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Abstract
Recently, Minak and Altun introduced the notions of multivalued weak contractions and multivalued weakly Picard opera-

tors on partial metric spaces. They also obtained two fixed point theorems with the notions of multivalued (δ,L)– weak contrac-
tions and multivalued (α,L)-weak contractions. In this paper, we introduce the notion of generalized multivalued (f,α,β)-weak
contraction on partial metric spaces. We also establish some coincidence and common fixed point theorems. Our results extend
and generalize some well-known common fixed point theorems on partial metric spaces. c©2017 All rights reserved.
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1. Introduction and preliminaries

In recent years, many works on domain theory have been made in order to equip semantics domain
with a notion of distance. In particular, Matthews [18] introduced the notion of a partial metric space
as a part of the study of denotational semantics of dataflow networks. They generalized the concept
of a metric space in the sense that the self-distance from a point to itself need not be equal to zero.
They are useful in modeling partially defined information, which often appears in computer science. In
literature [18], the contraction fixed point theorem is extended to partial metric spaces. This highlights
an additional feature: the fixed point has self-distance 0, which although trivial in metric spaces can be
useful for reasoning about posets found in computer science. In the context of computer science where a
computable function can also be proved to be a contraction, the partial metric extension of the contraction
fixed point theorem can be used to prove that the unique fixed point, which is the programs output,
will be totally computed [18]. Further applications of partial metrics to problems in theoretical computer
science were discussed in [11, 12, 25, 26, 28, 29].

We start with recalling some basic definitions and lemmas on partial metric spaces. The definition of
a partial metric space is given by Matthews [18].
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Definition 1.1. Let X be a nonempty set, a function p : X×X→ R+ is called a partial metric if and only if
for all x,y, z ∈ X:

(p1) x = y⇔ p(x, x) = p(x,y) = p(y,y);
(p2) p(x, x) 6 p(x,y);
(p3) p(x,y) = p(y, x);
(p4) p(x, z) 6 p(x,y) + p(y, z) − p(y,y).

A partial metric space is a pair (X,p) such that X is a nonempty set and p is a partial metric on X. It is
clear that if p(x,y) = 0, then from (p1) and (p2), x = y. But if x = y, p(x,y) may not be 0. A basic example
of a partial metric space is the pair (R+,p), where p(x,y) = max{x,y} for all x,y ∈ R+. Other examples of
partial metric spaces which are interesting from a computational point of view may be found in [31, 32].

Each partial metric p on X generates a τ0 topology τp on X which has as a base the family of open
p-balls {Bp(x, ε) : x ∈ X; ε > 0}, where {Bp(x, ε) = {y ∈ X : p(x,y) < p(x, x) + ε} for all x ∈ X and ε > 0.

From this fact it immediately follows that a sequence {xn} in a partial metric space (X,p) converges to
a point x ∈ X with respect to τp if and only if p(x, x) = lim

n→∞p(x, xn). According to [18], a sequence {xn}

in a partial metric space (X,p) converges to a point x ∈ X with respect to τps if and only if

p(x, x) = lim
n→∞p(x, xn) = lim

n,m→∞p(xm, xn). (1.1)

Following [18], a sequence {xn} in a partial metric space (X,p) is called a Cauchy sequence if there exists
lim

n,m→∞p(xn, xm). A partial metric space (X,p) is said to be complete if every Cauchy sequence {xn} in X

converges, with respect to T(p) to a point x ∈ X such that p(x, x) = lim
n,m→∞p(xn, xm).

It is easy to see that every closed subset of a complete partial metric space is complete.
If p is a partial metric on X, then the functions ps,pw : X×X→ R+ given by

ps(x,y) = 2p(x,y) − p(x, x) − p(y,y),

and
pw(x,y) = p(x,y) − min{p(x, x),p(y,y)}, (1.2)

are equivalent metric on X.

Lemma 1.2 ([18]). Let (X,p) be a partial metric space.

