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Abstract

In this paper, by variational methods, some Lyapunov-type inequalities are established for fractional quasilinear problems
involving left and right Riemann-Liouville fractional derivative operators. To the authors’ knowledge, this is the first work,
where Lyapunov-type inequalities for fractional boundary value problems are investigated by using variational methods. As an
application of the obtained inequalities, we extend the notion of generalized eigenvalues to a fractional quasilinear system, and
we derive some geometric properties of the fractional generalized spectrum. c©2017 All rights reserved.
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1. Introduction

In order to study the stability of solutions of second order differential equations, Liapounoff [14]
established the following result, which provides a necessary condition for the existence of a nontrivial
solution of Hill’s equation under Dirichlet boundary conditions.

Theorem 1.1. If the boundary value problem{
u ′′(t) + q(t)u(t) = 0, a < t < b,
u(a) = u(b) = 0,

has a nontrivial solution, where q : [a,b]→ R is a continuous function, then∫b
a

|q(s)|ds >
4

b− a
. (1.1)
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Inequality (1.1) is known as ”Lyapunov inequality”. Such inequality has several applications in various
problems in connection with differential equations, including oscillation theory, asymptotic theory, eigen-
value problems, disconjugacy, etc. For more details on Lyapunov-type inequalities and their applications,
we refer the reader to the monographs [4, 16].

In [9], Elbert extended inequality (1.1) to the one-dimensional p-Laplacian equation. More precisely,
he proved that, if u is a nontrivial solution of the problem{

(|u ′|p−2u ′) ′ + q(t)|u|p−2u = 0, a < t < b,
u(a) = u(b) = 0,

(1.2)

where 1 < p <∞ and q ∈ L1(a,b), then∫b
a

|q(t)|dt >
2p

(b− a)p−1 . (1.3)

Observe that for p = 2, (1.3) reduces to (1.1).
In [8], Nápoli and Pinasco considered the quasilinear system of resonant type{

− (|u ′(t)|p−2u ′(t)) ′ = f(t)|u(t)|µ−2|v(t)|νu(t),

− (|v ′(t)|q−2v ′(t)) ′ = g(t)|u(t)|µ|v(t)|ν−2v(t),
(1.4)

on the interval (a,b), with Dirichlet boundary conditions

u(a) = u(b) = v(a) = v(b) = 0. (1.5)

Under the assumptions p,q > 1, f,g ∈ L1(a,b), f,g > 0, α,β > 0, and

µ

p
+
ν

q
= 1,

it was proved (see [8, Theorem 1.5]) that, if (1.4)-(1.5) has a nontrivial solution, then

2µ+ν 6 (b− a)
µ
p ′+

ν
q ′

(∫b
a

f(s)ds

)µ
p
(∫b
a

g(s)ds

)ν
q

. (1.6)

Some nice applications to generalized eigenvalues are also presented in [8]. Inequality (1.6) was extended
to more general problems by different authors (see [1, 5, 6, 20, 22] and references therein).

On the other hand, due to the positive impact of fractional calculus on several applied sciences, sev-
eral authors investigated Lyapunov type inequalities for various classes of fractional boundary value
problems. The first work in this direction is due to Ferreira [10], where he generalized Theorem 1.1 for
boundary value problems in which the classical derivative u ′′ is replaced by a Riemann-Liouville frac-
tional derivative. The same author [11] obtained another generalization of Theorem 1.1 for fractional
boundary value problems involving Caputo fractional derivative. The basic idea used in both cited works
consists in transforming the fractional boundary value problem into an equivalent integral form and then
find the maximum of the modulus of its Green’s function. Following Ferreira, many other Lyapunov-type
inequalities were established for different fractional boundary value problems. In this direction, we refer
the reader to [2, 7, 13, 15, 18, 21] and references therein.

The main drawback of the Green’s function method is that the Green’s function might be very difficult
to study. Moreover, in some situations, it is not easy to compute such function. In order to avoid such
problems, we suggest in this paper a variational technique for fractional boundary value problems.

In this work, we deal with fractional quasilinear problems involving left and right Riemann-Liouville
fractional derivative operators. More precisely, we consider the fractional boundary value problem

tD
α
b

(
|aD

α
t u|

p−2
aD

α
t u
)
+ aD

α
t

(
|tD

α
bu|

p−2
tD
α
bu
)

2
= q(t)|u|p−2u, (1.7)
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for a.e. t ∈ [a,b], under Dirichlet boundary conditions

u(a) = u(b) = 0. (1.8)

Here, aDαt denotes the left Riemann-Liouville fractional derivative of order α ∈ (0, 1), and tD
α
b denotes

the right Riemann-Liouville fractional derivative of order α. Note that for α = 1, problem (1.7)-(1.8)
reduces to the p-Laplacian problem (1.2). Using variational techniques, after introducing the adequate
functional spaces, Lyapunov-type inequalities are established for the fractional boundary value problem
(1.7)-(1.8).

