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Abstract

In this paper, a class of nonlinear differential equations with non-instantaneous impulses are considered. By using varia-
tional methods and critical point theory, a criterion is obtained to guarantee that the non-instantaneous impulsive problem has
at least two distinct nonzero bounded weak solutions. c©2017 All rights reserved.
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1. Introduction

Non-instantaneous impulsive differential equations were introduced by Hernádez and O’Regan in
[7], motivated by a problem related to the hemodynamical equilibrium of a person: in the case of a
decompensation (for example, high or low levels of glucose) one can prescribe some intravenous drugs
(insulin). Since the introduction of the drugs in the bloodstream and the consequent absorption for the
body are gradual and continuous processes, we can interpret the above situation as an impulsive action
which starts abruptly and stays active on a finite time interval.

Impulsive effects arise from the real world and are used to describe sudden, discontinuous jumps.
Differential equation with not instantaneous impulses is a generalization of the classical theory of im-
pulsive differential equations. For some general and recent works on the theory of impulsive differential
equations we refer the readers to [1, 2, 4, 6, 9, 10, 13–16].

The existence of solutions of non-instantaneous impulsive problem has been studied via some ap-
proaches, such as fixed point theory and theory of analytic semigroup, see, for example, [5, 7, 11, 12].
Recently, the variational structure of non-instantaneous impulsive linear problem has been developed in
[3].
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Inspired by the above facts, in this paper a class of non-instantaneous impulsive nonlinear problems
which has variational structure will be studied by critical point theory.

Consider the following non-instantaneous impulsive problem
−u ′′(t) = DxFi(t,u(t) − u(ti+1)), t ∈ (si, ti+1], i = 0, 1, · · · ,N,
u ′(t) = αi, t ∈ (ti, si], i = 1, 2, · · · ,N,
u ′(s+i ) = u

′(s−i ), i = 1, 2, · · · ,N,
u(0) = u(T) = 0, u ′(0) = α0,

(1.1)

where 0 = s0 < t1 < s1 < t2 < s2 < · · · < tN < sN < tN+1 = T , the impulses start abruptly at the points ti
and keep the derivative constant on a finite time interval (ti, si]. Here u ′(s±i ) = lims→s±i u

′(s) and αi are
given constants. For each i = 0, 1, · · · ,N, the nonlinear functions DxFi(t, x) are the derivatives of Fi(t, x)
with respect to x and Fi satisfies the following assumption:

(A) Fi(t, x) is measurable in t for every x ∈ R and continuously differentiable in x for a.e. t ∈ (si, ti+1],
and there exist a ∈ C(R+; R+) and b ∈ L1(si, ti+1; R+) such that

|Fi(t, x)| 6 a(|x|)b(t), |DxFi(t, x)| 6 a(|x|)b(t)

for all x ∈ R and a.e. t ∈ (si, ti+1].

Moreover, without loss of generality, it is supposed that Fi(t, 0) = 0 for a.e. t ∈ (si, ti+1] and each
i = 0, 1, · · · ,N.

Our results are presented as follows.

Theorem 1.1. Assume condition (A) holds and

(H) for each i = 0, 1, · · · ,N, there exist constants σi > 2 such that 0 < σiFi(t, x) 6 xDxFi(t, x) for a.e.
t ∈ (si, ti+1] and x ∈ R \ {0},

then problem (1.1) has at least one nonzero bounded weak solution in H1
0(0, T) provided

π2

4T(1 + π)2 >

N∑
i=1

|αi−1 −αi|+ 2
N∑
i=0

∫ti+1

si

max
|x|=1

Fi(t, x)dt. (1.2)

In addition, if αj−1 6= αj for some j = 1, 2, · · · ,N, then problem (1.1) has at least two distinct nonzero bounded
weak solutions in H1

0(0, T).

Example 1.2. It follows from Theorem 1.1 that the following non-instantaneous impulsive problem has at
least two distinct nonzero bounded weak solutions.

− u ′′(t) = t(u(t) − u(ti+1))
3, t ∈ (si, ti+1], i = 0, 1,

u ′(t) = 0.1, t ∈ (t1, s1],
u ′(s+1 ) = u ′(s−1 ),
u(0) = u(1) = 0, u ′(0) = 0,

where 0 = s0 < t1 = 1
16 < s1 = 15

16 < t2 = 1.

2. Preliminaries

We recall some facts which will be used in the proof of our main result. It is a consequence of
Poincaré’s inequality that ∫T

0
|u(t)|2dt 6

1
λ1

∫T
0
|u ′(t)|2dt, (2.1)
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where λ1 = π2/T 2 is the first eigenvalue of the Dirichlet problem

−u ′′(t) = λu(t), t ∈ [0, T ]; u(0) = u(T) = 0.