(1) {xn} is a Cauchy sequence in (X,p) if and only if it is a Cauchy sequence in the metric space (X,ps).
(2) A partial metric space (X,p) is complete if and only if the metric space (X,ps) is complete. Furthermore

lim
n→∞ps(a, xn) = 0 if and only if p(a,a) = lim

n→∞p(a, xn) = lim
n,m→∞p(xn, xm).

In [18], Matthews obtained a partial metric version of the Banach fixed point theorem. Afterward,
Acar et al. [1, 2], Altun et al. [4, 5, 7, 8], Karapinar and Erhan [17], Oltra and Valero [21], Romaguera
[22, 23] and Valero [31], gave some generalizations of the result of Matthews. Also, Ciric et al. [13], Samet
et al. [27] and Shatanawi et al. [30] proved some common fixed point results in partial metric spaces.
But so far all of fixed point theorems have been given for single-valued mappings. To prove Nadler’s [20]
fixed point theorem for multivalued maps on partial metric spaces, Aydi et al. [9] introduced the concept
of partial Hausdorff distance a parallel manner to that in the Hausdorff metric in their nice paper. Then,
they give some properties of partial Hausdorff distance, some important lemmas and a fundamental fixed
point theorem for multivalued mappings. We can find some nice fixed point results for single-valued and
multivalued maps on partial metric space in [3, 15, 19, 24, 32].

In the following, we recall the concept of partial Hausdorff distance and some properties: Let (X,p) be
partial metric space and A ⊆ X, then A is said to be bounded if there exist x0 ∈ X and M > 0 such that for
all a ∈ A, we have a ∈ Bp(x0,M), that is, p(x0,a) < p(a,a) +M. A is closed if and only if A = A, where
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A is the closure of A with respect to τp (τp is the topology induced by p). Let CBp(X) be the family of all
nonempty, closed and bounded subsets of (X,p). For A,B ∈ CBp(X) and x ∈ X, define

P(x,A) = inf{p(x,a) : a ∈ A}, δp(A,B) = sup{P(a,B) : a ∈ A},

and
Hp(A,B) = max{δp(A,B), δp(B,A)}.

Lemma 1.3 ([9]). Let (X,p) be a partial metric space, A ⊆ X and x ∈ X. Then x ∈ A if and only if P(x,A) =
p(x, x).

Proposition 1.4 ([9]). Let (X,p) be a partial metric space. For any A,B,C ∈ CBp(X), we have the following:

(1) δp(A,A) = supa∈A p(a,a);
(2) δp(A,A) 6 δp(A,B);
(3) δp(A,B) = 0 implies A ⊆ B;
(4) δp(A,B) 6 δp(A,C) + δp(C,B) − infc∈C p(c, c).

Proposition 1.5 ([9]). Let (X,p) be a partial metric space. For any A,B,C ∈ CBp(X), we have the following:

(1) Hp(A,A) 6 Hp(A,B);
(2) Hp(A,B) = Hp(B,A);
(3) Hp(A,B) 6 Hp(A,C) +Hp(C,B) − infc∈C p(c, c).

Remark 1.6. An example is given by Minak and Altun in [19] that Hp(A,A) = Hp(A,B) = Hp(B,A), but
A 6= B. That is, Hp is not a partial metric on CBp(X). Nevertheless, as shown in [9]. we have the following
property:

Hp(A,B) = 0 implies A = B.

Also, it is easy to see that for all A ∈ CBP(X)

P(a,B) 6 δp(A,B) 6 Hp(A,B).

The following lemma is very important to give fixed point results for multivalued maps on partial
metric space.

Lemma 1.7 ([9]). Let (X,p) be a partial metric space, A,B ∈ CBp(X) and h > 1. For any a ∈ A, there exists
b = b(a) ∈ B such that p(a,b) 6 hHp(A,B).

Lemma 1.7 can be expressed with the following version.