Next, we extend the above study to the case of a fractional quasilinear system. More precisely, we
investigate the quasilinear system

tD
α
b

(
|aD

α
t u|

p−2
aD

α
t u
)
+ aD

α
t

(
|tD

α
bu|

p−2
tD
α
bu
)

2
= f(t)|u(t)|µ−2|v(t)|νu(t),

tD
β
b

(
|aD

β
t v|

q−2
aD

β
t v
)
+ aD

β
t

(
|tD

β
bv|

q−2
tD
β
bv
)

2
= g(t)|u(t)|µ|v(t)|ν−2v(t),

(1.9)

for a.e. t ∈ (a,b), under Dirichlet boundary conditions (1.5). Via variational methods, Lyapunov-type
inequalities are established for (1.9)-(1.5). The obtained inequalities are applied to fractional generalized
eigenvalue problems, and some Protter’s type results are obtained for the generalized fractional spectrum.

The paper is organized as follows: In Section 2, we recall some basic concepts on fractional calculus.
The main references used in this section are [3, 12, 19]. In order to prove Lyapunov-type inequalities for
the considered problems using a variational method, we need the introduction of an appropriate space
of functions. In Section 3, such a space is introduced and some preliminaries results are proved. In
Section 4, Lyapunov-type inequalities are established for the fractional quasilinear problem (1.7)-(1.8). In
Section 5, we are concerned with the fractional quasilinear system (1.9)-(1.5). Via a variational technique,
Lyapunov-type inequalities are established for the considered system. As an application of the obtained
inequalities, we extend in Section 6 the notion of generalized eigenvalues introduced by Protter [17] to
the fractional case, and we derive some geometric properties of the generalized spectrum.

2. Reminder about fractional calculus

In this section, we recall some basic definitions and properties of fractional calculus which are used
further in this paper. For more details on fractional calculus, we refer the reader to [3, 19, 23], and
references therein.

Let (a,b) ∈ R2 with a < b.

2.1. Some functional spaces
For any 1 6 p <∞, Lp(a,b) denotes the classical Lebesgue space of p-integrable real-valued functions,

endowed with its usual norm

‖f‖p =

(∫b
a

|f(t)|p dt

) 1
p

, f ∈ Lp(a,b).

By C[a,b], we denote the set of real-valued and continuous functions on [a,b], endowed with its usual
norm

‖f‖∞ = max{|f(t)| : a 6 t 6 b}, f ∈ C[a,b].

We denote by AC[a,b] the space of real-valued and absolutely continuous functions on [a,b]. It is known
that f ∈ AC[a,b] if and only if there exist constant c ∈ R and a function ϕ ∈ L1(a,b) such that

f(t) = c+

∫t
a

ϕ(s)ds, t ∈ [a,b].
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Consequently, if f ∈ AC[a,b], then  f(a) = c,df

dt
(t) = ϕ(t), a.e. t ∈ [a,b].

Let α ∈ (0, 1] be fixed. By ACαa [a,b], we denote the set of all functions f : [a,b] → R having the
representation

f(t) = c(t− a)α−1 +
1
Γ(α)

∫t
a

ϕ(s)

(t− s)1−α ds, a.e. t ∈ [a,b],

with c ∈ R and ϕ ∈ L1(a,b). Here, Γ denotes Euler’s Gamma function. It can be easily seen that
AC1

a[a,b] = AC[a,b]. Similarly, we define the space ACαb [a,b] as the set of functions f : [a,b]→ R having
the representation

f(t) = d(b− t)α−1 +
1
Γ(α)

∫b
t

ψ(s)

(s− t)1−α ds, a.e. t ∈ [a,b],

with d ∈ R and ψ ∈ L1(a,b).

Lemma 2.1 ([3]). We have
AC[a,b] ⊂ ACαa [a,b]∩ACαb [a,b].

2.2. Fractional operators
Definition 2.2 ([19]). The left and right fractional integral, in the sense of Riamann-Liouville, of order
α > 0 of u ∈ L1(a,b), are given by

aI
α
t u(t) =

1
Γ(α)

∫t
a

u(s)

(t− s)1−α ds, a.e. t ∈ [a,b],

and

tI
α
bu(t) =

1
Γ(α)

∫b
t

u(s)

(s− t)1−α ds, a.e. t ∈ [a,b],

respectively.

For the following lemma, we refer to [19] for property (2.1), and [12] for property (2.2).

Lemma 2.3. If α > 0 and 1 6 p <∞, then

aI
α
t u ∈ Lp(a,b) for all u ∈ Lp(a,b). (2.1)

If α > 0, 1 6 p <∞, and αp > 1, then

aI
α
t u ∈ C[a,b] for all u ∈ Lp(a,b). (2.2)

Remark 2.4. Analogous properties hold true for the right-sided integral.

Lemma 2.5 ([19]). The left and right Riemann-Liouville fractional integral operators have the properties of a
semigroup, i.e., for all α,β > 0,

aI
α
t (aI

β
t u(t)) = aI

α+β
t u(t) and tI

α
b(tI

β
bu(t)) = tI

α+β
b u(t)

in any point t ∈ [a,b] for u ∈ C[a,b], and for almost every point t ∈ [a,b] if u ∈ L1(a,b).

