

Journal of Nonlinear Sciences and Applications

Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa

Variational approach to non-instantaneous impulsive nonlinear differential equations

Liang Bai^{a,*}, Juan J. Nieto^b, Xiaoyun Wang^a

^aCollege of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China. ^bDepartamento de Estadística, Análisis Matemático y Optimización, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain.

Communicated by X.-J. Yang

Abstract

In this paper, a class of nonlinear differential equations with non-instantaneous impulses are considered. By using variational methods and critical point theory, a criterion is obtained to guarantee that the non-instantaneous impulsive problem has at least two distinct nonzero bounded weak solutions. ©2017 All rights reserved.

Keywords: Non-instantaneous impulse, mountain pass theorem, bounded solution. 2010 MSC: 34K45, 34B37, 47J30.

1. Introduction

Non-instantaneous impulsive differential equations were introduced by Hernádez and O'Regan in [7], motivated by a problem related to the hemodynamical equilibrium of a person: in the case of a decompensation (for example, high or low levels of glucose) one can prescribe some intravenous drugs (insulin). Since the introduction of the drugs in the bloodstream and the consequent absorption for the body are gradual and continuous processes, we can interpret the above situation as an impulsive action which starts abruptly and stays active on a finite time interval.

Impulsive effects arise from the real world and are used to describe sudden, discontinuous jumps. Differential equation with not instantaneous impulses is a generalization of the classical theory of impulsive differential equations. For some general and recent works on the theory of impulsive differential equations we refer the readers to [1, 2, 4, 6, 9, 10, 13–16].

The existence of solutions of non-instantaneous impulsive problem has been studied via some approaches, such as fixed point theory and theory of analytic semigroup, see, for example, [5, 7, 11, 12]. Recently, the variational structure of non-instantaneous impulsive linear problem has been developed in [3].

doi:10.22436/jnsa.010.05.14

^{*}Corresponding author

Email addresses: tj_bailiang@126.com (Liang Bai), juanjose.nieto.roig@usc.es (Juan J. Nieto), wangxiaoyun@tyut.edu.cn (Xiaoyun Wang)

Inspired by the above facts, in this paper a class of non-instantaneous impulsive nonlinear problems which has variational structure will be studied by critical point theory.

Consider the following non-instantaneous impulsive problem

$$\begin{cases} -u''(t) = D_{x}F_{i}(t, u(t) - u(t_{i+1})), & t \in (s_{i}, t_{i+1}], i = 0, 1, \cdots, N, \\ u'(t) = \alpha_{i}, & t \in (t_{i}, s_{i}], i = 1, 2, \cdots, N, \\ u'(s_{i}^{+}) = u'(s_{i}^{-}), & i = 1, 2, \cdots, N, \\ u(0) = u(T) = 0, & u'(0) = \alpha_{0}, \end{cases}$$

$$(1.1)$$

where $0 = s_0 < t_1 < s_1 < t_2 < s_2 < \cdots < t_N < s_N < t_{N+1} = T$, the impulses start abruptly at the points t_i and keep the derivative constant on a finite time interval $(t_i, s_i]$. Here $u'(s_i^{\pm}) = \lim_{s \to s_i^{\pm}} u'(s)$ and α_i are given constants. For each $i = 0, 1, \cdots, N$, the nonlinear functions $D_x F_i(t, x)$ are the derivatives of $F_i(t, x)$ with respect to x and F_i satisfies the following assumption:

(A) $F_i(t, x)$ is measurable in t for every $x \in \mathbb{R}$ and continuously differentiable in x for a.e. $t \in (s_i, t_{i+1}]$, and there exist $a \in C(\mathbb{R}^+; \mathbb{R}^+)$ and $b \in L^1(s_i, t_{i+1}; \mathbb{R}^+)$ such that

$$|F_i(t,x)| \leq a(|x|)b(t), \quad |D_xF_i(t,x)| \leq a(|x|)b(t)$$

for all $x \in \mathbb{R}$ and a.e. $t \in (s_i, t_{i+1}]$.

Moreover, without loss of generality, it is supposed that $F_i(t,0)=0$ for a.e. $t\in(s_i,t_{i+1}]$ and each $i=0,1,\cdots,N.$

Our results are presented as follows.

Theorem 1.1. Assume condition (A) holds and

(H) for each $i = 0, 1, \dots, N$, there exist constants $\sigma_i > 2$ such that $0 < \sigma_i F_i(t, x) \leq x D_x F_i(t, x)$ for a.e. $t \in (s_i, t_{i+1}]$ and $x \in \mathbb{R} \setminus \{0\}$,

then problem (1.1) has at least one nonzero bounded weak solution in $H_0^1(0,T)$ provided

$$\frac{\pi^2}{4T(1+\pi)^2} > \sum_{i=1}^{N} |\alpha_{i-1} - \alpha_i| + 2\sum_{i=0}^{N} \int_{s_i}^{t_{i+1}} \max_{|x|=1} F_i(t,x) dt.$$
(1.2)

In addition, if $\alpha_{j-1} \neq \alpha_j$ for some $j = 1, 2, \dots, N$, then problem (1.1) has at least two distinct nonzero bounded weak solutions in $H^1_0(0,T)$.