Lemma 1.8 ([10]). Let (X,p) be a partial metric space, A,B ∈ CBp(X) and ε > 0. For any a ∈ A, there exists
b = b(a) ∈ B such that p(a,b) 6 Hp(A,B) + ε.

Using the partial Hausdorff distance Hp, Aydi et al. [9] proved the following fixed point theorem for
multivalued mappings.

Theorem 1.9. Let (X,p) be a complete partial metric space. If T : X→ CBp(X) is a mapping such that

Hp(Tx, Ty) 6 kp(x,y),

for all x,y ∈ X, where k ∈ (0, 1), then T has a fixed point.

The following theorem is a generalized version of Theorem 1.9, which is given by Altun and Minak in
literature [6].

Theorem 1.10. Let (X,p) be a complete partial metric space and let T : X → CBp(X) be a multivalued map.
Assume

Hp(Tx, Ty) 6 α(p(x,y))p(x,y),

for all x,y ∈ X, where α is an MT-function (that is, it satisfies lim sups→t+ α(s) < 1 for all t ∈ [0,∞)). Then T
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has a fixed point.

In literature [19], Minak and Altun generalized above theorems as follows:

Theorem 1.11. Let (X,p) be a complete partial metric space and T : X→ CBp(X) be a multivalued map such that

Hp(Tx, Ty) 6 kp(x,y) + LPw(y, Tx),

for all x,y ∈ X, where k ∈ (0, 1), L > 0 and Pw(y, Tx) = inf{pw(y, z) : z ∈ Tx}. Then T has a fixed point.

Theorem 1.12. Let (X,p) be a complete partial metric space and let T : X → CBp(X) be a multivalued map such
that there exist an MT-function α and a constant L > 0 satisfying

Hp(Tx, Ty) 6 α(p(x,y))p(x,y) + LPw(y, Tx),

for all x,y ∈ X. Then T has a fixed point.

Recently, Huang et al. [16] gave two more general results on a partial metric space.

Theorem 1.13. Let (X,p) be a partial metric space, f : X→ X and T : X→ CB(X) be a multivalued map such that
there exist two constants θ ∈ (0, 1) and L > 0 satisfying

Hp(Tx, Ty) 6 θp(fx, fy) + LPw(fy, Tx),

for all x,y ∈ X where Pw(fy, Tx) = inf{pw(fy, z) : z ∈ Tx} and pw as in (1.2). Suppose TX ⊂ fX and fX is a
complete subspace of X. Then f and T have a coincidence point u ∈ X. Further if ffu = fu, then f and T have a
common fixed point.

Theorem 1.14. Let (X,p) be a partial metric space, f : X → X and T : X → CB(X) such that there exist an
MT-function α and a constant L > 0 satisfying

Hp(Tx, Ty) 6 α(p(fx, fy))p(fx, fy) + LPw(fy, Tx),

for all x,y ∈ X where Pw(fy, Tx) = inf{pw(fy, z) : z ∈ Tx} and pw as in (1.2). Suppose TX ⊂ fX and fX is a
complete subspace of X. Then f and T have a coincidence point u ∈ X. Further if ffu = fu, then f and T have a
common fixed point.

The aim of this paper is to introduce the notion of generalized multivalued (f,α,β)-weak contraction
on partial metric space as the parallel manner on metric space. We also establish some coincidence and
common fixed point theorems with the notion of generalized multivalued (f,α,β)-weak contraction on
partial metric space.

2. Main results

As a departure, let us recall the notion of a hybrid generalized multivalued contraction mapping on
partial metric spaces.

Definition 2.1 ([16]). Let (X,p) be a partial metric space, f : X→ X and T : X→ CBp(X) be a multivalued
operator. T is said to be multivalued f weakly Picard operator if and only if for each x ∈ X and fy ∈
Tx(y ∈ X), there exists a sequence {xn} in X such that

(1) x0 = x, x1 = y;
(2) fxn+1 ∈ Txn for all n = 0, 1, 2, · · · ;
(3) the sequence {fxn} converges to fu where u is the coincidence point of f and T .
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Definition 2.2 ([16]). Let {xn} be a sequence in X satisfying condition (1) and (2) in Definition 2.1, then
the sequence Of(x0) = {fxn : n = 1, 2, · · · } is said to be an f-orbit of T at x0.