Definition 2.6 ([3]). We say that u ∈ L1(a,b) possesses a left-sided Riemann-Liouville derivative aDαt u of
order α ∈ (0, 1) if the function aI

1−α
t u has an absolutely continuous representative. In this case, aI1−αt u

is identified to its absolutely continuous representative and aD
α
t u is defined by

aD
α
t u(t) =

d

dt

(
aI

1−α
t u(t)

)
, a.e. t ∈ [a,b].
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Definition 2.7 ([3]). We say that u ∈ L1(a,b) possesses a right-sided Riemann-Liouville derivative tDαbu
of order α ∈ (0, 1) if the function tI1−αb u has an absolutely continuous representative. In this case, tI1−αb u

is identified to its absolutely continuous representative and tD
α
bu is defined by

tD
α
bu(t) = −

d

dt

(
tI

1−α
b u(t)

)
, a.e. t ∈ [a,b].

From [19], if u ∈ AC[a,b], then aD
α
t u(t) and tD

α
bu(t) are defined for almost every point in [a,b].

However, Bourdin and Idczak [3] obtained recently a necessary and sufficient condition for the existence
of Riemann-Liouville fractional derivatives of order α ∈ (0, 1). More precisely, they proved the following
results.

Lemma 2.8. Let α ∈ (0, 1) and u ∈ L1(a,b). Then aD
α
t u(t) exists almost everywhere on [a,b] if and only if

u ∈ ACαa [a,b], that is, u has the following representation:

u(t) = c(t− a)α−1 + aI
α
t ϕ(t), a.e. t ∈ [a,b],

where c ∈ R and ϕ ∈ L1(a,b). In this case, we have

aD
α
t u(t) = ϕ(t), a.e. t ∈ [a,b].

Lemma 2.9. Let α ∈ (0, 1) and u ∈ L1(a,b). Then tD
α
bu(t) exists almost everywhere on [a,b] if and only if

u ∈ ACαb [a,b], that is, u has the following representation:

u(t) = d(b− t)α−1 + tI
α
bψ(t), a.e. t ∈ [a,b],

where d ∈ R and ψ ∈ L1(a,b). In this case, we have

tD
α
bu(t) = ψ(t), a.e. t ∈ [a,b].

Lemma 2.10 ([19]). Let α ∈ (0, 1). Then the following equality holds:

aD
α
t (aI

α
t u) = u, u ∈ L1(a,b).

Now, we recall the formula of integration by parts involving Riemann-Liouville fractional derivatives.
At first, we need to introduce some functional spaces.

Definition 2.11. For every α ∈ (0, 1) and every 1 6 p <∞, we denote by ACα,p
a [a,b] the functional space

defined by
ACα,p

a [a,b] = {u ∈ L1(a,b) : aDαt u ∈ Lp(a,b)}.

Definition 2.12. For every α ∈ (0, 1) and every 1 6 p <∞, we denote by ACα,p
b [a,b] the functional space

defined by
AC

α,p
b [a,b] = {u ∈ L1(a,b) : tDαbu ∈ Lp(a,b)}.

From [3], we have the following formula of integration by parts.

Lemma 2.13. If 0 < 1
p < α < 1 and 0 < 1

r < α < 1, then∫b
a

(aD
α
t u)(t) · v(t)dt =

∫b
a

u(t) · (tDαbv)(t)dt+ u(b)(tI1−αb v)(b) − v(a)(aI
1−α
t u)(b),

for all u ∈ ACα,p
a [a,b] and v ∈ ACα,r

b [a,b].

3. Preliminaries results

In this section, we prove some preliminaries results which are used further in this paper.

Lemma 3.1. Suppose that 0 < 1
p < α < 1. Then

aI
α
t (aD

α
t u(t)) = u(t), t ∈ [a,b], u(a) = 0,

for any u ∈ ACα,p
a [a,b]∩C[a,b].
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Proof. Let u ∈ ACα,p
a [a,b]∩C[a,b]. From Lemma 2.8, we have

aI
α
t (aD

α
t u(t)) − u(t) = c(t− a)

α−1, a.e. t ∈ [a,b],

where c ∈ R. On the other hand, by Lemma 2.3, since aDαt u ∈ Lp(a,b) and u ∈ C[a,b], then aIαt (aD
α
t u)−

u ∈ C[a,b]. Therefore, we have c = 0, and

aI
α
t (aD

α
t u(t)) = u(t), t ∈ [a,b].

Since u ∈ C[a,b], we have

u(a) = lim
t→a+

u(t) = lim
t→a+

1
Γ(α)

∫t
a

aD
α
s u(s)

(t− s)1−α ds.

Using Hölder’s inequality, we have

∣∣∣∣∫t
a

aD
α
s u(s)

(t− s)1−α ds

∣∣∣∣ 6
(∫b
a

|aD
α
s u(s)|

p ds

) 1
p (∫t

a

(t− s)
p(α−1)
p−1 ds

)p−1
p

= ‖aDαt u‖p
(
p− 1
αp− 1

)p−1
p

(t− a)α−
1
p .

Passing to the limit as t→ a+, we obtain

lim
t→a+

∫t
a

aD
α
s u(s)

(t− s)1−α ds = 0,

which yields u(a) = 0.