Example 1.2. It follows from Theorem 1.1 that the following non-instantaneous impulsive problem has at least two distinct nonzero bounded weak solutions.

$$\left\{ \begin{array}{ll} -\mathfrak{u}''(t)=t(\mathfrak{u}(t)-\mathfrak{u}(t_{i+1}))^3, & t\in(s_i,t_{i+1}],\ i=0,1,\\ \mathfrak{u}'(t)=0.1, & t\in(t_1,s_1],\\ \mathfrak{u}'(s_1^+)=\mathfrak{u}'(s_1^-),\\ \mathfrak{u}(0)=\mathfrak{u}(1)=0, & \mathfrak{u}'(0)=0, \end{array} \right.$$

where $0 = s_0 < t_1 = \frac{1}{16} < s_1 = \frac{15}{16} < t_2 = 1$.

2. Preliminaries

We recall some facts which will be used in the proof of our main result. It is a consequence of Poincaré's inequality that

$$\int_0^T |\mathfrak{u}(t)|^2 dt \leqslant \frac{1}{\lambda_1} \int_0^T |\mathfrak{u}'(t)|^2 dt, \qquad (2.1)$$

where $\lambda_1=\pi^2/T^2$ is the first eigenvalue of the Dirichlet problem

$$-\mathfrak{u}''(t) = \lambda \mathfrak{u}(t), \ t \in [0,T]; \quad \mathfrak{u}(0) = \mathfrak{u}(T) = 0.$$

Let $H_0^1(0, T)$ be the Sobolev space endowed with the norm

$$\|\mathbf{u}\|_{\mathbf{H}_{0}^{1}} := \left(\int_{0}^{\mathsf{T}} |\mathbf{u}'(t)|^{2} + |\mathbf{u}(t)|^{2} dt\right)^{1/2}.$$

Obviously, $H_0^1(0, T)$ is a reflexive Banach space and by the Poincaré's inequality (2.1), we know that

$$|\mathfrak{u}\| := \left(\int_0^T |\mathfrak{u}'(t)|^2 dt\right)^{1/2}$$

is equivalent to the norm $\|u\|_{H_0^1}$ in $H_0^1(0,T)$. Let

$$\|u\|_{L^2} := \left(\int_0^T |u(t)|^2 dt\right)^{1/2}$$
 and $\|u\|_{\infty} := \max_{t \in [0,T]} |u(t)|.$

Then for $u \in H_0^1(0, T)$, we have

$$\|\mathbf{u}\|_{\infty} \leqslant \beta \|\mathbf{u}\|,\tag{2.2}$$

where $\beta = (T\lambda_1)^{-1/2} + T^{1/2}$. In fact, it follows from the mean value theorem that $\frac{1}{T} \int_0^T u(s) ds = u(\tau)$ for some $\tau \in (0, T)$. Hence, for $t \in [0, T]$, using Hölder inequality,

$$|u(t)| = \left| u(\tau) + \int_{\tau}^{t} u'(s) ds \right| \leq \frac{1}{T} \left| \int_{0}^{T} u(s) ds \right| + \int_{0}^{T} |u'(t)| dt \leq T^{-1/2} ||u||_{L^{2}} + T^{1/2} ||u'||_{L^{2}}$$

Lemma 2.1 ([17, Theorem 38.A]). For the functional $F : M \subseteq X \to [-\infty, +\infty]$ with $M \neq \emptyset$, $\min_{u \in M} F(u) = \alpha$ has a solution in case the following hold:

- (i) X is a real reflexive Banach space;
- (ii) M is bounded and weak sequentially closed;
- (iii) F is sequentially weakly lower semi-continuous on M.

Lemma 2.2 ([8, Theorem 4.10]). Let E be a Banach space and $\varphi \in C^1(E, \mathbb{R})$. Assume that there exist $u_0 \in E$, $u_1 \in E$ and a bounded open neighborhood Ω of u_0 such that $u_1 \in E \setminus \Omega$ and $\inf_{\partial \Omega} \varphi > \max\{\varphi(u_0), \varphi(u_1)\}$. Let

$$\Gamma = \{g \in C([0,1], E) : g(0) = u_0, g(1) = u_1\} \text{ and } c = \inf_{g \in \Gamma} \max_{s \in [0,1]} \phi(g(s)).$$

If φ satisfies the $(PS)_c$ -condition, then c is a critical value of φ and $c > \max\{\varphi(u_0), \varphi(u_1)\}$.