Definition 2.3. Let (X,p) be a partial metric space, f : X→ X and T : X→ CBp(X) be a multivalued opera-
tor. T is said to be a generalized multivalued f-weakly contraction or a generalized multivalued (f,α,β)-
weak contraction if and only if there exist a function α : [0,∞)→ [0, 1) satisfying lim sups→t+ α(s) < 1 for
every t ∈ [0,∞) and a function β : [0,∞)→ [0,+∞) such that

Hp(Tx, Ty) 6 α(p(fx, fy))p(fx, fy) +β(Pw(fy, Tx))Pw(fy, Tx), (2.1)

for all x,y ∈ X where Pw(fy, Tx) = inf{pw(fy, z) : z ∈ Tx} and pw as in (1.2). Especially, if β(x) =
L(const.) > 0 for every x ∈ [0,∞), then T is said to be a generalized multivalued (f,α,L)-weak contraction.

Remark 2.4. Due to the symmetry of p and Hp, in order to check that T is a multivalued (f,α,β)-weak
contraction on (X,p), we also have to check the dual of (2.1), that is to check that T verifies

Hp(Tx, Ty) 6 α(p(fx, fy))p(fx, fy) +β(Pw(fx, Ty))Pw(fx, Ty).

Now, we give a more general result on a partial metric space. For this we need the following lemma.

Lemma 2.5 ([14]). Let α : [0,∞) → [0, 1) be an MT-function, then the function γ : [0,∞) → [0, 1) defined as
γ(t) =

1+α(t)
2 is also an MT-function.

Theorem 2.6. Let (X,p) be a partial metric space, f : X→ X and T : X→ CB(X) be a multivalued (f,α,β)-weak
contraction such that TX ⊂ fX. Suppose fX is complete. Then f and T have a coincidence point u ∈ X. Further, if
ffu = fu, then f and T have a common fixed point.

Proof. Define a function γ : [0,∞) → [0, 1) as γ(t) =
1+α(t)

2 , then from Lemma 2.5 γ(t) is also an MT-
function. Let x,y ∈ X be two arbitrary points with fx 6= fy , u ∈ Tx and ε =

1−α(p(fx,fy))
2 p(fx, fy) > 0

(note that since fx 6= fy then p(fx, fy) > 0), then from Lemma 1.8 we can find v ∈ Ty such that p(u, v) 6
Hp(Tx, Ty) + ε. Therefore, from (2.1) we have

p(u, v) 6 Hp(Tx, Ty) +
1 −α(p(fx, fy))

2
p(fx, fy)

6 α(p(fx, fy))p(fx, fy) +β(Pw(fy, Tx))Pw(fy, Tx) +
1 −α(p(fx, fy))

2
p(fx, fy)

=
1 +α(p(fx, fy))

2
p(fx, fy) +β(Pw(fy, Tx))Pw(fy, Tx)

= γ(p(fx, fy))p(fx, fy) +β(Pw(fy, Tx))Pw(fy, Tx).

(2.2)

Now, let x0 ∈ X and y0 = fx0. Since Tx0 ⊂ fX, there exists a point x1 ∈ X such that y1 = f(x1) ∈ Tx0.
If y0 = y1, i.e., fx0 = fx1, then fx0 ∈ Tx0, that is x0 is a coincidence point of f and T and so the proof is
complete. Let fx0 6= fx1, then from (2.2) there exists y2 = f(x2) ∈ Tx1 such that

p(y1,y2) = p(fx1, fx2) 6 γ(p(fx0, fx1))p(fx0, fx1) +β(P
w(fx1, Tx0))P

w(fx1, Tx0)

= γ(p(fx0, fx1))p(fx0, fx1).