Similarly, using Lemma 2.9 and Remark 2.4, we obtain the following result.

Lemma 3.2. Suppose that 0 < 1
p < α < 1. Then

tI
α
b(tD

α
bu(t)) = u(t), t ∈ [a,b], u(b) = 0,

for any u ∈ ACα,p
b [a,b]∩C[a,b].

Suppose that 0 < 1
p < α < 1, and consider the functional space χα,p[a,b] defined by

χα,p[a,b] = ACα,p
a [a,b]∩ACα,p

b [a,b]∩C[a,b].

For u ∈ χα,p[a,b], we denote
‖u‖pα,p = ‖aDαt u‖pp + ‖tDαbu‖pp.

Lemma 3.3. Suppose that 0 < 1
p < α < 1. Then, (χα,p[a,b], ‖ · ‖α,p) is a Banach space.

Proof. At first, observe that ‖ · ‖α,p is a norm in χα,p[a,b]. Indeed, if ‖u‖α,p = 0 for some u ∈ χα,p[a,b],
then ‖aDαt u‖p = 0. Therefore, by Lemma 3.1, we obtain ‖u‖p = 0. The other properties of a norm can be
easily checked. Now, let {un} be a Cauchy sequence in χα,p[a,b]. Then {aD

α
t un} and {tD

α
bun} are Cauchy

sequences in Lp(a,b). Therefore, there exists (f,g) ∈ Lp(a,b)× Lp(a,b) such that

lim
n→∞ ‖aDαt un − f‖p = lim

n→∞ ‖tDαbun − g‖p = 0.

Since aIαt , tIαb : Lp(a,b) → Lp(a,b) are bounded operators (see [19]), it follows from Lemmas 3.1 and 3.2
that

lim
n→∞ ‖un − aI

α
t f‖p = lim

n→∞ ‖un − tI
α
bg‖p = 0.
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Therefore, by the uniqueness of the limit, we can put

u = aI
α
t f = tI

α
bg ∈ Lp(a,b).

Moreover, by property (2.2), since f ∈ Lp(a,b), we have u ∈ C[a,b]. Using Lemma 2.10, we have aDαt u =
f ∈ Lp(a,b) and tD

α
bu = g ∈ Lp(a,b). Hence u ∈ χα,p[a,b] and

lim
n→∞ ‖un − u‖α,p = 0.

Consequently, (χα,p[a,b], ‖ · ‖α,p) is a Banach space.

Remark 3.4. Note that from Lemmas 3.1 and 3.2, we have

u(a) = u(b) = 0, u ∈ χα,p[a,b].

4. Lyapunov type inequalities for problem (1.7)-(1.8)

In this section, Lyapunov-type inequalities are established for the fractional boundary value problem
(1.7)-(1.8) under the assumptions

0 <
1
p
< α < 1 and q ∈ L1(a,b). (4.1)

We define two kinds of solutions for problem (1.7)-(1.8).

Definition 4.1 (Strong solution). A function u : [a,b]→ R is said to be a strong solution of (1.7)-(1.8) if

(i) u ∈ χα,p[a,b];

(ii) tDαb
(
|aD

α
t u|

p−2
aD

α
t u
)
∈ Lp(a,b);

(iii) aDαt
(
|tD

α
bu|

p−2
tD
α
bu
)
∈ Lp(a,b);

(iv) u satisfies (1.7) for a.e. t ∈ [a,b].

Definition 4.2 (Weak solution). A function u ∈ χα,p[a,b] is said to be a weak solution of (1.7)-(1.8) if∫b
a

|aD
α
t u(t)|

p−2
aD

α
t u(t) aD

α
t v(t)dt+

∫b
a

|tD
α
bu(t)|

p−2
tD
α
bu(t) tD

α
bv(t)dt

= 2
∫b
a

q(t)|u(t)|p−2u(t)v(t)dt,
(4.2)

for every v ∈ χα,p[a,b].

Proposition 4.3. If u : [a,b]→ R is a strong solution of (1.7)-(1.8), then u is a weak solution of (1.7)-(1.8).

Proof. Let u : [a,b]→ R be a strong solution of (1.7)-(1.8). Multiplying (1.7) by v ∈ χα,p[a,b], we obtain∫b
a
tD
α
b

(
|aD

α
t u|

p−2
aD

α
t u
)
v(t)dt+

∫b
a
aD

α
t

(
|tD

α
bu|

p−2
tD
α
bu
)
v(t)dt

= 2
∫b
a

q(t)|u(t)|p−2u(t)v(t)dt.

On the other hand, from (ii), we have(
|aD

α
t u|

p−2
aD

α
t u
)
∈ ACα,p

b [a,b].

Similarly, from (iii), we have (
|tD

α
bu|

p−2
tD
α
bu
)
∈ ACα,p

a [a,b].

Therefore, by Remark 3.4, and using the formula of integration by parts given by Lemma 2.13, we obtain
(4.2), which means that u ∈ χα,p[a,b] is a weak solution of (1.7)-(1.8).



M. Jleli, M. Kirane, B. Samet, J. Nonlinear Sci. Appl., 10 (2017), 2471–2486 2478

The main result in this section is given by the following theorem.