To follow the ideas of the variational approach for impulsive differential equations of [10, 16], for each $\nu \in H_0^1(0,T)$, we have

$$\begin{split} \int_{0}^{T} u''(t) \nu(t) dt &= \int_{0}^{t_{1}} u''(t) \nu(t) dt + \sum_{i=1}^{N} \int_{t_{i}}^{s_{i}} u''(t) \nu(t) dt + \sum_{i=1}^{N-1} \int_{s_{i}}^{t_{i+1}} u''(t) \nu(t) dt + \int_{s_{N}}^{T} u''(t) \nu(t) dt \\ &= - \int_{0}^{T} u'(t) \nu'(t) dt + \sum_{i=1}^{N} \left[u'(t_{i}^{-}) - u'(t_{i}^{+}) \right] \nu(t_{i}) + \sum_{i=1}^{N} \left[u'(s_{i}^{-}) - u'(s_{i}^{+}) \right] \nu(s_{i}), \end{split}$$

which combined with (1.1) yields that

$$\int_{0}^{T} u''(t)v(t)dt = -\int_{0}^{T} u'(t)v'(t)dt + \sum_{i=1}^{N} [\alpha_{i-1} - \alpha_{i}]v(t_{i}) - \sum_{i=0}^{N-1} \Big(\int_{s_{i}}^{t_{i+1}} D_{x}F_{i}(t,u(t) - u(t_{i+1}))dt \Big)v(t_{i+1}).$$
(2.3)

On the other hand,

$$\begin{split} \int_{0}^{T} u''(t)v(t)dt &= -\sum_{i=0}^{N} \int_{s_{i}}^{t_{i+1}} D_{x}F_{i}(t,u(t)-u(t_{i+1}))v(t)dt + \sum_{i=1}^{N} \int_{t_{i}}^{s_{i}} \frac{d}{dt}[\alpha_{i}]v(t)dt \\ &= -\sum_{i=0}^{N} \int_{s_{i}}^{t_{i+1}} D_{x}F_{i}(t,u(t)-u(t_{i+1}))v(t)dt. \end{split}$$
(2.4)

Thus, in view of $v(t_{N+1}) = v(T) = 0$, (2.3), and (2.4), we find that

$$-\int_{0}^{T} u'(t)v'(t)dt + \sum_{i=1}^{N} \left[\alpha_{i-1} - \alpha_{i}\right]v(t_{i}) = -\sum_{i=0}^{N} \int_{s_{i}}^{t_{i+1}} D_{x}F_{i}(t, u(t) - u(t_{i+1}))(v(t) - v(t_{i+1}))dt.$$
(2.5)

Considering the aforementioned equality, we introduce the following concept of weak solution for (1.1).

Definition 2.3. A function $u \in H_0^1(0, T)$ is a weak solution of (1.1) if (2.5) holds for any $v \in H_0^1$.

Consider the functional $\Phi: H^1_0 \to \mathbb{R}$ defined by

$$\Phi(u) := \frac{1}{2} \int_0^T |u'(t)|^2 dt - \sum_{i=1}^N \left(\alpha_{i-1} - \alpha_i\right) u(t_i) - \sum_{i=0}^N \phi_i(u),$$

where

$$\varphi_{i}(\mathfrak{u}) := \int_{\mathfrak{s}_{i}}^{\mathfrak{t}_{i+1}} F_{i}(\mathfrak{t},\mathfrak{u}(\mathfrak{t}) - \mathfrak{u}(\mathfrak{t}_{i+1})) d\mathfrak{t}.$$

For u and v fixed in $H_0^1(0,T)$ and $\lambda \in [-1,1]$, it follows from (2.2) that

$$|\mathfrak{u}(t) - \mathfrak{u}(t_{i+1})| \leq 2 \|\mathfrak{u}\|_{\infty} \leq 2\beta \|\mathfrak{u}\|, \tag{2.6}$$

which combined with assumption (A) yields that $\varphi_i(u)$ is well-defined on $H_0^1(0,T)$. Using assumption (A) again, we see that

$$\begin{split} &\lim_{\lambda\to 0} \frac{1}{\lambda} \left[\mathsf{F}_{i}(t, \mathfrak{u}(t) - \mathfrak{u}(t_{i+1}) + \lambda \nu(t) - \lambda \nu(t_{i+1})) - \mathsf{F}_{i}(t, \mathfrak{u}(t) - \mathfrak{u}(t_{i+1})) \right] \\ &= \mathsf{D}_{x} \mathsf{F}_{i}(t, \mathfrak{u}(t) - \mathfrak{u}(t_{i+1})) (\nu(t) - \nu(t_{i+1})), \quad \text{for a.e. } t \in (s_{i}, t_{i+1}]. \end{split}$$