If y1 = y2, i.e., fx1 = fx2, then fx1 ∈ Tx1, that is x1 is a coincidence point of f and T and so the proof is
complete. Let fx1 6= fx2, then from (2.2) there exists y3 = f(x3) ∈ Tx2 such that

p(y2,y3) = p(fx2, fx3) 6 γ(p(fx1, fx2))p(fx1, fx2) +β(P
w(fx2, Tx1))P

w(fx2, Tx1)

= γ(p(fx1, fx2))p(fx1, fx2).
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By continuing this way, we can construct two sequences {xn} and {yn} in X such that yn = fxn ∈ Txn−1
and

p(yn,yn+1) = p(fxn, fxn+1) 6 γ(p(fxn−1, fxn))p(fxn−1, fxn),

for all n ∈ N. Since γ(t) < 1 for all t ∈ [0,∞), then p(yn,yn+1) is a nonincreasing sequence of non-
negative real numbers. Hence p(yn,yn+1) converges to some λ > 0. Since γ(t) is an MT-function, then
lim sup

s→t+
γ(s) < 1 and γ(λ) < 1. Therefore, there exist r ∈ [0, 1) and ε > 0 such that γ(s) 6 r for all

s ∈ [λ, λ+ ε). Since p(yn,yn+1) ↓ λ we can take k0 ∈ N such that λ 6 p(yn,yn+1) 6 λ+ ε for all n ∈ N
with n > k0.

p(yn+1,yn+2) = p(fxn+1, fxn+2) 6 γ(p(fxn, fxn+1))p(fxn, fxn+1) 6 rp(fxn, fxn+1) = rp(yn,yn+1),

for all n ∈ N with n > k0, then we have

∞∑
n=1

p(yn,yn+1) 6
k0∑
n=1

p(yn,yn+1) +

∞∑
n=k0+1

p(yn,yn+1)

=

k0∑
n=1

p(yn,yn+1) +

∞∑
n=k0

p(yn+1,yn+2)

6
k0∑
n=1

p(yn,yn+1) +

∞∑
n=k0

rp(yn,yn+1)

6
k0∑
n=1

p(yn,yn+1) +

∞∑
n=1

rnp(yk0 ,yk0+1) <∞.

Then for m,n ∈ N with m > n, by omitting the negative term in modified triangular inequality we obtain

p(yn,ym) 6 p(yn,yn+1) + p(yn+1,yn+2) + · · ·+ p(ym−1,ym)

=

m−1∑
i=n

p(yi,yi+1)

6
∞∑
i=n

p(yi,yi+1)→ 0 as n→∞.

Therefore, we have lim
n→∞p(yn,ym) → 0, that is {yn = fxn} is a Cauchy sequence in (fX,p). Since (fX,p)

is complete, (fX,ps) is also complete by Lemma 1.2 (2). So, there exists a point u ∈ X such that fxn → fu

with respect to the metric ps, that is lim
n→∞ps(fxn, fu) = 0.

And, by (1.1), we have

p(fu, fu) = lim
n→∞p(fxn, fu) = lim

n,m→∞p(fxm, fxn) = 0. (2.3)

Now,

P(fu, Tu) 6 p(fu, fxn+1) + P(fxn+1, Tu)
6 p(fu, fxn+1) +Hp(Txn, Tu)
6 p(fu, fxn+1) +α(p(fxn, fu))p(fxn, fu) +β(Pw(fu, Txn))Pw(fu, Txn)
6 p(fu, fxn+1) +α(p(fxn, fu))p(fxn, fu) +β(Pw(fu, Txn))pw(fu, fxn+1)

6 p(fu, fxn+1) + p(fxn, fu) +β(Pw(fu, Txn))pw(fu, fxn+1).
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Letting n→∞ in the above inequality we get (note that ps and pw are equivalent metrics) P(fu, Tu) = 0.
Therefore, from (2.3), we obtain P(fu, Tu) = p(fu, fu). Thus, from Lemma 1.3, we have fu ∈ Tu, since Tu
is closed.