Theorem 4.4. Under assumptions (4.1), if (1.7)-(1.8) admits a nontrivial weak solution u ∈ χα,p[a,b] such that
|u(c)| = ‖u‖∞, c ∈ (a,b), then∫b

a

q+(s)ds >

(
2(αp− 1)
p− 1

)p−1 [Γ(α)]p(
(c− a)

αp−1
p−1 + (b− c)

αp−1
p−1

)p−1 , (4.3)

where q+(t) = max{q(t), 0}, for t ∈ [a,b].

Proof. Let u ∈ χα,p[a,b] be a nontrivial weak solution of (1.7)-(1.8). By Lemma 3.1, we have

u(c) = aI
α
c (aD

α
cu(c)),

that is,

u(c) =
1
Γ(α)

∫c
a

aD
α
s u(s)

(c− s)1−α ds.

Then

|u(c)| 6
1
Γ(α)

∫c
a

|aD
α
s u(s)|

(c− s)1−α ds. (4.4)

Similarly, by Lemma 3.2, we have
u(c) = cI

α
b(cD

α
bu(c)),

that is,

u(c) =
1
Γ(α)

∫b
c

sD
α
bu(s)

(s− c)1−α ds.

Then

|u(c)| 6
1
Γ(α)

∫b
c

|sD
α
bu(s)|

(s− c)1−α ds. (4.5)

Next, adding (4.4) to (4.5), we obtain

2|u(c)| 6
1
Γ(α)

(∫c
a

|aD
α
s u(s)|

(c− s)1−α ds+

∫b
c

|sD
α
bu(s)|

(s− c)1−α ds

)
6

1
Γ(α)

∫b
a

max
{
|aD

α
s u(s)|, |sDαbu(s)|

}
|s− c|1−α

ds.

Using Hölder’s inequality, we obtain

2|u(c)| 6
1
Γ(α)

(∫b
a

1
|s− c|p

′(1−α) ds

) 1
p ′
(∫b
a

max {|aDαs u(s)|
p, |sDαbu(s)|

p} ds

) 1
p

, (4.6)

where p ′ = p
p−1 . On the other hand, taking v = u in (4.2), we obtain∫b

a

|aD
α
s u(s)|

p ds+

∫b
a

|sD
α
bu(s)|

p ds = 2
∫b
a

q(s)|u(s)|p ds,

which yields ∫b
a

max {|aDαs u(s)|
p, |sDαbu(s)|

p} ds 6
∫b
a

(|aD
α
s u(s)|

p + |sD
α
bu(s)|

p) ds

6 2
∫b
a

q+(s)|u(s)|p ds.
(4.7)
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Combining (4.6) with (4.7), we obtain

2|u(c)| 6
1
Γ(α)

(∫b
a

1
|s− c|p

′(1−α) ds

) 1
p ′
(

2
∫b
a

q+(s)|u(s)|p ds

) 1
p

,

which implies that

2|u(c)| 6
2

1
p

Γ(α)

(∫b
a

1
|s− c|p

′(1−α) ds

) 1
p ′
(∫b
a

q+(s)ds

) 1
p

|u(c)|.

Next, we divide the above inequality by |u(c)| (since u is nontrivial) to get

2 6
2

1
p

Γ(α)

(∫b
a

1
|s− c|p

′(1−α) ds

) 1
p ′
(∫b
a

q+(s)ds

) 1
p

,

which yields (∫b
a

q+(s)ds

) 1
p

>
21− 1

p Γ(α)(∫b
a

1
|s−c|p

′(1−α) ds
) 1
p ′

.

Note that∫b
a

1
|s− c|p

′(1−α) ds =

∫c
a

1
(c− s)p

′(1−α) ds+

∫b
c

1
(s− c)p

′(1−α) ds =
p− 1
αp− 1

(
(c− a)

αp−1
p−1 + (b− c)

αp−1
p−1

)
.

Therefore, we have ∫b
a

q+(s)ds >

(
2(αp− 1)
p− 1

)p−1 [Γ(α)]p(
(c− a)

αp−1
p−1 + (b− c)

αp−1
p−1

)p−1 ,

which yields the desired result.

Observe that the function

ϕ(s) = (s− a)
αp−1
p−1 + (b− s)

αp−1
p−1 , s ∈ [a,b]

has a maximum at the point s∗ = a+b
2 . Therefore,

ϕ(c) 6 ϕ(s∗) = 2
p(1−α)
p−1 (b− a)

αp−1
p−1 ,

which yields
1(

(c− a)
αp−1
p−1 + (b− c)

αp−1
p−1

)p−1 >
1

2p(1−α)(b− a)αp−1 . (4.8)

Therefore, from (4.3) we deduce the following result.