It follows from (2.6) that

$$|u(t)-u(t_{i+1})+\lambda\theta(\nu(t)-\nu(t_{i+1}))|\leqslant 2\beta(\|u\|+\|\nu\|),\quad\text{for }\theta\in(0,1),$$

which combined with mean value theorem and assumption (A) yields to

$$\left|\frac{1}{\lambda}\left[F_{i}(t,u(t)-u(t_{i+1})+\lambda(v(t)-v(t_{i+1})))-F_{i}(t,u(t)-u(t_{i+1}))\right]\right|$$

$$= |D_{x}F_{i}(t, u(t) - u(t_{i+1}) + \lambda\theta(v(t) - v(t_{i+1})))(v(t) - v(t_{i+1}))|$$

$$\leq \max_{z \in [0, 2\beta(\|u\| + \|v\|)]} a(z)2\beta\|v\|b(t) \in L^{1}(s_{i}, t_{i+1}; \mathbb{R}^{+}),$$

for some $\theta \in (0,1)$. Lebesgue's dominated convergence theorem shows that ϕ_i has at every point u a directional derivative

$$\langle \varphi_{i}'(u), \nu \rangle = \int_{s_{i}}^{t_{i+1}} D_{x} F_{i}(t, u(t) - u(t_{i+1}))(\nu(t) - \nu(t_{i+1})) dt.$$
(2.7)

Moreover, in view of assumption (A) and (2.6), we have

$$|\langle \varphi_{i}'(u), \nu \rangle| \leq \int_{s_{i}}^{t_{i+1}} |D_{x}F_{i}(t, u(t) - u(t_{i+1}))||(\nu(t) - \nu(t_{i+1}))|dt \leq 2\beta \int_{s_{i}}^{t_{i+1}} b(t)dt \max_{z \in [0, 2\beta \|u\|]} a(z) \|\nu\|_{s_{i}}^{1/2} \|v\|_{s_{i}}^{1/2} \|v\|_{s_{i}}^{1/2$$

Thus $\varphi'_i(\mathfrak{u}) \in (H^1_0(0,T))^*$. Suppose $\mathfrak{u}_n \to \mathfrak{u}$ in $H^1_0(0,T)$, then $\{\mathfrak{u}_n\}$ converges uniformly to \mathfrak{u} on [0,T] by (2.2). Furthermore, it follows from (2.7) that

$$\|\phi_{i}'(u_{n}) - \phi_{i}'(u)\| \leq 2\beta \int_{s_{i}}^{t_{i+1}} |D_{x}F_{i}(t, u_{n}(t) - u_{n}(t_{i+1})) - D_{x}F_{i}(t, u(t) - u(t_{i+1}))|dt.$$

Thus φ'_i is continuous from $H^1_0(0,T)$ into $(H^1_0(0,T))^*$. So $\Phi \in C^1(H^1_0(0,T),\mathbb{R})$ and

$$\langle \Phi'(u), \nu \rangle = \int_0^T u'(t)\nu'(t)dt - \sum_{i=1}^N \left(\alpha_{i-1} - \alpha_i\right)\nu(t_i) - \sum_{i=0}^N \int_{s_i}^{t_{i+1}} D_x F_i(t, u(t) - u(t_{i+1}))(\nu(t) - \nu(t_{i+1}))dt.$$

Then critical points of Φ correspond to weak solutions of the problem (1.1).

Lemma 2.4. If assumption (H) holds, then for each $i = 0, 1, \dots, N$ there exist $M_i, m_i, b_i \in L^1(s_i, t_{i+1})$ which are almost everywhere positive such that

$$F_{i}(t,x) \leq M_{i}(t)|x|^{\sigma_{i}}, \quad \text{for a.e. } t \in (s_{i},t_{i+1}] \text{ and } |x| \leq 1$$

$$(2.8)$$

and

$$F_{i}(t,x) \ge m_{i}(t)|x|^{\sigma_{i}} - b_{i}(t), \quad \text{for a.e. } t \in (s_{i}, t_{i+1}] \text{ and } x \in \mathbb{R},$$

$$(2.9)$$

where

$$m_i(t):=\min_{|x|=1}F_i(t,x) \quad \textit{and} \quad M_i(t):=\max_{|x|=1}F_i(t,x), \quad \textit{for a.e.} \ t\in(s_i,t_{i+1}].$$