Let z = fu ∈ Tu, then fz = ffu = fu = z. Using the notion of generalized multivalued (f,α,β)-weak
contraction, we get

Hp(Tu, Tz) 6 α(p(fu, fz))p(fu, fz) +β(Pw(fz, Tu))Pw(fz, Tu)
= α(p(fu, fu))p(fu, fu) +β(Pw(fu, Tu))Pw(fu, Tu) = 0.

From P(fz, Tz) = P(fu, Tz) 6 Hp(Tu, Tz), then P(fz, Tz) = 0. Therefore, from (2.3) we obtain P(fz, Tz) =
p(fu, fu) = p(fz, fz). Thus, from Lemma 1.3 we have z = fz ∈ Tz, since Tz is closed. Thus f and T have a
common fixed point. This completes the proof.

Remark 2.7. Let β(x) = L(const.) > 0, for every x ∈ [0,∞) in Theorem 2.6. We get Theorem 1.14.

Remark 2.8. Substituting f = I, the identity map on X and β(x) = L(const.) > 0, for every x ∈ [0,∞) in
Theorem 2.6, we get at once Theorem 1.12.

Finally, we introduce an example satisfying the hypotheses of Theorem 2.6 to support the usability of
our results. In doing so, we are essentially inspired by Aydi et al. [10].

Example 2.9. Let X = {0, 1, 2, 3} be endowed with the partial metric p : X×X→ R+ defined by

p(0, 0) = p(1, 1) = p(2, 2) = 0, p(3, 3) =
1
5

, p(0, 1) = p(1, 0) =
2
5

, p(0, 2) = p(2, 0) =
1
3

,

p(1, 2) = p(2, 1) =
2
3

, p(0, 3) = p(3, 0) =
1
2

, p(1, 3) = p(3, 1) =
3
5

, p(2, 3) = p(3, 2) =
7
10

.

Also define the mappings f : X→ X and T : X→ CBp(X) by

fx =


0 if x ∈ {0, 1},
1 if x = 2,
2 if x = 3,

, Tx =

{
{0} if x ∈ {0, 1, 2},
{1, 2} if x = 3,

and the MT-function α : [0,∞)→ [0, 1) by α(t) = 6t
5+2t2 for any t > 0 and the function β : [0,∞)→ [0,+∞)

by β(t) = 4t for any t > 0. Note that Tx is closed and bounded for all x ∈ X under the given partial metric
p. We shall show that (2.1) holds for all x,y ∈ X. We distinguish the following cases:

(1) If x,y ∈ {0, 1, 2}, then Hp(Tx, Ty) = Hp({0}, {0}) = 0 and (2.1) is satisfied obviously.

(2) If x = 0, y = 3, then

α(p(fx, fy))p(fx, fy) +β(Pw(fy, Tx))Pw(fy, Tx) = α(p(f0, f3))p(f0, f3) +β(Pw(f3, T0))Pw(f3, T0)
= α(p(0, 2))p(0, 2) +β(Pw(2, {0}))Pw(2, {0})

= α(
1
3
)
1
3
+β(

1
3
)
1
3
=

18
47

+
4
9

=
330
423

>
2
5
= Hp({0}, {1, 2}) = Hp(T0, T3).

(3) If x = 1, y = 3, then

α(p(fx, fy))p(fx, fy) +β(Pw(fy, Tx))Pw(fy, Tx) = α(p(f1, f3))p(f1, f3) +β(Pw(f3, T1))Pw(f3, T1)
= α(p(0, 2))p(0, 2) +β(Pw(2, {0}))Pw(2, {0})

= α(
1
3
)
1
3
+β(

1
3
)
1
3
=

18
47

+
4
9

=
330
423

>
2
5
= Hp({0}, {1, 2}) = Hp(T1, T3).
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(4) If x = 2, y = 3, then

α(p(fx, fy))p(fx, fy) +β(Pw(fy, Tx))Pw(fy, Tx) = α(p(f2, f3))p(f2, f3) +β(Pw(f3, T2))Pw(f3, T2)
= α(p(1, 2))p(1, 2) +β(Pw(2, {0}))Pw(2, {0})

= α(
2
3
)
2
3
+β(

1
3
)
1
3
=

24
53

+
4
9

=
428
477

>
2
5
= Hp({0}, {1, 2}) = Hp(T2, T3).

