-D structure (see Figure

3) and verified a regular structure of the complex roots of Eg{ 24 (x) and ES ; q
Table 2).

(3) We calculated an approximate solution satisfying Eg, 21 (x) =0, Eg’ ;\ q (x) =0, and x € R (see Tables
3-4).

(x) (see Figure 4 and
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