Proof. It follows from assumption (H) that

$$0 < \mathfrak{m}_{i}(t) \leqslant F_{i}\left(t, \frac{x}{|x|}\right) \leqslant M_{i}(t), \text{ for a.e. } t \in (s_{i}, t_{i+1}]$$

and

$$\mathsf{M}_{\mathfrak{i}}(\mathfrak{t}) \leqslant \max_{|\mathsf{x}| \leqslant 1} \mathsf{F}_{\mathfrak{i}}(\mathfrak{t}, \mathfrak{x}) \leqslant \max_{|\mathsf{x}| \leqslant 1} \mathfrak{a}(|\mathsf{x}|) \mathfrak{b}(\mathfrak{t}) \in \mathsf{L}^{1}(\mathfrak{s}_{\mathfrak{i}}, \mathfrak{t}_{\mathfrak{i}+1}).$$

For each $i = 0, 1, \cdots, N$, define $T_i : (0, +\infty) \to \mathbb{R}$ by

$$\mathsf{T}_{\mathfrak{i}}(z) = \mathsf{F}_{\mathfrak{i}}\left(\mathfrak{t}, \frac{\mathfrak{x}}{z}\right) z^{\sigma_{\mathfrak{i}}}, \text{ for a.e. } \mathfrak{t} \in (\mathfrak{s}_{\mathfrak{i}}, \mathfrak{t}_{\mathfrak{i}+1}] \text{ and } \mathfrak{x} \neq 0.$$

Condition (H) implies that T_i is nonincreasing. Thus, for a.e. $t \in (s_i, t_{i+1}]$, we have

$$F_i(t,x) \leqslant F_i\left(t, \frac{x}{|x|}\right) |x|^{\sigma_i}, \quad \text{if } 0 < |x| \leqslant 1$$

and

$$F_{i}(t,x) \ge F_{i}\left(t,\frac{x}{|x|}\right)|x|^{\sigma_{i}}, \quad \text{if } |x| \ge 1.$$
(2.10)

So (2.8) holds. Moreover, for a.e. $t \in (s_i, t_{i+1}]$ and $|x| \leq 1$, we have

$$|F_{i}(t,x) - m_{i}(t)|x|^{\sigma_{i}}| \leq \max_{|x| \leq 1} \alpha(|x|)b(t) + m_{i}(t) := b_{i}(t),$$

which combined with (2.10) yields (2.9).

3. Proof of Theorem 1.1

Proof. We complete the proof in four steps.

Step 1. $\Phi(u)$ satisfies PS condition on $H_0^1(0,T)$, that is, every sequence $\{u_k\}$ in $H_0^1(0,T)$ such that $\Phi(u_k)$ is bounded and $\Phi'(u_k) \to 0$ as $k \to +\infty$ contains a convergent subsequence. It is clear that

$$\left|\sum_{i=1}^{N} \left(\alpha_{i-1} - \alpha_{i}\right) \mathfrak{u}(\mathfrak{t}_{i})\right| \leqslant \sum_{i=1}^{N} |\alpha_{i-1} - \alpha_{i}| \, \|\mathfrak{u}\|_{\infty} \leqslant \sum_{i=1}^{N} |\alpha_{i-1} - \alpha_{i}| \, \beta \|\mathfrak{u}\|. \tag{3.1}$$

Let $\sigma := \min\{\sigma_i : i = 0, 1, \dots, N\}$, then $\sigma > 2$. By (H) and (3.1), we have

$$\begin{split} \sigma\Phi(u_{k}) - \langle \Phi'(u_{k}), u_{k} \rangle &= \left(\frac{\sigma}{2} - 1\right) \int_{0}^{T} |u_{k}'(t)|^{2} dt - (\sigma - 1) \sum_{i=1}^{N} \left(\alpha_{i-1} - \alpha_{i}\right) u_{k}(t_{i}) \\ &- \sum_{i=0}^{N} \int_{s_{i}}^{t_{i+1}} \sigma F_{i}(t, u_{k}(t) - u_{k}(t_{i+1})) - D_{x} F_{i}(t, u_{k}(t) - u_{k}(t_{i+1})) \\ &\times (u_{k}(t) - u_{k}(t_{i+1})) dt \\ &\geq \left(\frac{\sigma}{2} - 1\right) \|u_{k}\|^{2} - (\sigma - 1)\beta \sum_{i=1}^{N} |\alpha_{i-1} - \alpha_{i}| \|u_{k}\|, \end{split}$$
(3.2)

which implies that $\{u_k\}$ is bounded in $H_0^1(0,T)$. Since $H_0^1(0,T)$ is a reflexive Banach space, passing to a subsequence if necessary, we may assume that there is a $u_0 \in H_0^1(0,T)$ such that $u_k \rightarrow u_0$ in $H_0^1(0,T)$. Then $\{u_k\}$ converges uniformly to u_0 on [0,T] and $u_k \rightarrow u_0$ in $L^2(0,T)$. Notice that