Corollary 4.5. Under assumptions (4.1), if (1.7)-(1.8) admits a nontrivial weak solution u ∈ χα,p[a,b], then∫b
a

q+(s)ds >

(
2

b− a

)αp−1(
αp− 1
p− 1

)p−1

[Γ(α)]p. (4.9)
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Remark 4.6. Observe that for α = 1, problem (1.7)-(1.8) reduces to the p-Laplacian problem (1.2). Let us
suppose that q is a non-negative function. In such case, if (1.2) admits a nontrivial solution, from (1.3) we
have ∫b

a

q(s)ds > 2
(

2
b− a

)P−1

. (4.10)

However, if we take α = 1 in (4.9), we obtain∫b
a

q(s)ds >

(
2

b− a

)P−1

. (4.11)

It is clear that (4.10) is ”better” than (4.11). So, we address the following question to the readers: is it
possible to improve inequality (4.9) for 0 < 1

p < α < 1?

5. Lyapunov type inequalities for problem (1.9)-(1.5)

In this section, we are concerned with the fractional quasilinear system (1.9) under Dirichlet boundary
conditions (1.5). System (1.9) is investigated under the assumptions:

µ > 0, ν > 0, 0 <
1
p
< α < 1, 0 <

1
q
< β < 1 (5.1)

and
µ

p
+
ν

q
= 1. (5.2)

We suppose also that
(f,g) ∈ L1(a,b)× L1(a,b). (5.3)

As in the case of a single equation, we define two kinds of solutions for (1.9)-(1.5).

Definition 5.1 (Strong solution). A pair of functions (u, v) : [a,b] → R2 is said to be a strong solution of
(1.9)-(1.5) if

(i) u ∈ χα,p[a,b];

(ii) tDαb
(
|aD

α
t u|

p−2
aD

α
t u
)
∈ Lp(a,b);

(iii) aDαt
(
|tD

α
bu|

p−2
tD
α
bu
)
∈ Lp(a,b),

and

(i’) v ∈ χβ,q[a,b];

(ii’) tD
β
b

(
|aD

β
t v|

q−2
aD

β
t v
)
∈ Lq(a,b);

(iii’) aD
β
t

(
|tD

β
bv|

q−2
tD
β
bv
)
∈ Lq(a,b);

(iv) (u, v) satisfies (1.9) for a.e. t ∈ [a,b].

Definition 5.2 (Weak solution). A pair of functions (u, v) ∈ χα,p[a,b]× χβ,q[a,b] is said to be a weak
solution of (1.9)-(1.5) if∫b

a

|aD
α
t u(t)|

p−2
aD

α
t u(t) aD

α
t w1(t)dt+

∫b
a

|tD
α
bu(t)|

p−2
tD
α
bu(t) tD

α
bw1(t)dt

=2
∫b
a

f(t)|u(t)|µ−2|v(t)|νu(t)w1(t)dt,
(5.4)
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and ∫b
a

|aD
β
t v(t)|

q−2
aD

β
t v(t) aD

β
t w2(t)dt+

∫b
a

|tD
β
bv(t)|

q−2
tD
β
bv(t) tD

β
bw2(t)dt

=2
∫b
a

g(t)|u(t)|µ|v(t)|ν−2v(t)w2(t)dt,
(5.5)

for any (w1,w2) ∈ χα,p[a,b]× χβ,q[a,b].

As in the case of a single equation, we have the following proposition.

Proposition 5.3. If the pair of functions (u, v) : [a,b] → R2 is a strong solution of (1.9)-(1.5), then (u, v) is a
weak solution of (1.9)-(1.5).

The following Lyapunov-type inequality for (1.9)-(1.5) holds.

Theorem 5.4. Suppose that assumptions (5.1), (5.2), and (5.3) are satisfied. If (1.9)-(1.5) admits a nontrivial weak
solution (u, v) ∈ χα,p[a,b]× χβ,q[a,b] such that (u(c), v(d)) = (‖u‖∞, ‖v‖∞), (c,d) ∈ (a,b)× (a,b), then

(∫b
a

f+(s)ds

)µ
p
(∫b
a

g+(s)ds

)ν
q

>
2µ+ν−1[Γ(α)]µ[Γ(β)]ν

(
αp−1
p−1

)(p−1
p )µ (

βq−1
q−1

)(q−1
q )ν

(
(c− a)

αp−1
p−1 + (b− c)

αp−1
p−1

)(p−1
p )µ (

(d− a)
βq−1
q−1 + (b− d)

βq−1
q−1

)(q−1
q )ν

.

Proof. From (4.6), we have

2|u(c)| 6
1
Γ(α)

(∫b
a

1
|s− c|p

′(1−α) ds

) 1
p ′
(∫b
a

max {|aDαs u(s)|
p, |sDαbu(s)|

p} ds

) 1
p

, (5.6)

where p ′ = p
p−1 . Similarly, we have

2|v(d)| 6
1
Γ(β)

(∫b
a

1
|s− d|q

′(1−β) ds

) 1
q ′
(∫b
a

max
{
|aD

β
s v(s)|

q, |sD
β
bv(s)|

q
}
ds

) 1
q

, (5.7)

where q ′ = q
q−1 . Taking w1 = u in (5.4), we obtain∫b

a

|aD
α
s u(s)|

p ds+

∫b
a

|sD
α
bu(s)|

p ds = 2
∫b
a

f(s)|u(s)|µ|v(s)|ν ds,

which yields ∫b
a

(|aD
α
s u(s)|

p + |sD
α
bu(s)|

p) ds 6 2
∫b
a

f+(s)|u(s)|µ|v(s)|ν ds,

and ∫b
a

max {|aDαs u(s)|
p, |sDαbu(s)|

p} ds 6 2|u(c)|µ|v(d)|ν
∫b
a

f+(s)ds. (5.8)