(5) If x = 3, y = 0, then

α(p(fx, fy))p(fx, fy) +β(Pw(fy, Tx))Pw(fy, Tx) = α(p(f3, f0))p(f3, f0) +β(Pw(f0, T3))Pw(f0, T3)
= α(p(2, 0))p(2, 0) +β(Pw(0, {1, 2}))Pw(0, {1, 2})

= α(
1
3
)
1
3
+β(

1
3
)
1
3
=

18
47

+
4
9

=
330
423

>
2
5
= Hp({1, 2}, {0}) = Hp(T3, T0).

(6) If x = 3, y = 1, then

α(p(fx, fy))p(fx, fy) +β(Pw(fy, Tx))Pw(fy, Tx) = α(p(f3, f1))p(f3, f1) +β(Pw(f1, T3))Pw(f1, T3)
= α(p(2, 0))p(2, 0) +β(Pw(0, {1, 2}))Pw(0, {1, 2})

= α(
1
3
)
1
3
+β(

1
3
)
1
3
=

18
47

+
4
9

=
330
423

>
2
5
= Hp({1, 2}, {0}) = Hp(T3, T1).

(7) If x = 3, y = 2, then

α(p(fx, fy))p(fx, fy) +β(Pw(fy, Tx))Pw(fy, Tx) = α(p(f3, f2))p(f3, f2) +β(Pw(f2, T3))Pw(f2, T3)
= α(p(2, 1))p(2, 1) +β(Pw(1, {1, 2}))Pw(1, {1, 2})

= α(
2
3
)
2
3
+ 0 =

24
53

>
2
5
= Hp({1, 2}, {0}) = Hp(T3, T2).

(8) If x = y = 3, then Hp(Tx, Ty) = Hp({1, 2}, {1, 2}) = 0 and (2.1) is satisfied obviously. Thus, all the
conditions of Theorem 2.6 are satisfied and x = 0 is a common fixed point of f and T in X.
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[17] E. Karapınar, İ. M. Erhan, Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett., 24 (2011),

1894–1899. 1
[18] S. G. Matthews, Partial metric topology, Papers on general topology and applications, Flushing, NY, (1992), Ann.

New York Acad. Sci., New York Acad. Sci., New York, 728 (1994), 183–197. 1, 1, 1, 1.2, 1
[19] G. Minak, I. Altun, Multivalued weakly Picard operators on partial metric spaces, Nonlinear Funct. Anal. Appl., 19

(2014), 45–59. 1, 1.6, 1
[20] S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475–488. 1
[21] S. Oltra, O. Valero, Banach’s fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste, 36 (2004),

17–26. 1
[22] S. Romaguera, Matkowski’s type theorems for generalized contractions on (ordered) partial metric spaces, Appl. Gen.

Topol., 12 (2011), 213–220. 1
[23] S. Romaguera, Fixed point theorems for generalized contractions on partial metric spaces, Topology Appl., 159 (2012),

194–199. 1
[24] S. Romaguera, On Nadler’s fixed point theorem for partial metric mpaces, Math. Sci. Appl. E-Notes, 1 (2013), 1–8. 1
[25] S. Romaguera, M. Schellekens, Duality and quasi-normability for complexity spaces, Appl. Gen. Topol., 3 (2002),

91–112. 1
[26] S. Romaguera, M. Schellekens, Weightable quasi-metric semigroups and semilattices, Electron. Notes Theor. Comput.

Sci., 40 (2003), 347–358. 1
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