Let H1
0(0, T) be the Sobolev space endowed with the norm

‖u‖H1
0
:=

(∫T
0
|u ′(t)|2 + |u(t)|2dt

)1/2

.

Obviously, H1
0(0, T) is a reflexive Banach space and by the Poincaré’s inequality (2.1), we know that

‖u‖ :=

(∫T
0
|u ′(t)|2dt

)1/2

is equivalent to the norm ‖u‖H1
0

in H1
0(0, T). Let

‖u‖L2 :=

(∫T
0
|u(t)|2dt

)1/2

and ‖u‖∞ := max
t∈[0,T ]

|u(t)|.

Then for u ∈ H1
0(0, T), we have

‖u‖∞ 6 β‖u‖, (2.2)

where β = (Tλ1)
−1/2 + T 1/2. In fact, it follows from the mean value theorem that 1

T

∫T
0 u(s)ds = u(τ) for

some τ ∈ (0, T). Hence, for t ∈ [0, T ], using Hölder inequality,

|u(t)| =

∣∣∣∣u(τ) + ∫t
τ

u ′(s)ds

∣∣∣∣ 6 1
T

∣∣∣∣∣
∫T

0
u(s)ds

∣∣∣∣∣+
∫T

0
|u ′(t)|dt 6 T−1/2‖u‖L2 + T 1/2‖u ′‖L2 .

Lemma 2.1 ([17, Theorem 38.A]). For the functional F :M ⊆ X→ [−∞,+∞] with M 6= ∅, minu∈M F(u) = α
has a solution in case the following hold:

(i) X is a real reflexive Banach space;
(ii) M is bounded and weak sequentially closed;

(iii) F is sequentially weakly lower semi-continuous on M.

Lemma 2.2 ([8, Theorem 4.10]). Let E be a Banach space and ϕ ∈ C1(E, R). Assume that there exist u0 ∈ E,
u1 ∈ E and a bounded open neighborhood Ω of u0 such that u1 ∈ E \Ω and inf∂Ωϕ > max{ϕ(u0),ϕ(u1)}. Let

Γ = {g ∈ C([0, 1],E) : g(0) = u0,g(1) = u1} and c = inf
g∈Γ

max
s∈[0,1]

ϕ(g(s)).

If ϕ satisfies the (PS)c-condition, then c is a critical value of ϕ and c > max{ϕ(u0),ϕ(u1)}.

To follow the ideas of the variational approach for impulsive differential equations of [10, 16], for each
v ∈ H1

0(0, T), we have∫T
0
u ′′(t)v(t)dt =

∫t1

0
u ′′(t)v(t)dt+

N∑
i=1

∫si
ti

u ′′(t)v(t)dt+

N−1∑
i=1

∫ti+1

si

u ′′(t)v(t)dt+

∫T
sN

u ′′(t)v(t)dt

= −

∫T
0
u ′(t)v ′(t)dt+

N∑
i=1

[
u ′(t−i ) − u

′(t+i )
]
v(ti) +

N∑
i=1

[
u ′(s−i ) − u

′(s+i )
]
v(si),
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which combined with (1.1) yields that∫T
0
u ′′(t)v(t)dt = −

∫T
0
u ′(t)v ′(t)dt+

N∑
i=1

[αi−1 −αi] v(ti)

−

N−1∑
i=0

( ∫ti+1

si

DxFi(t,u(t) − u(ti+1))dt
)
v(ti+1).

(2.3)

On the other hand,∫T
0
u ′′(t)v(t)dt = −

N∑
i=0

∫ti+1

si

DxFi(t,u(t) − u(ti+1))v(t)dt+

N∑
i=1

∫si
ti

d

dt
[αi]v(t)dt

= −

N∑
i=0

∫ti+1

si

DxFi(t,u(t) − u(ti+1))v(t)dt.

(2.4)

Thus, in view of v(tN+1) = v(T) = 0, (2.3), and (2.4), we find that

−

∫T
0
u ′(t)v ′(t)dt+

N∑
i=1

[αi−1 −αi] v(ti) = −

N∑
i=0

∫ti+1

si

DxFi(t,u(t) − u(ti+1))(v(t) − v(ti+1))dt. (2.5)

Considering the aforementioned equality, we introduce the following concept of weak solution for
(1.1).

Definition 2.3. A function u ∈ H1
0(0, T) is a weak solution of (1.1) if (2.5) holds for any v ∈ H1

0.