$$\langle \Phi'(u_{m}) - \Phi'(u_{n}), u_{m} - u_{n} \rangle$$

$$= \int_{0}^{T} |u'_{m}(t) - u'_{n}(t)|^{2} dt - \sum_{i=0}^{N} \int_{s_{i}}^{t_{i+1}} [D_{x}F_{i}(t, u_{m}(t) - u_{m}(t_{i+1})) - U_{n}(t_{i+1})]$$

$$- D_{x}F_{i}(t, u_{n}(t) - u_{n}(t_{i+1}))] [u_{m}(t) - u_{m}(t_{i+1}) - u_{n}(t) + u_{n}(t_{i+1})] dt.$$

$$(3.3)$$

In view of assumption (A) and

$$\begin{split} |\mathfrak{u}_{\mathfrak{m}}(t) - \mathfrak{u}_{\mathfrak{m}}(t_{i+1}) - \mathfrak{u}_{\mathfrak{n}}(t) + \mathfrak{u}_{\mathfrak{n}}(t_{i+1})| &\leq |\mathfrak{u}_{\mathfrak{m}}(t) - \mathfrak{u}_{\mathfrak{n}}(t)| + |\mathfrak{u}_{\mathfrak{m}}(t_{i+1}) - \mathfrak{u}_{\mathfrak{n}}(t_{i+1})| \\ &\leq 2 \|\mathfrak{u}_{\mathfrak{m}} - \mathfrak{u}_{\mathfrak{n}}\|_{\infty} \to 0, \quad \text{as } \mathfrak{m}, \mathfrak{n} \to \infty, \end{split}$$

we have that the second term on the right hand of (3.3) converges to 0 as $m, n \to \infty$. What is more, the fact that $\Phi'(u_k) \to 0$ as $k \to +\infty$ implies

$$\left| \langle \Phi'(\mathfrak{u}_m) - \Phi'(\mathfrak{u}_n), \mathfrak{u}_m - \mathfrak{u}_n \rangle \right| \leq \| \Phi'(\mathfrak{u}_m) - \Phi'(\mathfrak{u}_n) \| \| \mathfrak{u}_m - \mathfrak{u}_n \| \to 0,$$

as $\mathfrak{m}, \mathfrak{n} \to \infty$. Consequently, $\|\mathfrak{u}_{\mathfrak{m}} - \mathfrak{u}_{\mathfrak{n}}\| \to 0$ as $\mathfrak{m}, \mathfrak{n} \to \infty$. By the completeness of $H_0^1(0, T)$, we know that $\{\mathfrak{u}_k\}$ possesses a convergent subsequence in $H_0^1(0, T)$.

2445

Step 2. $\Phi(u)$ has mountain pass geometric structure.

Let B_r be the open ball in $H_0^1(0,T)$ with radius r and centered at 0 and let ∂B_r and $\overline{B_r}$ denote the boundary and closure of B_r , respectively. For each $u \in \partial B_{(2\beta)^{-1}}$, where β is listed in (2.2), we have

$$|\mathfrak{u}(\mathfrak{t}) - \mathfrak{u}(\mathfrak{t}_{\mathfrak{i}+1})| \leqslant 2 \|\mathfrak{u}\|_{\infty} \leqslant 2\beta \|\mathfrak{u}\| = 1.$$

Thus, using (2.8), we find that, for each $u \in \partial B_{(2\beta)^{-1}}$,

$$\int_{s_{i}}^{t_{i+1}} F_{i}(t, u(t) - u(t_{i+1})) dt \leq \int_{s_{i}}^{t_{i+1}} M_{i}(t) |u(t) - u(t_{i+1})|^{\sigma_{i}} dt \leq \int_{s_{i}}^{t_{i+1}} M_{i}(t) dt,$$

which combined with (3.1) yields that, for any $u \in \partial B_{(2\beta)^{-1}}$,

$$\Phi(\mathfrak{u}) \geq \frac{1}{2} \left[\frac{1}{4\beta^2} - \sum_{i=1}^{N} |\alpha_{i-1} - \alpha_i| - 2\sum_{i=0}^{N} \int_{s_i}^{t_{i+1}} M_i(t) dt \right] := \gamma.$$

In view of (1.2), we have $\Phi(\mathfrak{u}) \ge \gamma > 0 = \Phi(0)$ for any $\mathfrak{u} \in \partial B_{(2\beta)^{-1}}$. Thus

$$\inf_{\mathbf{u}\in\partial B_{(2\beta)^{-1}}}\Phi(\mathbf{u})>\Phi(0).$$

Let $\xi > 0$ and $w \in H_0^1(0,T)$ with ||w|| = 1 and w(t) is not a constant for a.e. $[0, t_1]$. It follows from (2.9) that

$$\int_{s_{i}}^{t_{i+1}} F_{i}(t, (w(t) - w(t_{i+1}))\xi) dt \ge \left(\int_{s_{i}}^{t_{i+1}} m_{i}(t) |w(t) - w(t_{i+1})|^{\sigma_{i}} dt\right) \xi^{\sigma_{i}} - \int_{s_{i}}^{t_{i+1}} b_{i}(t) dt.$$
(3.4)