Similarly, taking w2 = v in (5.5), we obtain∫b
a

max
{
|aD

β
s v(s)|

q, |sD
β
bv(s)|

q
}
ds 6 2|u(c)|µ|v(d)|ν

∫b
a

g+(s)ds. (5.9)

Combining (5.6) with (5.8), we get

2p−1|u(c)|p 6
1

[Γ(α)]p

(∫b
a

1
|s− c|p

′(1−α) ds

)p−1(∫b
a

f+(s)ds

)
|u(c)|µ|v(d)|ν. (5.10)
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Similarly combining (5.7) with (5.9), we get

2q−1|v(d)|q 6
1

[Γ(β)]q

(∫b
a

1
|s− d|q

′(1−β) ds

)q−1(∫b
a

g+(s)ds

)
|u(c)|µ|v(d)|ν. (5.11)

Raising inequality (5.10) to a power e1 > 0, inequality (5.11) to a power e2 > 0, and multiplying the
resulting inequalities, we obtain

2(p−1)e1+(q−1)e2 6
1

[Γ(α)]pe1 [Γ(β)]qe2

(∫b
a

1
|s− c|p

′(1−α) ds

)(p−1)e1
(∫b
a

1
|s− d|q

′(1−β) ds

)(q−1)e2

×

(∫b
a

f+(s)ds

)e1
(∫b
a

g+(s)ds

)e2

|u(c)|(µ−p)e1+µe2 |v(d)|νe1+(ν−q)e2 .

(5.12)

Next, we take (e1, e2) any solution of the homogeneous linear system{
(µ− p)e1 + µe2 = 0,
νe1 + (ν− q)e2 = 0.

From (5.2), the above system is equivalent to

pνe1 = qµe2.

Therefore, we may take (e1, e2) = (qµ,pν). Hence, from (5.12), we obtain

2µ+ν−1 6
1

[Γ(α)]µ[Γ(β)]ν

(∫b
a

1
|s− c|p

′(1−α) ds

)(p−1
p )µ(∫b

a

1
|s− d|q

′(1−β) ds

)(q−1
q )ν

×

(∫b
a

f+(s)ds

)µ
p
(∫b
a

g+(s)ds

)ν
q

.

Now, using the equalities∫b
a

1
|s− c|p

′(1−α) ds =
p− 1
αp− 1

(
(c− a)

αp−1
p−1 + (b− c)

αp−1
p−1

)
and ∫b

a

1
|s− d|q

′(1−β) ds =
q− 1
βq− 1

(
(d− a)

βq−1
q−1 + (b− d)

βq−1
q−1

)
,

we get

(∫b
a

f+(s)ds

)µ
p
(∫b
a

g+(s)ds

)ν
q

>
2µ+ν−1[Γ(α)]µ[Γ(β)]ν

(
αp−1
p−1

)(p−1
p )µ (

βq−1
q−1

)(q−1
q )ν

(
(c− a)

αp−1
p−1 + (b− c)

αp−1
p−1

)(p−1
p )µ (

(d− a)
βq−1
q−1 + (b− d)

βq−1
q−1

)(q−1
q )ν

,

which yields the desired result.

From (4.8), we have

1(
(c− a)

αp−1
p−1 + (b− c)

αp−1
p−1

)p−1 >
1

2p(1−α)(b− a)αp−1
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and
1(

(d− a)
βq−1
q−1 + (b− d)

βq−1
q−1

)q−1 >
1

2q(1−β)(b− a)βq−1 .

Therefore, from Theorem 5.4, we deduce the following result.

Corollary 5.5. Suppose that assumptions (5.1), (5.2), and (5.3) are satisfied. If (1.9)-(1.5) admits a nontrivial weak
solution (u, v) ∈ χα,p[a,b]× χβ,q[a,b], then(∫b

a

f+(s)ds

)µ
p
(∫b
a

g+(s)ds

)ν
q

>

(
2

b− a

)αµ+βν−1(
αp− 1
p− 1

)(p−1
p )µ(βq− 1

q− 1

)(q−1
q )ν

[Γ(α)]µ[Γ(β)]ν.

(5.13)

Remark 5.6. Taking (µ,ν) = (p, 0) and u = v in (1.9)-(1.5), inequality (5.13) reduces to inequality (4.9).

Remark 5.7. Observe that for (α,β) = (1, 1), (1.9)-(1.5) reduces to the quasilinear system (1.4)-(1.5). Let us
suppose that f and g are non-negative functions. From (1.6), if (1.4)-(1.5) has a nontrivial solution, then(∫b

a

f(s)ds

)µ
p
(∫b
a

g(s)ds

)ν
q

> 2
(

2
b− a

)µ+ν−1

. (5.14)

On the other hand, taking (α,β) = (1, 1) in (5.13), we obtain(∫b
a

f(s)ds

)µ
p
(∫b
a

g(s)ds

)ν
q

>

(
2

b− a

)µ+ν−1

. (5.15)

It is clear that inequality (5.14) is ”better” than inequality (5.15). So, we address the following question to
readers: is it possible to improve inequality (5.13) for 0 < 1

p < α < 1 and 0 < 1
q < β < 1?