Consider the functional Φ : H1
0 → R defined by

Φ(u) :=
1
2

∫T
0
|u ′(t)|2dt−

N∑
i=1

(αi−1 −αi)u(ti) −

N∑
i=0

ϕi(u),

where

ϕi(u) :=

∫ti+1

si

Fi(t,u(t) − u(ti+1))dt.

For u and v fixed in H1
0(0, T) and λ ∈ [−1, 1], it follows from (2.2) that

|u(t) − u(ti+1)| 6 2‖u‖∞ 6 2β‖u‖, (2.6)

which combined with assumption (A) yields that ϕi(u) is well-defined on H1
0(0, T). Using assumption

(A) again, we see that

lim
λ→0

1
λ
[Fi(t,u(t) − u(ti+1) + λv(t) − λv(ti+1)) − Fi(t,u(t) − u(ti+1))]

= DxFi(t,u(t) − u(ti+1))(v(t) − v(ti+1)), for a.e. t ∈ (si, ti+1].

It follows from (2.6) that

|u(t) − u(ti+1) + λθ(v(t) − v(ti+1))| 6 2β(‖u‖+ ‖v‖), for θ ∈ (0, 1),

which combined with mean value theorem and assumption (A) yields to∣∣∣∣1λ [Fi(t,u(t) − u(ti+1) + λ(v(t) − v(ti+1))) − Fi(t,u(t) − u(ti+1))]

∣∣∣∣
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= |DxFi(t,u(t) − u(ti+1) + λθ(v(t) − v(ti+1)))(v(t) − v(ti+1))|

6 max
z∈[0,2β(‖u‖+‖v‖)]

a(z)2β‖v‖b(t) ∈ L1(si, ti+1; R+),

for some θ ∈ (0, 1). Lebesgue’s dominated convergence theorem shows that ϕi has at every point u a
directional derivative

〈ϕ ′i(u), v〉 =
∫ti+1

si

DxFi(t,u(t) − u(ti+1))(v(t) − v(ti+1))dt. (2.7)

Moreover, in view of assumption (A) and (2.6), we have

|〈ϕ ′i(u), v〉| 6
∫ti+1

si

|DxFi(t,u(t) − u(ti+1))||(v(t) − v(ti+1))|dt 6 2β
∫ti+1

si

b(t)dt max
z∈[0,2β‖u‖]

a(z)‖v‖.

Thus ϕ ′i(u) ∈ (H1
0(0, T))∗. Suppose un → u in H1

0(0, T), then {un} converges uniformly to u on [0,T] by
(2.2). Furthermore, it follows from (2.7) that

‖ϕ ′i(un) −ϕ ′i(u)‖ 6 2β
∫ti+1

si

|DxFi(t,un(t) − un(ti+1)) −DxFi(t,u(t) − u(ti+1))|dt.

Thus ϕ ′i is continuous from H1
0(0, T) into (H1

0(0, T))∗. So Φ ∈ C1(H1
0(0, T), R) and

〈Φ ′(u), v〉 =
∫T

0
u ′(t)v ′(t)dt−

N∑
i=1

(αi−1 −αi) v(ti) −

N∑
i=0

∫ti+1

si

DxFi(t,u(t) − u(ti+1))(v(t) − v(ti+1))dt.

Then critical points of Φ correspond to weak solutions of the problem (1.1).

Lemma 2.4. If assumption (H) holds, then for each i = 0, 1, · · · ,N there exist Mi,mi,bi ∈ L1(si, ti+1) which are
almost everywhere positive such that

Fi(t, x) 6Mi(t)|x|
σi , for a.e. t ∈ (si, ti+1] and |x| 6 1 (2.8)

and
Fi(t, x) > mi(t)|x|σi − bi(t), for a.e. t ∈ (si, ti+1] and x ∈ R, (2.9)

where
mi(t) := min

|x|=1
Fi(t, x) and Mi(t) := max

|x|=1
Fi(t, x), for a.e. t ∈ (si, ti+1].

Proof. It follows from assumption (H) that

0 < mi(t) 6 Fi

(
t,
x

|x|

)
6Mi(t), for a.e. t ∈ (si, ti+1]

and
Mi(t) 6 max

|x|61
Fi (t, x) 6 max

|x|61
a(|x|)b(t) ∈ L1(si, ti+1).

For each i = 0, 1, · · · ,N, define Ti : (0,+∞)→ R by

Ti(z) = Fi

(
t,
x

z

)
zσi , for a.e. t ∈ (si, ti+1] and x 6= 0.