Let $Q_i := \int_{s_i}^{t_{i+1}} m_i(t) |w(t) - w(t_{i+1})|^{\sigma_i} dt$. Then we have that

$$0 \leqslant Q_{\mathfrak{i}} \leqslant (2\beta)^{\sigma_{\mathfrak{i}}} \int_{s_{\mathfrak{i}}}^{t_{\mathfrak{i}+1}} \mathfrak{m}_{\mathfrak{i}}(t) dt \quad \text{and} \quad Q_0 > 0.$$

In fact, suppose that $\int_0^{t_1} m_0(t) |w(t) - w(t_1)|^{\sigma_0} dt = 0$, since $m_0(t)$ is almost everywhere positive, we have $w(t) = w(t_1)$ for a.e. $[0, t_1]$, which is a contradiction to the assumption on w. In view of (3.4), we have

$$\Phi(\xi w) = \frac{1}{2}\xi^{2} - \sum_{i=1}^{N} (\alpha_{i-1} - \alpha_{i}) w(t_{i})\xi - \sum_{i=0}^{N} \int_{s_{i}}^{t_{i+1}} F_{i}(t, (w(t) - w(t_{i+1}))\xi) dt$$

$$\leq \frac{1}{2}\xi^{2} + \sum_{i=1}^{N} |\alpha_{i-1} - \alpha_{i}| \beta\xi - \sum_{i=0}^{N} Q_{i}\xi^{\sigma_{i}} + \sum_{i=0}^{N} \int_{s_{i}}^{t_{i+1}} b_{i}(t) dt.$$
(3.5)

Since $\sigma_i > 2$, we have $\Phi(\xi w) \to -\infty$ as $\xi \to +\infty$. Thus, there exists ξ_0 with $\|\xi_0 w\| > (2\beta)^{-1}$ such that

$$\inf_{\mathfrak{u}\in \mathfrak{dB}_{(2\beta)^{-1}}}\Phi(\mathfrak{u})>\Phi(\xi_0\mathfrak{w}).$$

Therefore it follows from Steps 1-2 and Lemma 2.2 that there exists $u_1^* \in H_0^1(0,T)$ such that $\Phi'(u_1^*) = 0$ with

$$\Phi(\mathfrak{u}_{1}^{*}) > \max\{\Phi(0), \Phi(\xi_{0}w)\} \ge \Phi(0) = 0, \tag{3.6}$$

so u_1^* is a nonzero weak solution of problem (1.1).

Step 3. If $\alpha_{j-1} \neq \alpha_j$ for some $j = 1, 2, \dots, N$, then $\Phi(u)$ has a nonzero local minimum u_2^* in $\overline{B_{(2\beta)^{-1}}}$, where β is listed in (2.2).

$$\Phi(\mathfrak{u}_2^*) = \min_{\overline{B_{(2\beta)}-1}} \Phi(\mathfrak{u}).$$

What is more, $u_2^* \neq 0$. In fact, since $F_i(t,0) = 0$ for a.e. $t \in (s_i, t_{i+1}]$, we find that $F_i(t,x) \ge 0$ for a.e. $t \in (s_i, t_{i+1}]$ and $x \in \mathbb{R}$ by (H). Thus $\phi_i \ge 0$. Let

$$u^{\sharp}(t) := \left\{ \begin{array}{ll} \alpha_{j-1} - \alpha_{j}, & \text{if } t = t_{j}, \\ 0, & \text{if } t \in [0,T] \text{ and } t \neq t_{j} \end{array} \right.$$

then $\mathfrak{u}^{\sharp} \in \overline{\mathsf{B}_{(2\beta)^{-1}}}$ and $\Phi(\mathfrak{u}^{\sharp}) \leqslant -(\alpha_{j-1} - \alpha_j)^2 < 0$. So

$$\Phi(\mathfrak{u}_2^*) \leqslant \Phi(\mathfrak{u}^\sharp) < 0 \tag{3.7}$$

and the assertion follows.

Step 4. u_1^* and u_2^* are different and both bounded.