6. Fractional generalized eigenvalues

The concept of generalized eigenvalues was introduced by Protter [17] for a system of linear elliptic
operators. The first work dealing with generalized eigenvalues for p-Laplacian systems is due to Nápoli
and Pinasco [8]. Inspired by that work, we present in this section some applications to fractional general-
ized eigenvalues related to problem (1.9)-(1.5).

Let us consider the fractional generalized eigenvalue problem
tD
α
b

(
|aD

α
t u|

p−2
aD

α
t u
)
+ aD

α
t

(
|tD

α
bu|

p−2
tD
α
bu
)

2
= λµw(t)|u(t)|µ−2|v(t)|νu(t),

tD
β
b

(
|aD

β
t v|

q−2
aD

β
t v
)
+ aD

β
t

(
|tD

β
bv|

q−2
tD
β
bv
)

2
= γνw(t)|u(t)|µ|v(t)|ν−2v(t)

(6.1)

for a.e. t ∈ (a,b), under Dirichlet boundary conditions (1.5). If (6.1)-(1.5) admits a nontrivial weak solution
(u, v), we say that (λ,γ) is a generalized eigenvalue of (6.1)-(1.5). The set of generalized eigenvalues is
called generalized spectrum, and it is denoted by σ. We assume that

0 <
1
p
< α < 1, 0 <

1
q
< β < 1,w > 0, w ∈ L1(a,b), w 6≡ 0,

and the non-negative parameters µ, ν satisfy (5.2).
In this section, some Protter’s type results for the generalized spectrum σ are obtained.
The following result provides lower bounds of the generalized eigenvalues of (6.1)-(1.5).
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Theorem 6.1. Let (λ,γ) be a generalized eigenvalue of (6.1)-(1.5). Then

γ > h(λ), (6.2)

where h : (0,∞)→ (0,∞) is the function defined by

h(r) =
1
ν

(
C

(µr)
µ
p
∫b
aw(s)ds

)q
ν

, r > 0 (6.3)

with

C =

(
2

b− a

)αµ+βν−1(
αp− 1
p− 1

)(p−1
p )µ(βq− 1

q− 1

)(q−1
q )ν

[Γ(α)]µ[Γ(β)]ν. (6.4)

Proof. Let (λ,γ) ∈ σ. Then (6.1)-(1.5) admits a nontrivial weak solution (u, v) ∈ χα,p[a,b]× χβ,q[a,b].
Applying Corollary 5.5 with f = λµw and g = γνw, and using condition (5.2), we obtain

(λµ)
µ
p (γν)

ν
q

∫b
a

w(s)ds > C,

where C is given by (6.4). Therefore, we have

γ
ν
q >

C

ν
ν
q (λµ)

µ
p
∫b
aw(s)ds

,

which yields

γ >
1
ν

(
C

(λµ)
µ
p
∫b
aw(s)ds

)q
ν

= h(λ),

where h is the function defined by (6.3).

Now, we deduce from Theorem 6.1 the following Protter’s type results for the generalized spectrum.

Corollary 6.2. There exists a constant ca,b > 0 that depends on a and b such that no point of the generalized
spectrum σ is contained in the ball B(0, ca,b), where

B(0, ca,b) =
{
x = (x1, x2) ∈ R2 : ‖x‖∞ < ca,b

}
,

and ‖ · ‖∞ is the Chebyshev norm in R2.

Proof. Let (λ,µ) ∈ σ. From (6.2), we have

λ
µ
pγ

ν
q >

C

µ
µ
pν

ν
q
∫b
aw(s)ds

. (6.5)

On the other hand, using condition (5.2), we have

λ
µ
pγ

ν
q 6 ‖(λ,µ)‖

µ
p+

ν
q∞ = ‖(λ,µ)‖∞.

Therefore, we obtain
‖(λ,µ)‖∞ > ca,b,

where
ca,b =

C

µ
µ
pν

ν
q
∫b
aw(s)ds

.

The proof is finished.
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Corollary 6.3. Let (λ,γ) be fixed. There exists an interval J of sufficiently small measure, such that, if I = [a,b] ⊂
J, then there are no nontrivial solutions of (6.1)-(1.5).

Proof. Suppose that (6.1)-(1.5) admits a nontrivial solution. Since

C∫b
aw(s)ds

→ +∞ as b− a→ 0+,

where C is the constant defined by (6.4), there exists δ > 0 such that

b− a < δ =⇒ C∫b
aw(x)dx

> (µλ)
µ
p (νγ)

ν
q .

Let J = [a,a+ δ]. Hence, if I ⊂ J, we have

C

µ
µ
pν

ν
q
∫b
aw(s)ds

> λ
µ
pγ

ν
q ,

which is a contradiction with (6.5). Therefore, if I ⊂ J, there are no nontrivial solutions of (6.1)-(1.5).
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