Condition (H) implies that Ti is nonincreasing. Thus, for a.e. t ∈ (si, ti+1], we have

Fi(t, x) 6 Fi

(
t,
x

|x|

)
|x|σi , if 0 < |x| 6 1
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and

Fi(t, x) > Fi

(
t,
x

|x|

)
|x|σi , if |x| > 1. (2.10)

So (2.8) holds. Moreover, for a.e. t ∈ (si, ti+1] and |x| 6 1, we have

|Fi(t, x) −mi(t)|x|σi | 6 max
|x|61

a(|x|)b(t) +mi(t) := bi(t),

which combined with (2.10) yields (2.9).

3. Proof of Theorem 1.1

Proof. We complete the proof in four steps.

Step 1. Φ(u) satisfies PS condition on H1
0(0, T), that is, every sequence {uk} in H1

0(0, T) such that Φ(uk) is
bounded and Φ ′(uk)→ 0 as k→ +∞ contains a convergent subsequence. It is clear that∣∣∣∣∣

N∑
i=1

(αi−1 −αi)u(ti)

∣∣∣∣∣ 6
N∑
i=1

|αi−1 −αi| ‖u‖∞ 6
N∑
i=1

|αi−1 −αi|β‖u‖. (3.1)

Let σ := min{σi : i = 0, 1, · · · ,N}, then σ > 2. By (H) and (3.1), we have

σΦ(uk) − 〈Φ ′(uk),uk〉 =
(σ

2
− 1
) ∫T

0
|u ′k(t)|

2dt− (σ− 1)
N∑
i=1

(αi−1 −αi)uk(ti)

−

N∑
i=0

∫ti+1

si

σFi(t,uk(t) − uk(ti+1)) −DxFi(t,uk(t) − uk(ti+1))

× (uk(t) − uk(ti+1))dt

>
(σ

2
− 1
)
‖uk‖2 − (σ− 1)β

N∑
i=1

|αi−1 −αi| ‖uk‖,

(3.2)

which implies that {uk} is bounded in H1
0(0, T). Since H1

0(0, T) is a reflexive Banach space, passing to a
subsequence if necessary, we may assume that there is a u0 ∈ H1

0(0, T) such that uk ⇀ u0 in H1
0(0, T). Then

{uk} converges uniformly to u0 on [0, T ] and uk → u0 in L2(0, T). Notice that

〈Φ ′(um) −Φ ′(un),um − un〉

=

∫T
0
|u ′m(t) − u ′n(t)|

2dt−

N∑
i=0

∫ti+1

si

[DxFi(t,um(t) − um(ti+1))

−DxFi(t,un(t) − un(ti+1))] [um(t) − um(ti+1) − un(t) + un(ti+1)]dt.

(3.3)

In view of assumption (A) and

|um(t) − um(ti+1) − un(t) + un(ti+1)| 6 |um(t) − un(t)|+ |um(ti+1) − un(ti+1)|

6 2‖um − un‖∞ → 0, as m,n→∞,

we have that the second term on the right hand of (3.3) converges to 0 as m,n → ∞. What is more, the
fact that Φ ′(uk)→ 0 as k→ +∞ implies∣∣〈Φ ′(um) −Φ ′(un),um − un〉

∣∣ 6 ‖Φ ′(um) −Φ ′(un)‖‖um − un‖ → 0,

as m,n → ∞. Consequently, ‖um − un‖ → 0 as m,n → ∞. By the completeness of H1
0(0, T), we know

that {uk} possesses a convergent subsequence in H1
0(0, T).
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Step 2. Φ(u) has mountain pass geometric structure.
Let Br be the open ball in H1

0(0, T) with radius r and centered at 0 and let ∂Br and Br denote the
boundary and closure of Br, respectively. For each u ∈ ∂B(2β)−1 , where β is listed in (2.2), we have

|u(t) − u(ti+1)| 6 2‖u‖∞ 6 2β‖u‖ = 1.

Thus, using (2.8), we find that, for each u ∈ ∂B(2β)−1 ,∫ti+1

si

Fi(t,u(t) − u(ti+1))dt 6
∫ti+1

si

Mi(t)|u(t) − u(ti+1)|
σidt 6

∫ti+1

si

Mi(t)dt,

which combined with (3.1) yields that, for any u ∈ ∂B(2β)−1 ,

Φ(u) >
1
2

[
1

4β2 −

N∑
i=1

|αi−1 −αi|− 2
N∑
i=0

∫ti+1

si

Mi(t)dt

]
:= γ.

In view of (1.2), we have Φ(u) > γ > 0 = Φ(0) for any u ∈ ∂B(2β)−1 . Thus

inf
u∈∂B

(2β)−1
Φ(u) > Φ(0).