In view of (3.6) and (3.7), we have

$$\Phi(u_1^*) > 0 > \Phi(u_2^*), \tag{3.8}$$

so u_1^* and u_2^* are different. From the inf max characterization of u_1^* in Lemma 2.2 and (3.5), we find that

$$\Phi(\mathfrak{u}_1^*) = \inf_{g \in \Gamma} \max_{s \in [0,1]} \Phi(g(s)) \leqslant \max_{s \in [0,1]} \Phi(\xi_0 w s) \leqslant \max_{s \in [0,1]} h(s),$$

where

$$h(s) := \frac{\xi_0^2 s^2}{2} + \sum_{i=1}^N |\alpha_{i-1} - \alpha_i| \, \beta \xi_0 s - \sum_{i=0}^N Q_i \xi_0^{\sigma_i} s^{\sigma_i} + \sum_{i=0}^N \int_{s_i}^{t_{i+1}} b_i(t) dt.$$

Since h(s) is continuous on [0, 1], we have $\Phi(u_1^*)$ is bounded above and so is $\Phi(u_2^*)$ by (3.8). Similar as (3.2), for $u^* \in H_0^1(0, T)$, we get

$$\left(\frac{\sigma}{2}-1\right)\|\mathbf{u}^*\|^2 - (\sigma-1)\beta\sum_{i=1}^N|\alpha_{i-1}-\alpha_i|\|\mathbf{u}^*\| \leqslant \sigma\Phi(\mathbf{u}^*) - \langle\Phi'(\mathbf{u}^*),\mathbf{u}^*\rangle.$$
(3.9)

Since u_1^* and u_2^* are both critical points of Φ , furthermore $\Phi(u_1^*)$ and $\Phi(u_2^*)$ are both bounded above, (3.9) implies that u_1^* and u_2^* are both bounded in $H_0^1(0,T)$. This completes the proof.

Acknowledgment

This work has been partially supported by National Natural Science Foundation of China (No.11401420, No.11326117, No.11626182), SXNSF (No.2013021001-2, No.201601D102002), YFTUT (No.2013T062), TFTUT (No.tyut-rc201212a), the Ministerio de Economia y Competitividad of Spain under Grant MTM2016-75140-P of the AEI and co-financed by European Community fund FEDER and XUNTA de Galicia under grants GRC2015-004 and R2016/022.

References

- G. A. Afrouzi, A. Hadjian, V. D. Rădulescu, Variational approach to fourth-order impulsive differential equations with two control parameters, Results Math., 65 (2014), 371–384.
- [2] G. A. Afrouzi, A. Hadjian, S. Shokooh, Infinitely many solutions for a Dirichlet boundary value problem with impulsive condition, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 77 (2015), 9–22. 1
- [3] L. Bai, J. J. Nieto, Variational approach to differential equations with not instantaneous impulses, Appl. Math. Lett., (2017), (In press).1

- [4] G. Bonanno, R. Rodríguez-López, S. Tersian, Existence of solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 717–744. 1
- [5] V. Colao, L. Muglia, H.-K. Xu, Existence of solutions for a second-order differential equation with non-instantaneous impulses and delay, Ann. Mat. Pura Appl., **195** (2016), 697–716. 1
- [6] B.-X. Dai, D. Zhang, The existence and multiplicity of solutions for second-order impulsive differential equations on the half-line, Results Math., 63 (2013), 135–149. 1
- [7] E. Hernández, D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641–1649.
- [8] J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, Springer-Verlag, New York, (1989). 2.2
- [9] J. J. Nieto, Variational formulation of a damped Dirichlet impulsive problem, Appl. Math. Lett., 23 (2010), 940–942. 1
- [10] J. J. Nieto, D. O'Regan, ariational approach to impulsive differential equations, Nonlinear Anal. Real World Appl., 10 (2009), 680–690. 1, 2
- M. Pierri, H. R. Henríquez, A. Prokopczyk, Global solutions for abstract differential equations with non-instantaneous impulses, Mediterr. J. Math., 13 (2016), 1685–1708.
- [12] M. Pierri, D. O'Regan, V. Rolnik, Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comput., 219 (2013), 6743–6749. 1
- [13] R. Rodríguez-López, S. Tersian, Multiple solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 1016–1038. 1
- [14] A. M. Samoilenko, N. A. Perestyuk, *Impulsive differential equations*, With a preface by Yu. A. Mitropolskiĭand a supplement by S. I. Trofimchuk, Translated from the Russian by Y. Chapovsky, World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, World Scientific Publishing Co., Inc., River Edge, NJ, (1995).
- [15] J.-T. Sun, H.-B. Chen, Multiplicity of solutions for a class of impulsive differential equations with Dirichlet boundary conditions via variant fountain theorems, Nonlinear Anal. Real World Appl., 11 (2010), 4062–4071.
- [16] Y. Tian, W.-G. Ge, Applications of variational methods to boundary-value problem for impulsive differential equations, Proc. Edinb. Math. Soc., 51 (2008), 509–528. 1, 2
- [17] E. Zeidler, *Nonlinear functional analysis and its applications*, III, Variational methods and optimization, Translated from the German by Leo F. Boron, Springer-Verlag, New York, (1985). 2.1