Let ξ > 0 and w ∈ H1
0(0, T) with ‖w‖ = 1 and w(t) is not a constant for a.e. [0, t1]. It follows from (2.9)

that ∫ti+1

si

Fi(t, (w(t) −w(ti+1))ξ)dt >
( ∫ti+1

si

mi(t)|w(t) −w(ti+1)|
σidt

)
ξσi −

∫ti+1

si

bi(t)dt. (3.4)

Let Qi :=
∫ti+1
si

mi(t)|w(t) −w(ti+1)|
σidt. Then we have that

0 6 Qi 6 (2β)σi
∫ti+1

si

mi(t)dt and Q0 > 0.

In fact, suppose that
∫t1

0 m0(t)|w(t) −w(t1)|
σ0dt = 0, since m0(t) is almost everywhere positive, we have

w(t) = w(t1) for a.e. [0, t1], which is a contradiction to the assumption on w. In view of (3.4), we have

Φ(ξw) =
1
2
ξ2 −

N∑
i=1

(αi−1 −αi)w(ti)ξ−

N∑
i=0

∫ti+1

si

Fi(t, (w(t) −w(ti+1))ξ)dt

6
1
2
ξ2 +

N∑
i=1

|αi−1 −αi|βξ−

N∑
i=0

Qiξ
σi +

N∑
i=0

∫ti+1

si

bi(t)dt.

(3.5)

Since σi > 2, we have Φ(ξw)→ −∞ as ξ→ +∞. Thus, there exists ξ0 with ‖ξ0w‖ > (2β)−1 such that

inf
u∈∂B

(2β)−1
Φ(u) > Φ(ξ0w).

Therefore it follows from Steps 1-2 and Lemma 2.2 that there exists u∗1 ∈ H1
0(0, T) such that Φ ′(u∗1) = 0

with
Φ(u∗1) > max{Φ(0),Φ(ξ0w)} > Φ(0) = 0, (3.6)

so u∗1 is a nonzero weak solution of problem (1.1).

Step 3. If αj−1 6= αj for some j = 1, 2, · · · ,N, then Φ(u) has a nonzero local minimum u∗2 in B(2β)−1 , where
β is listed in (2.2).
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Since B(2β)−1 is a closed convex set, B(2β)−1 is weak sequentially closed. Furthermore, Φ(u) is se-
quentially weakly lower semi-continuous on H1

0(0, T) as the sum of a convex continuous function and of
a weakly continuous one. Thus it follows from Lemma 2.1 that there exists a u∗2 ∈ B(2β)−1 such that

Φ(u∗2) = min
B

(2β)−1

Φ(u).

What is more, u∗2 6= 0. In fact, since Fi(t, 0) = 0 for a.e. t ∈ (si, ti+1], we find that Fi(t, x) > 0 for a.e.
t ∈ (si, ti+1] and x ∈ R by (H). Thus ϕi > 0. Let

u](t) :=

{
αj−1 −αj, if t = tj,
0, if t ∈ [0, T ] and t 6= tj,

then u] ∈ B(2β)−1 and Φ(u]) 6 −(αj−1 −αj)
2 < 0. So

Φ(u∗2) 6 Φ(u]) < 0 (3.7)

and the assertion follows.

Step 4. u∗1 and u∗2 are different and both bounded.
In view of (3.6) and (3.7), we have

Φ(u∗1) > 0 > Φ(u∗2), (3.8)

so u∗1 and u∗2 are different. From the inf max characterization of u∗1 in Lemma 2.2 and (3.5), we find that

Φ(u∗1) = inf
g∈Γ

max
s∈[0,1]

Φ(g(s)) 6 max
s∈[0,1]

Φ(ξ0ws) 6 max
s∈[0,1]

h(s),

where

h(s) :=
ξ2

0s
2

2
+

N∑
i=1

|αi−1 −αi|βξ0s−

N∑
i=0

Qiξ
σi
0 s

σi +

N∑
i=0

∫ti+1

si

bi(t)dt.

Since h(s) is continuous on [0, 1], we have Φ(u∗1) is bounded above and so is Φ(u∗2) by (3.8). Similar as
(3.2), for u∗ ∈ H1

0(0, T), we get

(σ
2
− 1
)
‖u∗‖2 − (σ− 1)β

N∑
i=1

|αi−1 −αi| ‖u∗‖ 6 σΦ(u∗) − 〈Φ ′(u∗),u∗〉. (3.9)

Since u∗1 and u∗2 are both critical points of Φ, furthermore Φ(u∗1) and Φ(u∗2) are both bounded above, (3.9)
implies that u∗1 and u∗2 are both bounded in H1

0(0, T). This completes the proof.
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